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Abstract. Let M be a closed surface, q ≥ 2 and n ≥ 2. In this paper, we analyze the Coxeter-type quotient group
Bn (M)(q) of the surface braid group Bn (M) by the normal closure of the elementσ

q
1 , whereσ1 is the standard

Artin generator of the braid group Bn . Also, we study the Coxeter-type quotient groups obtained by taking
the quotient of Bn (M) by the commutator subgroup of the respective pure braid group

[
Pn (M),Pn (M)

]
and

adding the relation σ
q
1 = 1, when M is a closed orientable surface or the disk.
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1. Introduction

The braid groups of the 2-disk, or Artin braid groups, were introduced by Artin in 1925 and
further studied in 1947 [2,3]. Surface braid groups were initially studied by Zariski [24], and
were later generalized by Fox and Neuwirth to braid groups of arbitrary topological spaces using
configuration spaces as follows [10]. Let S be a compact, connected surface, and let n ∈ N. The
nth ordered configuration space of S, denoted by Fn(S), is defined by:

Fn(S) = {
(x1, . . . , xn) ∈ Sn ∣∣ xi ̸= x j if i ̸= j ; i , j = 1, . . . ,n

}
.

The n-string pure braid group Pn(S) of S is defined by Pn(S) =π1
(
Fn(S)

)
. The symmetric group Sn

on n letters acts freely on Fn(S) by permuting coordinates, and the n-string braid group Bn(S) of S
is defined by Bn(S) =π1

(
Fn(S)

/
Sn

)
. This gives rise to the following short exact sequence:

1 −→ Pn(S) −→ Bn(S)
σ−→ Sn −→ 1. (1)

The map σ : Bn(S) → Sn is the standard homomorphism that associates a permutation to each
element of Bn(S). We note the following.
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(1) When M = D2 is the disk, then Bn(D2) (resp. Pn(D2)) is the classical Artin braid group
denoted by Bn (resp. the classical pure Artin braid group denoted by Pn).

(2) It follows from the definition that F1(S) = S for any surface S, and consequently that the
groups P1(S) and B1(S) are both isomorphic to π1(S). For this reason, braid groups over
a surface S may be regarded as natural generalizations of the fundamental group of S.

For more information on general aspects of surface braid groups we recommend [17] and also
the survey [16], in particular its Section 2 where equivalent definitions of these groups are
given, showing different viewpoints of them. We recall that the Artin braid group Bn admits the
following presentation [2]:〈

σ1, . . . ,σn−1

∣∣∣∣∣ σiσ j =σ jσi for |i − j | > 1

σiσ jσi =σ jσiσ j for |i − j | = 1

〉
. (2)

It is well known that the symmetric group Sn admits the following presentation:

Sn =

〈
σ1, . . . ,σn−1

∣∣∣∣σiσi+1σi =σi+1σiσi+1 for 1 ≤ i ≤ n −2

σiσ j =σ jσi for |i − j | ≥ 2

σ2
1 = 1

〉
.

Let 〈〈g 〉〉 denote the normal closure of an element g in a group G . Hence, it follows from (2) that
the quotient Bn

/〈〈σ2
1〉〉 is isomorphic to the symmetric group Sn .

Let Bn(2) = Bn
/〈〈σ2

1〉〉 . Note that Bn(2) is a finite group, whereas the braid group Bn is infinite
and torsion-free. A natural question that arises is whether the groups Bn(k) = Bn

/〈〈σk
1 〉〉 are

finite for every k ≥ 3. This problem was answered by Coxeter [8] using classical geometric
methods, revealing an unexpected connection between braid groups and Platonic solids. He
showed that Bn(k) is finite if and only if (k −2)(n −2) < 4; see Theorem 4 (see also [19, Chapter 5,
Proposition 2.2]).

It is worth noting that Coxeter’s result was later proved by Assion [4] using the Burau repre-
sentation of braid groups. Assion also obtained presentations of certain symplectic groups as
quotients of braid groups, a line of work that was further developed by Wajnryb [23], who gave a
braid-like presentation of the symplectic group Sp(n, p). More recently, in [6, Theorem 2.1], the
authors studied the relationship between level-m congruence subgroups Bn[m] and the normal
closure of the element σm

1 . In particular, they characterized precisely when this normal closure
has finite index in Bn[m], and provided explicit generating sets for the corresponding finite quo-
tients. A closely related statement was independently formulated in [5, Remark 1.2]. However,
the result in [6] is established with a complete proof and includes an explicit description of the
generators.

Coxeter-type presentations also appear in recent work of Goldman on Shephard groups.
In [11, Section 2.1], finite Shephard groups are characterized via presentations that generalize
Coxeter groups by allowing generators of arbitrary finite order, while preserving Coxeter-like
braid relations. Although the groups considered there are not braid groups over surfaces, this
work further illustrates how imposing finite-order relations on standard generators leads to rigid
quotient structures, a perspective that is conceptually related to the quotients studied in the
present paper.

Motivated by Coxeter’s work on Artin braid groups, we investigate the analogous problem for
surface braid groups. From now on, let Bn(M)(q) denote the quotient of the surface braid group
Bn(M) by the normal closure of the element σq

1 , where σ1 is the standard Artin generator of the
braid group Bn permuting the first two strands [2].

The main purpose of this paper is to study Coxeter-type quotients of surface braid groups
Bn(M)(q). In contrast with the classical case of the disk, we prove that for every closed surface
different from the sphere and the projective plane, the quotient group Bn(M)(q) is infinite for all
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n, q ≥ 3. In Section 2.1 we prove the following result, where H1(M) is the first homology group of
the surface M .

Theorem 1. Let q ≥ 3 and n ≥ 2 integers. Let M be a closed surface different from the sphere and
the projective plane.

(1) If M is orientable then the abelianization of the group Bn(M)(q) is isomorphic to Zq ⊕
H1(M).

(2) If M is non-orientable then the abelianization of the group Bn(M)(q) is isomorphic to{
H1(M) if q is odd,

Z2 ⊕H1(M) if q is even.

(3) For any surface M different from the sphere and the projective plane, the group Bn(M)(q)
is infinite.

We note that Theorem 1 is also true for q = 2. For instance, in [15, p. 226], the authors claimed
that for closed orientable surfaces, of genus g ≥ 1, the quotient group Bn(M)(2) is isomorphic to
π1(M)n ⋊Sn . So, it is infinite.

In Section 2.2 we analyze the cases where M is the sphere or the projective plane. We compute
the abelianization of Bn(M)(q) and prove the following result for few strings for sphere braid
groups.

Theorem 2. Let q ≥ 3.

(1) B2(S2)(q) =
{
Z2 if q is even,

{1} if q is odd.

(2) B3(S2)(q) ∼=


B3(S2) if gcd(4, q) = 4,

S3 if gcd(4, q) = 2,

{1} if gcd(4, q) = 1.
(3) B4(S2)(q) is an infinite group if and only if q ≥ 6.

Finally, in Section 3 we show that the quotient group Bn(M)
/[

Pn(M),Pn(M)
]

(q) is finite when
M is the disk, see Theorem 11, and that it is infinite when M is a closed orientable surface M
of genus g ≥ 1, see Proposition 13, where q ≥ 3, n ≥ 2 and

[
Pn(M),Pn(M)

]
is the commutator

subgroup of the pure braid group of the surface M .

2. Quotients of surface braid groups

Our main purpose is to study the Coxeter-type quotient of surface braid groups Bn(M)(q)
obtained by considering σq

1 = 1, for q ≥ 3 and where σ1 is the classical Artin generator, see [2].
We will use presentations of surface braid groups that have in the set of generators the Artin
generators.

We start this section with the following elementary result that will be useful in this work.

Lemma 3. Let a and b be positive integers and let g be an element in a group G. If g a = 1 and
g b = 1 then g d = 1, where d = gcd(a,b) denotes the greatest common divisor of the integers a
and b.

Proof. This result is a consequence of the Bezout’s identity: if a and b are integers (not both
0), then there exist integers u and v such that gcd(a,b) = au + bv , see [18, Theorem 1.7,
Section 1.2]. □

We recall Coxeter’s result for braid groups over the disk that strongly motivates this paper.
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Theorem 4 ([8]). Let p ≥ 3, and let Bn(p) denote the quotient of the braid group Bn by the relation
σ

p
1 = 1. Then Bn(p) is finite if and only if

(n, p) ∈ {
(3,3), (3,4), (3,5), (4,3), (5,3)

}
.

Motivated by this unexpected result from Coxeter’s work on the classical braid groups, we
are interested in exploring these quotients for surface braid groups, as we show in the following
sections.

2.1. Braid groups over surfaces different from the sphere and the projective plane

Let n ≥ 2 and let Bn(M) denote the braid groups over a surface M . Compared with the case of
the disk (see [8]) the group Bn(M)(q) is infinite for any integer q ≥ 3, for closed surfaces different
from the sphere and the projective plane. The goal of this section is to prove Theorem 1. To do it,
we will use the following presentations of surface braid groups that have in the set of generators,
the Artin generators.

Proposition 5 (Theorem 1.4 of [21]). Let Mg ,0 be an orientable surface of genus g ≥ 1. The group
Bn(Mg ,0) admits the following presentation.

Generators: σ1,σ2, . . . ,σn−1 and ρi j for 1 ≤ i ≤ n and 1 ≤ j ≤ 2g .
Relations:

(I) (i) σiσ j =σ jσi , |i − j | ≥ 2;
(ii) σiσi+1σi =σi+1σiσi+1.

(II) (i) (ρ−1
i ,2gρ

−1
i ,2g−1ρi ,2gρi ,2g−1) · · · (ρ−1

i ,2ρ
−1
i 1 ρi ,2ρi ,1) = Ai ,i+1 · · · Ai ,n A−1

i ,1 · · · A−1
i ,i−1;

(ii) ρi jρkl = ρklρi j if i < k, l is odd and j < l or i < k, l is even and j < l −1;
(iii) (a) ρ−1

j kρi kρ j k = B−1
i j ρi k Bi j if i < j ;

(b) ρ j kρi kρ
−1
j k = ρ−1

i k Bi jρi k B−1
i j ρi k if i < j ;

(c) ρ−1
j kρi kρ j k = ρi k Bi jρi k B−1

i j ρ
−1
i k if i > j ;

(d) ρ j kρi kρ
−1
j k = B−1

i j ρi k Bi j if i > j ;

(iv) (a) ρ−1
j ,2t−1ρ j ,2tρ j ,2t−1 = B−1

i j ρi ,2t−1Bi jρ
−1
i ,2t−1ρi ,2t Bi j if i < j ;

(b) ρ j ,2t−1ρ j ,2tρ
−1
j ,2t−1 = ρ−1

i ,2t−1Bi jρi ,2t−1B−1
i j ρi ,2tρ

−1
i ,2t−1B−1

i j ρi ,2t−1 if i < j ;

(c) ρ−1
j ,2t−1ρ j ,2tρ j ,2t−1 = ρi ,2tρi ,2t−1B−1

i j ρ
−1
i ,2t−1 if i > j ;

(d) ρ j ,2t−1ρ j ,2tρ
−1
j ,2t−1 = ρi ,2t Bi j if i > j ;

(v) (a) ρ−1
j ,2tρ j ,2t−1ρ j ,2t = B−1

i j ρi ,2t−1 if i > j ;

(b) ρ j ,2tρ j ,2t−1ρ
−1
j ,2t = ρ−1

i ,2t Bi jρi ,2tρi ,2t−1 if i < j ;

(c) ρ−1
j ,2tρ j ,2t−1ρ j ,2t = ρi ,2t Bi jρ

−1
i ,2tρi ,2t−1BBi jρi ,2t BB−1

i j ρ
−1
i ,2t if i > j ;

(d) ρ j ,2tρ j ,2t−1ρ
−1
j ,2t = B−1

i j ρi ,2t−1ρ
−1
i ,2t B−1

i j ρi ,2t Bi j if i > j ;

(vi) (a) ρ−1
kl ρi jρkl = B−1

i k ρi l Bi kρ
−1
i l ρi jρi l B−1

i k ρ
−1
i l Bi k if i < k, j > l and (C);

(b) ρklρi jρ
−1
kl = ρ−1

i l Bi kρi l B−1
i k ρi j Bi kρ

−1
i l B−1

i k ρi l if i < k, j > l and (C);
(c) ρ−1

kl ρi jρkl = ρi l B−1
i k ρ

−1
i l Bi kρi j B−1

i k ρ
−1
i l Bi kρ

−1
i l if i > k, j > l and (C);

(d) ρklρi jρ
−1
kl = B−1

i k ρ
−1
i l Bi kρi lρi jρ

−1
i l B−1

i k ρi l Bi k if i > k, j < l and (C);
where:

( j , l ) ̸= (2t ,2t −1) and ( j , l ) ̸= (2t −1,2t ),

Bi j =σi · · ·σ j−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i and Ai j =σ−1
j−2 · · ·σ−1

i σ2
j−1σi · · ·σ j−2.

(C)

(III) (i) σiρ j k = ρ j kσi if j ̸= i or i +1;
(ii) ρi k =σiρi+1,kσ

−1
i .

Now we consider the non-orientable cases.
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Proposition 6 (Theorem 1.2 of [21]). Let Mg ,0 be a non-orientable surface of genus g ≥ 2. The
group Bn(Mg ,0) admits the following presentation.

Generators: σ1,σ2, . . . ,σn−1 and ρi j for 1 ≤ i ≤ n and 1 ≤ j ≤ g .
Relations:

(I) (i) σiσ j =σ jσi , i − j ≥ 2;
(ii) σiσi+1σi =σi+1σiσi+1.

(II) (i) ρ2
i gρ

2
i ,g−1 · · ·ρ2

i ,1 = Ai ,i+1 · · · Ai ,n A−1
i ,1 · · · A−1

i ,i−1;
(ii) ρi jρkl = ρklρi j if i < k and j < l ;

(iii) (a) ρ−1
j kρi kρ j k = B−1

i j ρi k if i < j ;

(b) ρ j kρi kρ
−1
j k = ρ−1

i k Bi jρ
2
i k if i < j ;

(c) ρ−1
j kρi kρ j k = ρ2

i k B−1
i j ρ

−1
i k if i > j ;

(d) ρ j kρi kρ
−1
j k = ρi k Bi j if i > j ;

(iv) (a) ρ−1
kl ρi jρkl = B−1

i k ρi l Bi kρ
−1
i l ρi jρi l B−1

i k ρ
−1
i l Bi k if i < k, j > l ;

(b) ρklρi jρ
−1
kl = ρ−1

i l Bi kρi l B−1
i k ρi j Bi kρ

−1
i l B−1

i k ρi l if i < k, j > l ;
(c) ρ−1

kl ρi jρkl = ρi l B−1
i k ρ

−1
i l Bi kρi j B−1

i k ρ
−1
i l Bi kρ

−1
i l if i > k, j > l ;

(d) ρklρi jρ
−1
kl = B−1

i k ρ
−1
i l Bi kρi lρi jρ

−1
i l B−1

i k ρi l Bi k if i > k, j < l .
(III) (i) σiρ j k = ρ j kσi if j ̸= i or i +1;

(ii) ρi k =σiρi+1,kσ
−1
i , where

Bi j =σi · · ·σ j−2σ
2
j−1σ

−1
j−2 · · ·σ−1

i

and Ai j =σ−1
j−2 · · ·σ−1

i σ2
j−1σi · · ·σ j−2

for 1 ≤ i < j ≤ n.

We are now ready to prove Theorem 1. Throughout the proof, the abelianization of a group G
will be denoted by Gab.

Proof of Theorem 1. Let q ≥ 3 and n ≥ 3 integers and let M be a closed surface different from the
sphere and the projective plane.

(1). The proof of this item follows using a presentation of the braid group over orientable
surfaces given in Proposition 5. Since the argument is similar in both cases (orientable and non-
orientable) we give more details for the non-orientable case below.

(2). Let
M = RP 2# · · ·#RP 2︸ ︷︷ ︸

g projective planes

,

where g ≥ 2 is the genus of the non-orientable surface M . We give a presentation of the
abelianization of the group Bn(M)(q). To do this, we use the presentation of Bn(M) given by
Scott, see Proposition 6:

Generators: σ1, . . . ,σn−1 and ρi , j where 1 ≤ i ≤ n, 1 ≤ j ≤ g .
Relations: All generators commute. From this and using the Scott’s presentation, we get the

following information:
(1) From Proposition 6(I-ii) it follows that σi =σi+1, for i = 1, . . . ,n −2.
(2) From Proposition 6(III-ii) we get ρi ,k = ρi+1,k , for 1 ≤ i ≤ n −1, 1 ≤ k ≤ g .
(3) In Proposition 6(II) were defined elements Ai , j and Bi , j , for all 1 ≤ i < j ≤ n, as

conjugates of σ2
i . From Proposition 6(II-iii), (see also [21, Theorem 1.1, II(iii)]) we

obtain, for all 1 ≤ i < j ≤ n, Bi , j = 1 in
(
Bn(M)(q)

)ab. So, in
(
Bn(M)(q)

)ab it holds that
σ2

i = 1, for all 1 ≤ i ≤ n −1, as well as Ai , j = 1, for all 1 ≤ i < j ≤ n.
(4) As a consequence of the previous item and Proposition 6(II-i) (see also [21, Theo-

rem 1.1, II(i)]) we get ρ2
i ,gρ

2
i ,g−1 · · ·ρ2

i ,1 = 1, for all i = 1, . . . ,n −1.
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The other relations in Proposition 6 do not contribute further information about
(
Bn(M)(q)

)ab.
Since σ2

1 = 1 and σ
q
1 = 1, we have σd

1 = 1, where d = gcd(2, q), by Lemma 3. Therefore, a
presentation of the abelianization of Bn(M)(q) is given by the following.

Generators: σ1 and ρ1, j for 1 ≤ j ≤ g .
Relations:

(1) All generators commute.
(2) σ2

1 = 1, and σ
q
1 = 1, for q ≥ 3. By Lemma 3, this implies that σd

1 = 1, for q ≥ 3, where
d = gcd(2, q).

(3) ρ2
1,gρ

2
1,g−1 · · ·ρ2

1,1 = 1.

We recall that a presentation of the fundamental group of the non-orientable surface M of genus
g is given by

π1(M) = 〈
ρ1, . . . ,ρg

∣∣ ρ2
gρ

2
g−1 · · ·ρ2

1 = 1
〉

. (3)

Hence, from the computations above, we have proved this item(
Bn(M)(q)

)ab ∼=Zd ⊕H1(M),

where d = gcd(2, q).

(3). Since the first homology group of the closed surfaces different from the sphere and the
projective plane are infinite:

H1(M) ∼=
{
Z2g if M is orientable of genus g ,

Zg−1 ⊕Z2 if M is non-orientable of genus g ,

then we conclude that the Coxeter-type quotient Bn(M)(q) is infinite. □

2.2. The sphere and the projective plane

Now, we exhibit some information of Bn(M)(q) when M is either the sphere or the projective
plane.

From [9] we know that the sphere braid group with n strings, Bn(S2), admits a presentation
with generators σi for i = 1,2, . . . ,n −1 and relations as in (2) plus:

• the surface relation σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1 = 1.

Recall that a perfect group G is a group such that G = [G ,G].

Proposition 7. Let q ≥ 2 and n ≥ 3 integers. Let d = gcd
(
q, 2(n −1)

)
.

(1) The abelianization of Bn(S2)(q) is isomorphic to the cyclic group Zd .
(2) If q and 2(n −1) are coprimes then Bn(S2)(q) is perfect.

Proof. Let q ≥ 2 and n ≥ 3 integers and let d = gcd
(
q, 2(n −1)

)
. Using the presentation of Bn(S2)

we conclude that the abelianization of the quotient group Bn(S2)(q) has the presentation〈
σ1

∣∣ σq
1 = 1, σ2(n−1)

1 = 1
〉

,

where the second equality comes from the surface relation. Lemma 3 implies that the order of
σ1 ∈

(
Bn(S2)(q)

)ab is equal to d , where d = gcd
(
q,2(n −1)

)
. From this, we proved the first item.

From the first item of this result and the hypothesis of the second item, we get σ1 = 1. Since
the abelianization of Bn(S2)(q) is the trivial group, then we conclude that Bn(S2)(q) is perfect,
proving the second item. □

For the special case of few strings, in Theorem 2 we have the result for the Coxeter-type
quotient of the sphere braid group, that we prove below. When analyzing the case of four strings,
we use triangle groups as defined in [19, Appendix I, Section 7], see also [1].
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Proof of Theorem 2. Let q ≥ 3.

(1). Since the group B2(S2) =Z2 is generated by σ1, then the result of this item follows immedi-
ately from Lemma 3.

(2). Recall from [9, third lemma on p. 248] (see also [19, Chapter 11, Proposition 2.4]) that B3(S2)
has order 12 and the elements σ1 and σ2 have order 4. So, from Lemma 3, in B3(S2) it holds

σ4
1 = 1, if gcd(4, q) = 4,

σ2
1 = 1, if gcd(4, q) = 2,

σ1 = 1, if gcd(4, q) = 1.

From this, it is clear that B3(S2)(q) ∼= B3(S2) if gcd(4, q) = 4, and that B3(S2)(q) is the trivial
group {1} if gcd(4, q) = 1. Finally, suppose that gcd(4, q) = 2, then it follows from the proof of [9,
third lemma on p. 248] (see also the proof of [19, Chapter 11, Proposition 2.4]) that B3(S2)(q) ∼= S3

in this last case, completing the proof of this item.

(3). The group B4(S2)(q) admits the following presentation:

B4(S2)(q) =
〈
σ1, σ2, σ3

∣∣∣∣ σ1σ2σ1 =σ2σ1σ2, σ2σ3σ2 =σ3σ2σ3, σ1σ3 =σ3σ1,
σ1σ2σ

2
3σ2σ1 = 1, σq

1 = 1

〉
. (4)

We used the GAP System [22] to show that B4(S2)(q) is a finite group in the following cases:

(q = 3) The group B4(S2)(3) is isomorphic to the alternating group A4.
(q = 4) In this case the group B4(S2)(4) has order 192.
(q = 5) The group B4(S2)(5) is isomorphic to the alternating group A5.

We elucidate the routine used in the GAP computations for the case B4(S2)(3), the other cases are
similar:

f3 := FreeGroup ( "a" , "b" , "c" ) ; ;

gens := GeneratorsOfGroup ( f3 ) ; ;

a := gens [ 1 ] ; ; b:= gens [ 2 ] ; ; c := gens [ 3 ] ; ;

B4S23 := f3 / [ a*b*a*b^−1*a^−1*b^−1, b* c *b* c^−1*b^−1*c^−1,

a* c *a^−1*c^−1, a^3 , b^3 , c^3 , a*b* c^2*b*a ] ;

Order ( B4S23 ) ;

StructureDescription ( B4S23 ) ;

Now, for q ≥ 6, we show that the group B4(S2)(q) is infinite. Let 〈〈σ1σ
−1
3 〉〉 be the normal closure

of the element σ1σ
−1
3 in B4(S2)(q). Then

B4(S2)(q)
/〈〈σ1σ

−1
3 〉〉 = 〈

σ1, σ2
∣∣ σ1σ2σ1 =σ2σ1σ2, (σ1σ2)3 = 1, σq

1 = 1
〉

.

Taking a =σ1σ2σ1 and b =σ1σ2 follows that (ab) =σ−1
1 and so

B4(S2)(q)
/〈〈σ1σ

−1
3 〉〉 = 〈

a, b
∣∣ a2 = b3 = (ab)q = 1

〉
.

Hence B4(S2)(q)
/〈〈σ1σ

−1
3 〉〉 is isomorphic to the triangular group T (2,3, q) that is infinite if, and

only if q ≥ 6, see [19, Theorem 7.1, Appendix I]. □

Now we move to the case of the projective plane. Recall a presentation of the braid group of
the projective plane.

Proposition 8 (Section III of [7]). The braid group of the projective plane on n strings, Bn(RP 2)
admits the following presentation.

Generators: σ1,σ2, . . . ,σn−1,ρ1,ρ2, . . . ,ρn .
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Relations:
(I) σiσ j =σ jσi if |i − j | ≥ 2.

(II) σiσi+1σi =σi+1σiσi+1 for i = 1, . . . ,n −2.
(III) σiρ j = ρ jσi for j ̸= i , i +1.
(IV) ρi =σiρi+1σi for i = 1, . . . ,n −1.
(V) ρ−1

i+1ρ
−1
i ρi+1ρi =σ2

i .
(VI) ρ2

1 =σ1σ2 · · ·σn−2σ
2
n−1σn−2 · · ·σ2σ1.

For the case of braid groups over the projective plane we have the following.

Proposition 9. Let q ≥ 2 and n ≥ 2 integers. The abelianization of the group Bn(RP 2)(q) is
isomorphic to Z2 if q is odd, otherwise it is the Klein four group Z2 ⊕Z2.

Proof. We obtain the result from Lemma 3 and the presentation of Bn(RP 2) given by Van Buskirk
in [7] (see Proposition 8 and also [19, p. 202, Theorem 4.1]). □

Remark 10. Except for the information of Theorem 2, we do not know under which conditions
on n and q the groups Bn(M)(q) are finite, when M is either the sphere or the projective plane.

3. Quotients of crystallographic surface braid groups

The quotients of surface braid groups Bn(M) by the commutator subgroup of the respective pure
braid group

[
Pn(M),Pn(M)

]
considered in this section were deeply studied in [12] for the case of

the disk and in [13] for the case of closed surfaces, in both cases exploring its connection with
crystallographic groups.

In what follows, we analyze the Coxeter-type quotient groups Bn(M)
/[

Pn(M),Pn(M)
]

(q) by
adding to the presentation of Bn(M)

/[
Pn(M),Pn(M)

]
the relation σ

q
1 = 1, for braid groups over

closed orientable surfaces and also for the disk.

3.1. Braid groups over the disk

Unlike the case of the Coxeter quotient of the Artin braid group [8], see Theorem 4, for all n, q ≥ 3
the Coxeter-type quotient Bn

/
[Pn ,Pn] (q) is finite. The following result is part of the dissertation

thesis of the third author, see [20, Theorem 3.3].

Theorem 11. Let n, q ≥ 3 and k ∈N. For any integer number q ≥ 3, the group Bn
/

[Pn ,Pn] (q) is
finite.

(a) If q = 2k +1, then Bn
/

[Pn ,Pn] (q) is isomorphic to Zq .
(b) When q = 2k, then Bn

/
[Pn ,Pn] (q) has order n(n−1)k

2 ·n!.

Proof. Let n, q ≥ 3 and suppose that σq
1 = 1. The integer q is equal to 2k + r , with 0 ≤ r ≤ 1 and

r,k ∈N.
For item (a), as a consequence of the presentation of the Artin braid group Bn given in (2) we

get σ−1
i σi+1σi = σi+1σiσ

−1
i+1, for all 1 ≤ i ≤ n − 2, and so σ

q
i = 1, for all 1 ≤ i ≤ n − 2. Hence,

σi = σ−2k
i = A−k

i ,i+1, for all 1 ≤ i ≤ n − 1, where Ai , j is an Artin generator of the pure Artin braid
group. So, in the group Bn

/
[Pn ,Pn] (q) it holds [σi ,σ j ] = 1, for all 1 ≤ i < j ≤ n −1. Therefore,

σiσi+1σi =σi+1σiσi+1 ⇐⇒ σiσi+1σi =σi+1σi+1σi

⇐⇒ σi =σi+1,

for all 1 ≤ i ≤ n −1. Then, Bn
/

[Pn ,Pn] (q) is isomorphic to
〈
σ1

∣∣σp
1 = 1

〉
, proving item (a).

Now we prove item (b). By hypothesis, we have σ2k
1 = 1. As before, we may conclude

that σ2k
i = 1, for all 1 ≤ i ≤ n, so Ak

i ,i+1 = 1, for all 1 ≤ i ≤ n. Recall the definition of the
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pure Artin generator Ai , j = σ j−1σ j−2 · · ·σ2
i · · ·σ−1

j−2σ
−1
j−1. So, Ak

i , j = 1, for all 1 ≤ i < j ≤ n. We

recall that the group Pn
/

[Pn ,Pn] is free Abelian with a basis given by the classes of pure Artin
generators

{
Ai , j

∣∣ 1 ≤ i < j ≤ n
}
. Hence, in Bn

/
[Pn ,Pn] (q) the natural projection of the group

Pn
/

[Pn ,Pn] ≤ Bn
/

[Pn ,Pn] is isomorphic to

Zk ×·· ·×Zk︸ ︷︷ ︸
n(n−1)

2

.

From the above we get the following short exact sequence

1 −→Zk ×·· ·×Zk︸ ︷︷ ︸
n(n−1)

2

−→ Bn
/

[Pn ,Pn] (q) −→ Sn −→ 1.

Therefore the middle group Bn
/

[Pn ,Pn] (q) has finite order n(n−1)k
2 ·n! and with this we verify

item (b).
From items (a) and (b) we proved that for any integer number q ≥ 3, the group Bn

/
[Pn ,Pn] (q)

is finite. □

3.2. Braid groups over orientable surfaces

Let M be a compact, orientable surface without boundary of genus g ≥ 1, and let n ≥ 2. We will
use the presentation of Bn(M)

/[
Pn(M),Pn(M)

]
given in [13].

Proposition 12 ([13, Proposition 9]). Let M be a compact, orientable surface without boundary
of genus g ≥ 1, and let n ≥ 1. The quotient group Bn(M)

/[
Pn(M),Pn(M)

]
has the following

presentation.

Generators: σ1, . . . ,σn−1, ai ,r , 1 ≤ i ≤ n, 1 ≤ r ≤ 2g .
Relations:

(a) The Artin relations:{
σiσ j =σ jσi for all 1 ≤ i , j ≤ n −1, |i − j | ≥ 2,

σiσi+1σi =σi+1σiσi+1 for all 1 ≤ i ≤ n −2.

(b) σ2
i = 1, for all i = 1, . . . ,n −1.

(c) [ai ,r , a j ,s ] = 1, for all i , j = 1, . . . ,n and r, s = 1, . . . ,2g .
(d) σi a j ,rσ

−1
i = aτi ( j ),r for all 1 ≤ i ≤ n −1, 1 ≤ j ≤ n and 1 ≤ r ≤ 2g .

In [14, Figure 9] we may see geometrically the elements ai ,r of Proposition 12. We have the
following result about Coxeter-type quotients and the quotient groups considered in [13].

Proposition 13. Let M be a compact, orientable surface without boundary of genus g ≥ 1, q ≥ 3
and let n ≥ 2. The group Bn(M)

/[
Pn(M),Pn(M)

]
(q) is infinite.

(1) If q is odd, the Coxeter-type quotient Bn(M)
/[

Pn(M),Pn(M)
]

(q) is isomorphic to a free
Abelian group of rank 2g .

(2) The group Bn(M)
/[

Pn(M),Pn(M)
]

(q) is isomorphic to the crystallographic group quo-
tient Bn(M)

/[
Pn(M),Pn(M)

]
if q is even.

Proof. Let M be a compact, orientable surface without boundary of genus g ≥ 1, and let n ≥ 2. We
shall use the presentation of the quotient groups Bn(M)

/[
Pn(M),Pn(M)

]
given in Proposition 12.

From Proposition 12(b) we have that in Bn(M)
/[

Pn(M),Pn(M)
]

(q) it holds σ2
i = 1, for all 1 ≤ i ≤

n −1.
Hence, for all 1 ≤ i ≤ n −1, it is true that σ2

i = 1 and σq
i = 1. If q is odd, then from Lemma 3 we

get σi = 1, for all 1 ≤ i ≤ n−1, proving item (1). In the case that q is even then, for all 1 ≤ i ≤ n−1,
σ2

i = 1 independently of the number q , getting item (2). □
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