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1. Introduction

Parallel transport and developments in the theory of isometric immersions — between the 19th
and 20th centuries — are intriguingly intertwined, as we will see later. Notably, the history of
isometric immersions is not widely known, and many aspects of it remain unclear. In their recent
book dedicated entirely to this subject, Han Qing and Hong Jia-Xing write:

In 1873, Schlaefli made the following conjecture: every n-dimensional smooth
Riemannian manifold admits a smooth local isometric embedding in R, with
sp = n(n+1)/2. It was more than 50 years later that an affirmative answer was
given for the analytic case successively by Janet and Cartan; they proved in 1926-
1927 that any analytic n-dimensional Riemannian manifold has a local analytic
isometric embedding in R». Schlaefli’s question for the smooth case when n =2
was given renewed attention by Yau in the 1980’s and 1990’s. For the global
isometric embedding, Nash in 1954 and Kuiper in 1955 proved the existence
of a global C! isometric embedding of n-dimensional Riemannian manifolds in
R27*+1 (23, p. XI]
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The final work of Nash and Kuiper marked a turning point on the matter. Its local version
answers a question asked by young Henri Lebesgue, whose partial solution led to the Lebesgue
integral. This is carefully told in the Bourbaki seminar talk by Gustave Choquet [14]. The right
statement about the embedding dimension is Choquet’s Corollaire 1, which implies in particular
the amazing fact that a flat n-torus can be C'-embedded isometrically in R,

However, going back to the origins, following Ludwig Schlaefli’s (1814-1895) 1872 publica-
tion [43] and before Maurice Janet’s (1888-1983) proof for n = 2, mathematicians had already
provided at least a partial answer to this problem. Notably, as explored in Section 2.1, Gregorio
Ricci Curbastro (1853-1925) made significant advances in a 1884 paper on quadratic forms [39].

Tullio Levi-Civita (1873-1941) later applied this theorem in his study of parallel transport.
Significantly, his approach to introducing this concept evolved between his initial 1917 defini-
tion [29] and his treatise on absolute differential calculus, first published in Italian in 1925 [30]
and later translated into English in 1926 [31] (see Section 2.2). In our view, this later approach
was at least partially motivated by his attempt to provide a stronger justification for isometric
immersion, for which he offered a more intuitive yet rigorous definition in the 2-dimensional
case. Although the first general proof for n > 2 of Schlaefli’s conjecture was given by Elie Car-
tan (1869-1951) in 1927 [13], and then — following [21] — by Celestin Burstin (1888-1938) in
1931 [8], Levi-Civita appears to have regarded this theorem as self-evident, likely based on the
well-known Cauchy-Kowalevski theorem. An attitude, well supported a *posteriori, that Levi-
Civita also demonstrated around a PDE problem in celestial mechanics (see Section 2.3).

In Section 4, we focus on the connections between the Foucault pendulum precession exper-
iment and parallel transport, highlighting some interesting historical aspects, from Jean Bernard
Léon Foucault (1819-1868) to Dragos Oprea. In 1851, Foucault conducted his famous experiment
in the Panthéon of Paris, demonstrating how the precession of the plane of oscillation of a spher-
ical pendulum highlighted Earth’s diurnal rotation. In the discussions between Foucault and the
mathematicians of the time, as reported in the proceedings of the Académie des Sciences, the
decisive role of the Coriolis force, introduced in 1835, did not immediately emerge. Louis Poinsot
(1777-1859) [38] warned the scientific community that this phenomenon was, in the final anal-
ysis, of an exquisitely geometric nature. The role of parallel transport in this geometric under-
standing, although within the context of an adiabatic approximation, became apparent shortly
after the publication of [29] in 1918 by Johann Karl August Radon (1887-1956). As pointed out
in [2, Section 6.4.3], unfortunately, there is no trace of his work in the literature. However, it is
well described by Felix Christian Klein (1849-1925) in [27] A

Much later, a notable 1995 paper by Oprea [37] definitively linked Foucault’s phenomenon to
parallel transport. More specifically, in that work, parallel transport is presented using the defi-
nition introduced in (5). Over time, other approaches to parallel transport and alternative expla-
nations of Foucault’s phenomenon emerged. After Francesco Severi (1879-1961) in 1917, more
recently, Michael Victor Berry and John Hannay have explored the topic within the framework of
adiabatic approximation (see Section 3).

2. Parallel transport and isometric embedding

2.1. From Riemann to Ricci

The “Schlaefli conjecture,” as referred to in [23], had been used for many years before it was rig-
orously proven. It is a generalization of a problem originally stated by Bernhard Riemann (1826-
1866) in his Commentatio Mathematica [42], which concerns finding a coordinate transforma-
tion that locally maps a Riemannian manifold V;, onto a Euclidean space S;, of the same dimen-

1See Dritter Hauptteil, I1: J. Radons mechanische Herleitung des Parallelismus von T. Levi-Civita.
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sion. As is well known, this problem was later revisited by Elwin Bruno Christoffel (1829-1900)
and Rudolf Lipschitz (1832-1903) in two articles published in the same year in the Journal fiir
die reine und angewandte Mathematik [15,32]. In general, such a transformation is not possible
unless V,, is already Euclidean, i.e. its curvature tensor vanishes. Riemann, in his work, only dis-
cussed the necessary conditions for this transformation. Later, in his 1884 memoir, Ricci Curbas-
tro investigated the sufficient conditions under which the problem admits a solution [39].

This problem naturally extends with the introduction of the concept of isometric immersion.
The question then becomes: may any Riemannian manifold V}, be isometrically immersed into
a Euclidean space Sy for a sufficiently large N? More specifically, for which values of N is this
possible?

In his 1873 memoir, Schlaefli [43] intended to complete a result obtained by Eugenio Beltrami
(1835-1900) in his fundamental paper on non-Euclidean geometry [3]. More in detail, Beltrami
established that in an n-dimensional space of constant curvature, one can choose the n inde-
pendent variables so that every geodesic is represented by n—1 linear equations. Schlaefli set out
to solve the inverse problem, namely to determine the type of Riemannian manifold V,, in which
every geodesic can be expressed by n— 1 linear equations, where n is the number of independent
variables. This leads to the following fundamental question: under what conditions can a posi-
tive quadratic differential form in 7 variables be transformed into the Euclidean form ¥~ | dy?,
where y1,¥»,..., yn are suitable functions of n variables? According to Schlaefli, this problem is
always solvable for sufficiently large N. In particular, he states that it is possible for N = n(n+1)/2,
without providing a formal proof but rather relying on a simple and naive equation-to-unknowns
count.

In his 1884 article [39], Ricci Curbastro built upon Schlaefli’s work to establish a classification
of the invariants of quadratic differential forms. He further developed this classification in several
subsequent memoirs, marking an initial step toward the formulation of his absolute differential
calculus (see [12,48]). If N = n+ h is the smallest possible value, then Ricci defined / as the “class”
of V,,. He proved the necessary and sufficient conditions for 1-class forms, i.e. h =1 (see [16,
p- 262-266]), demonstrating that any manifold V» can be isometrically immersed in R3 [39, p. 162—
163]. Ricci appears to be convinced that embedding a three-dimensional manifold V3 in R* is not
possible; however, he did not explicitly formulate this claim.

In 1926, Janet clearly stated the general theorem of isometric immersion [25]: every V,, can
be immersed in a space RV, where N = n(n +1)/2. He pointed out that, even when the number
of unknown functions is not smaller than the number of equations, one cannot assume a priori
that the system is compatible — a gap in Schlaefli’s famous 1873 paper, where such a proof was
lacking. Therefore, Janet traced this theorem for any n back to the algebraic condition of the
implicit function theorem, employing an inductive proof. However, except for the base case
n = 2, his proof did not seem to fully satisfy mathematicians, who generally attribute the first
rigorous proof of the general theorem to Elie Cartan in 1927 [13]. For the first time, inaugurating
an approach that would later become classical, Cartan considered analytic functions related to
the immersion of V,, in RY and successfully reformulated Janet’s algebraic conditions in terms of
Pfaffian systems.

As Misha Gromov and Vladimir Rokhlin [21] noted in 1970, it was Celestin Burstin (1888—
1938) [8] who, in 1931, definitively consolidated the proofs of Janet and Cartan. Let us remember
once again that all the theorems on isometric immersions discussed here are of a local nature.
It was not until 1954 that John Nash (1928-2015) [35] proved his extraordinary C' isometric
embedding theorem, where the obstruction of curvature does not exist, and then, two years later,
he established a technically much harder result [36] solving the global smooth (Ck, 3<k=<00)
isometric embedding problem. This is where the so-called Nash-Moser iteration method made
its first appearance.
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Subsequent developments, including those by Matthias Giinther [22] and others, propose
alternative techniques to the Nash—-Moser ones. In more detail, Glinther found a clever trick
enabling him to replace the Nash-Moser method by the ordinary implicit mapping theorem.
Nevertheless, the Nash—-Moser method remains fundamental in mathematics, contributing to
show how fruitful the isometric embedding problem has been.

Other historical notices on isometric immersions can be found in [21,23].

2.2. Levi-Civita

The origins of parallel transport can be traced back to pioneering contributions by John Eiesland
(1867-1950), Ernesto Laura (1879-1949), Ernest Vessiot (1865-1952), and Gaston Darboux (1842-
1917). All these authors have been quoted by Levi-Civita in his fundamental paper [29] on the
subject. Vessiot had introduced a definition of parallel transport depending on the metric but
lacking a specific geometrical and analytical setting. Furthermore, Gerhard Hessenberg (1874-
1925) characterized parallel transport along a geodesic in a 1916 paper but did not extend his
analysis to arbitrary curves, as Levi-Civita later did (see [48], especially Chapter 3).

It is worth to note that Levi-Civita delved in the study of parallel transport after nearly fifteen
years away from differential geometry. That was largely due to the limited acceptance of tensor
calculus within the Italian mathematical community, despite his groundbreaking and worldwide
acknowledged results emerged from the collaboration with his mentor Ricci, culminating in their
seminal 1901 paper [41]. His renowned correspondence with Einstein in the spring of 1915
— where he identified and corrected an error in the initial formulation of general relativity —
reignited his interest in differential geometry.

The introduction of Levi-Civita’s 1917 paper [29] clearly reflects his attitude toward physics
and his enthusiasm for Einstein’s theory. The article aims to offer a geometric interpretation
of the Riemann curvature tensor, which is central to the equations of the gravitational field, by
examining how a vector or tensor changes when parallel transported around an infinitesimal
closed circuit.

Levi-Civita assumed the existence of a local isometric embedding for any n-dimensional
Riemannian manifold (V, a;;) into a Euclidean space (Sy,6,v) of suitable dimension N 2 Using
local charts, he expressed it as:

Vs (x1,...,xp) — ¥ =W(x1,...,x) €SN, v=1,...,N. @))

By means of the pull-back — what we would call it today — generated by (1), he assumed that the
Riemannian metric a;j on V,, was inherited from the Euclidean metric § Wzs

ayﬂ Oyy
—W), §,j=1,....,n, pv=1,...,N. 2
%, (x) ox; (), i, TR )

aij(x) = 6yv

When introducing two infinitesimally close points, P and P, on V,,, Levi-Civita defined paral-
lelism between two given tangent directions, a at P and @ at P, by imposing the equality of an-
gles between these directions and an arbitrary direction f on the tangent plane to V,, at P. These
angles were measured in the Euclidean ambient space Sy. He expressed this condition using the
following equation (see [29, (1)]):

angle (f) () = angle (f) (@), (3)
which has a clear interpretation only in Sy, since on the r.h.s. of (3), f is considered as being

translated from P to P exclusively within Sy.

2That is, in modern language, R equipped with its standard Euclidean structure.
3If an index is repeated in a product of vectors or tensors, summation is implied over the repeated index.
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In other words, the Euclidean transportin Sy induces an infinitesimal parallel transport on V;,.
Parallel transport is thus defined as the operation that maps a tangent vector at P to a tangent
vector at P, preserving both direction (in the above sense) and length. For each tangent vector f
to V},, represented in Sy as
Oyy = 0y

0x k
for arbitrary d x4, and for a generic curve xi (1) from P to P on V,,, we denote by a, (1) the parallel
transported vector along x (1). Writing &/, = %, condition (3) translates into:

oy . oy
axz 6xy, thatis: a, axz =0. 4)

These considerations do not appear to be intrinsic, as they rely on the choice of embedding in a
Euclidean space. Condition (4) is precisely equivalent to the following one, found in Oprea [37]
in the case where Vs = §? c R3:

6xk

0=b6a=a,0y,=a,

projry, a'=0. 5)
Moreover, (4) is also equivalent to (12) below, expressed in different notation. After some
computation, as Levi-Civita demonstrated, (4) can be rewritten in an equivalent intrinsic form,
involving the vanishing of the covariant derivative V (based on a; ) of a along an arbitrary curve
x(1). Setting 6x; = X0 and defining a; = av%, the parallel-transported a; (1) must satisfy
the following equation:®

i1
0=Va,-=a’i+{]i }x}alzo, i=1,2,...n ©)

This result is significant: equation (6) is fully intrinsic in V},. Thus, the concept of parallel
transport is a posteriori independent of the embedding, its properties hold regardless of the
chosen embedding. Eventually, this shows the irrelevance of the particular choice of Sy for
the local isometric embedding (1). In general, the concept of parallel transport depends on the
specific path taken from P to P, unlike in Euclidean spaces where it is path-independent. In fact,
it is well known that the real obstruction to the independence is the curvature of the connection,
involved in the above equation (6).
Levi-Civita then derived the following expressions:

i 1
x;’+{]i }x}x;:O, i=1,2,...,n, @)

which govern the geodesics, the self-parallel curves: a = x'.

2.3. Some remarks

Isometric immersions play a central role in Levi-Civita’s introduction to parallel transport [29]
and in his later treatises [31]. Since Ricci was both his mentor and a key collaborator, it is
reasonable to assume that Levi-Civita had studied Ricci’s 1884 memoir [39]. In that work,
as discussed above, Ricci referenced Schlaefli’s 1873 paper [43] on the existence of isometric

4The covariant derivative was introduced by Ricci in 1888; for more details, see [18]. This concept was revisited and
further developed in the joint work [41] that represents the final version of the absolute differential calculus (the tensorial
calculus) elaborated together with T. Levi-Civita.
5Today Christoffel’s symbols of the second kind
i l}_zaik(aﬂ+@_%
i 2 0x; 0x i 0xy

are denoted by A= alk| j1, k], which differ from Levi-Civita’s notation. Similarly, vector x’, is today replaced by its
Jl i

contravariant form x'/.
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immersions of Riemannian manifolds V,, into some Euclidean space Sy, with at least N =
n(n+1)/2 =:s,, an integer that would later become known as the Janet dimension.

Schlaefli’s so-called “conjecture” [23], originally based on the straightforward requirement of
balancing equations and unknowns [21], had yet to be formally established as a theorem when
Levi-Civita published his paper on parallel transport [29], in 1917. Actually, as on other occasions,
Levi-Civita had a strong technical confidence in the power and applicability of the Cauchy-
Kowalevski theorem, which will actually be the analytical engine for the subsequent proof of
the isometric immersion matter [8,13,25]. In fact, he used Cauchy-Kowalevski theorem (without
naming it)® in his important work on the three-body problem [28]. In that notable 1906 paper,
Levi-Civita invoked a “general existence theorem” offering holomorphic solutions:

...I’équation précédente

ow 2w, V)L P B .
{(05 20°m +(0_171_2p 51) }—V—CP S tup 1% (10"
ol Vj est ce que devient V on y remplacant ¢, 7 par...

Le théoréme général d’existence relatif aux équations aux dérivées partielles
du premier ordre, nous permet ainsi d’affirmer qu'il existe deux intégrales de
(10"), holomorphes aux voicinage de é; =1 = 0 et se réduisant a zéro pour 1 =0
Leurs développements en série de puissances de ¢;, 177 peuvent étre calcules
de proche en proche, en partant de 'une ou de I'autre des expressions de 2 65
fournies per (10).

The technique of making explicit a derivative of the unknown as a function of the remaining
variables and derivatives, while assigning initial data on a suitable hypersurface, falls within
the framework of the Cauchy-Kowalevski theorem.” Given that this fundamental theorem was
well known within the mathematical community at the time, it is reasonable to assume that he
employed this approach.

In his 1917 construction, Levi-Civita had an immediate need for that result, as he had to
inherit the Riemannian metric on V,, from the Euclidean one of some Sy (or RY). His proposal
specifically concerned parallel transport along curves on Riemannian manifolds of arbitrary
dimension n.

Over the following years, between 1925 and 1927, Persico edited Levi-Civita’s lectures, leading
to the publication of the volume in Italian [30], followed by its English version in 1926 [31]. It
was around this time that the first true proto-proof of the local isometric immersion theorem
emerged, provided by Janet, though limited to 2-dimensional manifolds V» in R3. In both
the Italian and English volumes, parallel transport is now introduced based on a strictly 2-
dimensional concept: developability.

In Chapter V of these works [31], Levi-Civita presents a more geometric and elegant definition
of parallel transport. He moves away from the previously discussed infinitesimal angular equality
and instead demonstrates the natural emergence of parallel transport on developable surfaces,
inherited from the Euclidean case.?

He then generalizes the concept by defining parallel transport of vectors along a curve ¢ on
a 2-dimensional surface X in terms of parallel transport along ¢, now regarded as lying on the
envelope surface Z of the family of planes tangent to X along ¢. The surface X is thus developable,
and its tangent planes coincide with those of Z. Since parallel transport on developable surfaces
is naturally well-defined, this provides a rigorous foundation for the construction.

6This has been highlighted in [10].

"For details and an explanation, see [10].

81t is worth noting that, unlike the general case developed in 1917 for arbitrary dimensions, this argument is restricted
to 2-dimensional surfaces in R3. Incidentally, for n = 2, the Janet dimension is indeed N = 3.
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This refined notion of parallel transport leads to formulas (21) and (22) in [31, Chapter V].?
Recognizing the intrinsic tensorial nature of this result naturally facilitates its extension to
arbitrary-dimensional manifolds for n > 2.

3. Severi

In that same year 1917, and in the same journal Rendiconti del Circolo Matematico di Palermo,
Severi — a close friend and colleague of Levi-Civita in Padua — published his own version of par-
allel transport [46]. His goal, among other seemingly fundamental aims related to curvature, was
to introduce parallel transport in a fully intrinsic manner, avoiding reliance on those isometric
immersions.

Severi’s approach can be described as follows, using his notation. Consider a Riemannian
manifold V,, with two “very close” points, A and A;. In the tangent space to V,, at A, take a
vector ¢. Severi defines the parallel transport of £ from A to A, denoted ¢, as follows.

By considering the first-order approximation, we can think of A; as a point on V,, that is
reached by a smooth curve originating from A. In local coordinates, A; = A+ vt, where ¢ is
infinitesimal. At A, we have two well precise vectors in the tangent space to V,;: v (the tangent
vector to the curve) and ¢ (the vector we wish to parallel transport). Consider the 2-plane marked
by these two vectors, ¢ and v, and think of all the vectors between ¢ and v as initial velocities for
geodesics stemming from A. This set of vectors generates a 2-dimensional surface o.

To obtain the parallel-transported vector ¢;, Severi’'s method involves starting from ¢, then
following the vectors attached to the curve between A and A;. These vectors must be tangent
to the surface o, and maintain the same angle with the vectors tangent to the curve, at the first
order determined exactly by v, the velocity of the curve. Severi demonstrates that it is precisely
the Levi-Civita parallel transport, but now introduced in a fully intrinsic way.

Levi-Civita, in a friendly yet assertive manner, discusses the teorema di Severi in [31] and
points out that this is, in fact, a trivial consequence of his own results. The reason for this is that
in geodesic coordinates at point A, where the surface o is a portion of a plane, the Christoffel
symbols vanish at A and the metric at A is Euclidean. Therefore, the condition for the zero
covariant derivative of the parallel transport reduces to the well-known Euclidean condition for
parallel transport in flat space.

Itis interesting to note that, aside from Severi’s definition, other formulations of parallel trans-
port do not necessarily rely on the concept of isometric immersion. For instance, Hermann Weyl
(1885-1955) [49] proposed a different approach leading to his definition of “affine connection.”!°

Severi cared deeply about his definition of parallel transport. Many years later, in 1955, he
revisited it in a rather long footnote on p. 315 of his own article on special relativity [47]:

Of this deservedly famous parallelism, the Author of this article had the good
fortune of being able to assign an intrinsic, very simple geometric meaning,
cited several times in the works of Levi-Civita, which start from the analytical
definition, as “theorem of Severi.” It consists of this...

By the way, it is interesting to note that the use of geodesic 2-surfaces played a crucial role in
Riemann’s construction of his curvature tensor through sectional curvatures.

9Notably, in the English version, a minor typo in formula (21) of the Italian edition appears to have been corrected.
10Weyl’'s approach was referenced by Levi-Civita in a footnote on p. 135 and p. 117 of the Italian [30] and English [31]
editions. For more details on Weyl’s work, see Scholz’s papers [44,45]; see also [48], especially Chapter 5.
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4. Alternative roads

In his treatises, unlike in his 1917 paper, Levi-Civita introduced parallel transport through con-
siderations strictly related to a 2-dimensional setting, specifically within the theory of devel-
opable surfaces. Inspired by [9, Section 7.4], we present an alternative approach to parallel
transport for 2-dimensional surfaces immersed in R3, adopting a different cultural perspective
while ultimately arriving at Levi-Civita’s theory. A key novelty of this formulation is that it entirely
avoids the use of infinitesimal concepts and reasoning. Similar final formulas were introduced
by Berry [6], which we will consider in the next section (Section 4.2).

4.1. A new heuristic approach to parallel transport

Let a 2-surface X — R3, locally described by
R’2U> (ul, uz) — P(ul, uz) € [Rs, rk(dP) = max
( 0P 0P opP /‘ )
X —F
oul’ 0wz’ " out " auz/ |out 6u2
is linearly independent in R® and the pair (a—P 6—P) is a base for any point of TX.

ou?
Take:

(@) acurve £: (0,113 A~ (D) = (u*WN)| o1, €55
(ii) avector V€ Typ)Z.

The triad of 3-vectors

Our central problem: what is the “reasonable” curve
7:00,113A— (A = (¢(V), V(W) e T

which parallel transports Vy along ¢, in some suitable sense?
A first (seemingly naive) tentative could be the following (recall that we want: V- n = 0, that is,
VeTs):

VW) =Vo—(Vo-mn, (8)
in other words, we transport V; along the curve ¢ by the standard Euclidean affine structure
of R3, erasing, point by point, the normal component of V;, so that V() is really tangent to X.
By differentiating with respect to A,

V=-(Wo-mn-(Vo-mn,
and since 71-n =0, by (8): Vp - 7=V - 11, hence we can rewrite

V=—(V-)n-Vy-nn. )
This setting has evident drawbacks: (i) we are heavily using the host environment R® in which

is immersed; moreover, (ii) the term —(Vp - n)72 in (9) is non local. Our proposal is to drop out the
last term in the r.h.s. of (9) and to postulate:

VAA): V=—(V-A)n, (10)
that implies V- n = 0 yet.

We restart our construction by involving the induced Riemannian metric on X inherited from
the Euclidean metric of R3:

_6_P(3_P _U“a_P Vﬁ_P_UaG_P a_P_v“ =p 11
890 = Gua qub’ - ou’ ouP =" qua gup =" BT
Equivalently to (10) we will ask
. 0P
VAA): 0=V.-—, f=1,2. (12)

ouf’
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This condition (12) is precisely the detailing for = c R® given by (4) above, which is the general
formula (8) in Levi-Civita [29] or formulas (21) and (22) in [31, Chapter V]. The above equivalence
between (10) and (12) is easily gained. From here on, following Levi-Civita, this proposal (12) will
be elaborated for generic Riemannian manifold of any dimension and eventually avoiding any
reference at the host Euclidean structure:

Ozi(v.a_P)_V.ia_P 0=il/ _vaa_P. azp iu?’ (13)
da\" oub dA ouf’ dA P77 Gut ourouf da
From (11),,
P 0P 4P  0*P
Eapy = ouYou® W+W “ouroub’
P 0P 0P  0°P
8Pra = 5aoub dur " ouP ouvour’
_ 0P 0P 0P  0°P
8rah = ubour out * our oubouc
hence,

0P  0°P _1( ) = [yBal

35 3urouP ~ 2 \Baby + 8yap~ 8pya) = vB
recalling the symbols of Christoffel of first and second kind, [yp,a] and {y“ﬁ} = g*[yB,pl,
relation (13), becomes
dvg daey dvg a | dev
—— y — 0 = - _7
a U halg e dA ”“{y ﬁ} P)
which is precisely the condition of vanishing covariant derivative V of vg along ¢, expressing
intrinsically the Levi-Civita parallel transport.

0= (14)

4.1.1. Foucault

The Foucault pendulum is a device designed to experimentally demonstrate the Earth’s rota-
tion (see, e.g., [1, p. 132]). It consists of a spherical pendulum suspended over the tangent plane at
a point P on Earth with latitude a. The mechanical description is formulated in the non-inertial
reference frame attached to the Earth, accounting for gravity and the Coriolis force while neglect-
ing centrifugal effects, considered absorbed into the gravitational force. The linearized analysis
of small oscillations around the stable equilibrium reveals a precession of the oscillation plane,
which, over 24 hours, rotates by an angle given by (17). As we discuss below, this precession pre-
cisely corresponds to the holonomy'! angle associated with parallel transport along the terres-
trial parallel y at latitude «, applied to a generic initial vector V' (0). This transported vector V is
interpreted as a tangent vector along the terrestrial parallel, representing the motion of the oscil-
lation plane.

Let us try to retrace the explanation of the Foucault precession moving from the proposal (10)
of the parallel transport.

Consider a unit radius sphere S? and on it a “parallel” y at the latitude a. We denote the
longitude by ¢, hence

[0, T]3 t— (1) = (cosacosg(r),cosasing(s),sina) =P, y(0)=P=y(T), n()=y(Q.

HHolonomy is the map that assigns to each piecewise-smooth loop Y based at a point P in a manifold M the parallel
transport operator obtained by transporting vectors (or frames) along y with respect to a given connection. In the present
context, the connection is precisely that of the Levi-Civita related to the Riemann metric on the sphere S2 inherited from
the Euclidean one.
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Let us consider the mobile triad (e;, e, n) moving with y, where e; is tangent to y, as 7, and (ey, e2)
is a basis for TpS?:

e1 = (—sin¢,cos,0), é1 = (—cosp,—sing,0) ¢,
ey = (—sinacosg,—sinasing,cosa), é=—sinagey,
n=y, n=cosage.

We put in evidence that é; is in the plane (e, 1),
é1 = (—cosg,—sing,0)¢p
= [—(sin2 @+ cos?® a)cosy, —(sin2 a + cos? a)sing,sina cos a — sin @ cos a](’p
=sina(—sinacosg,—sinasing,cosa)@ — cos a(cos a cos,cosasiny,sina)@
=sina@ey;—cosan.
Our aim is to pointing out that the Levi-Civita parallel transport of a vector Vy € Ty (g S? along
the closed curve y displays a holonomy, the discrepancy angle with respect V;, by turning back V

to y(0), exactly equal to the precession angle of the plane of oscillation of a Foucault pendulum
moving over and with y:

V =|V|(cosB ey +sinfe,)
V =|V|[-sinffe; +cosé; +cosfhe, +sinheé, ]
=V
=V
[

=VI[(-(0+ sina¢g)sinfe; + (0 +sin ap)cosbe, — cosfcos a(pn].

—sinfBe; +cosb(—cosp, —sing,0)¢ + cosHHe, — sinfsinage | (15)
—sinf6e; + cosf(sinape, —cosapn) + cosffe, — sinesina(pel]
From (10),

V=—(V-n)n=-|V|cosfcosapn, (16)
and by comparing (15), with (16), it follows that 0 = —sin a®, hence for 6(0) = 0 = ¢(0) and
¢(T) = 2w, we obtain the expected Foucault angle:

0(T)=-2xsina. (17)

The angle (17) denotes exactly, with the correct sign, how rotates in a day the plane of the
oscillations of a spherical pendulum placed on Earth at the latitude a. This computation was
first proposed by Oprea [37].

As recently put in evidence by Giancarlo Benettin [4], the purely geometric nature of this
explanation was first intuited by Poinsot [38], in a memorable discussion on the phenomenon
with Foucault and Binet at the Académie des Sciences, Paris, 17 février 1851.12

4.2. Berry and Hannay

It is a matter of fact that the parallel transport and the theory of connections are intimately
related. More, each is a manifestation of the other, exactly as Levi-Civita parallel transport is
linked to the Riemannian metric connection. The holonomy of a connection on a bundle is often
denoted in the physical community as a phase. We just recall the important emergence of the
Berry phase [5] in quantum mechanics and mainly the analogous Hannay phase [24] in classical
mechanics, which needs a Hamiltonian environment, integrable (it is essential to use the action-
angle variables), and generally'3 in posing the problem as an adiabatic phenomenon, all typical
requirements of Berry and Hannay phases. Often in this setting a further dynamic phaseis arising

12poinsot: “Ce mouvement, dis-je, est un phénomene purement géométrique, et dont lexplication doit étre donnée par
la simple géométrie, comme l'a fait M. Foucault, et non par des principes de dynamique, qui il n’y entrent pour rien’.
12‘Although sometimes not necessary, see [7].
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beside the Hannay phase. Both Hannay angle and standard Levi-Civita parallel transport bring
back the interpretation of the precession of the oscillation plane of the Foucault pendulum to a
phenomenon of holonomy. There is literature on this, which however could be divided in a finer
way into two parts.

(1) In afirst line of thought, we find the description of the Foucault pendulum by means of the
Hannay phase [26], in a Hamiltonian integrable setting, where the adiabatic requirement
can be dropped, since the final result (see (17)) is independent of ¢(z). This elaboration
has been proposed in great detail e.g. in [33,34], where also we can find a historical sketch
of the matter.!* Hannay description of Foucault pendulum is running outside the standard
historical parallel transport, this explains why Levi-Civita setting is never mentioned in the
above literature.

(2) In a second direction, precisely by going back to the nice 1989 survey by Berry [6], we
encounter a new simple definition of parallel transport on a 2-sphere, whose difference from
the setting of Section 4.1 is explained right below. The author, just after this definition,
involves it towards quantum aspects, nevertheless we see that this new framework is nothing
other than a new operative variant of the Levi-Civita parallel transport; it has been taken
up by Oprea 1995 [37], who calculated the Foucault discrepancy angle by parallel transport,
substantially along computations as above presented.

4.3. Berry’s 1989 version

The outcome (10) of the above alternative construction in Section 4.1, can be also related to a
former paper by Berry [6] as follows. In order to obtain the law for the ordinary parallel transport
of a vector over the sphere S?, he postulated that:'®
The unit vector V be transported by changing the unit radius vector n and making two demands:
() thatidentically
V-n=0 (18)
and that

(ii) the orthogonal triad containing V and n must not twist about n, Q- n =0, whereQ is the
angular velocity of the triad.

These conditions define parallel transport of V and lead to the law
V=QxV  where Q=nxn. (19)

Detailing (19), we see
V=n-V)i-(V-i)n, (20)
andthen V-n=-V-7,or d% (V-n) =0, so that (18) is satisfied as soon as it ho}ds at the beginning;
we get that the essential dynamic law of the parallel transport is really (10): V = —(V-a)n.

We observe that the formula (19); is present in the tracts [31] 16 without detail on the angular
velocity Q; it is interesting to notice that in the original paper [29, Section 11], Levi-Civita
discusses at length its definition by means of Ricci’s rotation symbols: these mathematical objects,
introduced by Ricciin [40], are not widely known, although some important tracts treat with them
(see e.g. [17,20]), they resume in a covariant way and at any dimension, deep aspects typical of
the standard angular velocity of the 3-dim Euclidean setting. It is worthy of being remembered
that Ricci’s rotation symbols were utilized in an essential way by Levi-Civita to rebuild ex novo
the 1929 unitary theory of gravitation and electromagnetism by Einstein [19], so overcoming the

l4gee [34, p. 57, “More History”].
15By reporting in italic verbatim.
16gee p- 122 of the 1925 Italian version [30] or p. 105 of the 1926 English version [31].
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initial restriction on its validity just for linearized theory, offering eventually a powerful non linear
theoretical framework, see [11].

As highlighted in [4], formulation (19), detailed in (20), is interesting also because it allows
us to take into account the motion of any vector V of the whole rigid 3-space associated to the
tangent plane parallel sliding along .
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