ACADEMIE
DES SCIENCES

INSTITUT DE FRANCE

Comptes Rendus

Mathématique

Renato Diniz, Oscar Ocampo and Paulo Cesar Cerqueira dos Santos Jinior
Coxeter-type quotients of surface braid groups
Volume 364 (2026), p. 27-37

Online since: 16 February 2026

https://doi.org/10.5802/crmath.813

[cO=2mmmm This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

<

MERSENNE

The Comptes Rendus. Mathématique are a member of the
Mersenne Center for open scientific publishing
www.centre-mersenne.org — e-ISSN : 1778-3569


https://doi.org/10.5802/crmath.813
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

ACADEMIE Comptes Rendus. Mathématique
DES SCIENCES 2026, Vol. 364, p.27-37
https://doi.org/10.5802/crmath.813

INSTITUT DE FRANCE

Research article
Geometry and Topology

Coxeter-type quotients of surface braid groups

Renato Diniz %, Oscar Ocampo ” and Paulo Cesar Cerqueira dos Santos
Junior ¢

@ Universidade Federal do Reconcavo da Bahia — CEP, Av. Nestor de Melo Pita, 535,

CEP: 45300.000, Amargosa, BA, Brazil

b Universidade Federal da Bahia, Departamento de Matemdtica — IME, Av. Milton

Santos S/N, CEP: 40170-110, Salvador, BA, Brazil

¢ Universidade Estadual do Sudoeste da Bahia, Departamento de Ciéncias Exatas e
Tecnoldgicas — DCET, Estrada do Bem Querer S/N, CEP: 45031-900, Vitéria da
Conquista, BA, Brazil

E-mails: renatodiniz@ufrb.edu.br, oscaro@ufba.br, pcesarmath@gmail.com

Abstract. Let M be a closed surface, g = 2 and n = 2. In this paper, we analyze the Coxeter-type quotient group
By (M)(q) of the surface braid group By, (M) by the normal closure of the element O’?, where o is the standard
Artin generator of the braid group Bj;. Also, we study the Coxeter-type quotient groups obtained by taking
the quotient of B; (M) by the commutator subgroup of the respective pure braid group [Pn (M), Py, (M)] and
adding the relation 0‘;7 =1, when M is a closed orientable surface or the disk.

Keywords. Artin braid group, surface braid group, finite group.

2020 Mathematics Subject Classification. 20F36, 20F05.

Funding. O.0. was partially supported by National Council for Scientific and Technological Development —
CNPq through a Bolsa de Produtividade 305422/2022-7.

Manuscript received 19 December 2024, revised and accepted 18 December 2025, online since 16 February 2026.

1. Introduction

The braid groups of the 2-disk, or Artin braid groups, were introduced by Artin in 1925 and
further studied in 1947 [2,3]. Surface braid groups were initially studied by Zariski [24], and
were later generalized by Fox and Neuwirth to braid groups of arbitrary topological spaces using
configuration spaces as follows [10]. Let S be a compact, connected surface, and let n € N. The
nth ordered configuration space of S, denoted by Fy,(S), is defined by:

Fu(S) ={(x1,....x)) €S" | x; #xjifi # j;i,j=1,...,n}.

The n-string pure braid group P,,(S) of S is defined by P, (S) = 71 (F(S)). The symmetric group S,
on n letters acts freely on F,(S) by permuting coordinates, and the n-string braid group B,,(S) of S
is defined by B, (S) = 71 ( F»(S)/S, ). This gives rise to the following short exact sequence:

1— P,(S) — B, (S) -= S, — 1. 6))

The map o: B,(S) — S, is the standard homomorphism that associates a permutation to each
element of B, (S). We note the following.

ISSN (electronic): 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/
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(1) When M = D? is the disk, then B, (D?) (resp. P,(D?)) is the classical Artin braid group
denoted by B, (resp. the classical pure Artin braid group denoted by Pj,).
(2) It follows from the definition that F; (S) = S for any surface S, and consequently that the
groups P;(S) and B; (S) are both isomorphic to 71 (S). For this reason, braid groups over
a surface S may be regarded as natural generalizations of the fundamental group of S.
For more information on general aspects of surface braid groups we recommend [17] and also
the survey [16], in particular its Section 2 where equivalent definitions of these groups are
given, showing different viewpoints of them. We recall that the Artin braid group B;, admits the
following presentation [2]:

It is well known that the symmetric group S,, admits the following presentation:

2

oigjoi=0jo;0; forli—jl=1

0i0j=0j0; forli—j|>1>

0i0i410;=0;410;0;41 forl<i<sn-2
Sp=\o01,...,00-1 0i0j=0j0; forli—jl=2
0'% =1
Let {g) denote the normal closure of an element g in a group G. Hence, it follows from (2) that
the quotient B, / <(0'%)) is isomorphic to the symmetric group S,.

Let B, (2) = By, / ((0'%)) . Note that B, (2) is a finite group, whereas the braid group B,, is infinite
and torsion-free. A natural question that arises is whether the groups B, (k) = Bj / ((Uf)) are
finite for every k = 3. This problem was answered by Coxeter [8] using classical geometric
methods, revealing an unexpected connection between braid groups and Platonic solids. He
showed that B, (k) is finite if and only if (k — 2)(n — 2) < 4; see Theorem 4 (see also [19, Chapter 5,
Proposition 2.2]).

It is worth noting that Coxeter’s result was later proved by Assion [4] using the Burau repre-
sentation of braid groups. Assion also obtained presentations of certain symplectic groups as
quotients of braid groups, a line of work that was further developed by Wajnryb [23], who gave a
braid-like presentation of the symplectic group Sp(#n, p). More recently, in [6, Theorem 2.1], the
authors studied the relationship between level-m congruence subgroups B,[m] and the normal
closure of the element o{". In particular, they characterized precisely when this normal closure
has finite index in B, [m], and provided explicit generating sets for the corresponding finite quo-
tients. A closely related statement was independently formulated in [5, Remark 1.2]. However,
the result in [6] is established with a complete proof and includes an explicit description of the
generators.

Coxeter-type presentations also appear in recent work of Goldman on Shephard groups.
In [11, Section 2.1], finite Shephard groups are characterized via presentations that generalize
Coxeter groups by allowing generators of arbitrary finite order, while preserving Coxeter-like
braid relations. Although the groups considered there are not braid groups over surfaces, this
work further illustrates how imposing finite-order relations on standard generators leads to rigid
quotient structures, a perspective that is conceptually related to the quotients studied in the
present paper.

Motivated by Coxeter’s work on Artin braid groups, we investigate the analogous problem for
surface braid groups. From now on, let B,,(M)(q) denote the quotient of the surface braid group
B, (M) by the normal closure of the element Uf, where o is the standard Artin generator of the
braid group B;, permuting the first two strands [2].

The main purpose of this paper is to study Coxeter-type quotients of surface braid groups
B,(M)(q). In contrast with the classical case of the disk, we prove that for every closed surface
different from the sphere and the projective plane, the quotient group B;,(M)(g) is infinite for all
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n,q = 3. In Section 2.1 we prove the following result, where H; (M) is the first homology group of
the surface M.

Theorem 1. Let g =3 and n =2 integers. Let M be a closed surface different from the sphere and
the projective plane.

(1) If M is orientable then the abelianization of the group B,(M)(q) is isomorphic to 7, &
H(M).
(2) If M is non-orientable then the abelianization of the group B, (M)(q) is isomorphic to
Hy (M) ifq is odd,
{Zg ® H\ (M) ifq iseven.
(3) For any surface M different from the sphere and the projective plane, the group B, (M)(q)
is infinite.

We note that Theorem 1 is also true for g = 2. For instance, in [15, p. 226], the authors claimed
that for closed orientable surfaces, of genus g = 1, the quotient group B, (M)(2) is isomorphic to
71 (M)" % S,,. So, it is infinite.

In Section 2.2 we analyze the cases where M is the sphere or the projective plane. We compute
the abelianization of B, (M)(q) and prove the following result for few strings for sphere braid
groups.

Theorem 2. Letq =3.

Zy ifqiseven,

{1} ifqisodd.

B3(S?) ifgcd(4,q) =4,
2) B3(SH(q) =4 S; ifged(4,q) =2,

{1} ifged(4,q) =1.
(3) B4(S?)(q) is an infinite group if and only if g = 6.

(1) B2(SH(q) ={

Finally, in Section 3 we show that the quotient group B, (M) /[P, (M), P,(M)] (¢) is finite when
M is the disk, see Theorem 11, and that it is infinite when M is a closed orientable surface M
of genus g = 1, see Proposition 13, where g = 3, n = 2 and [P, (M), P,(M)] is the commutator
subgroup of the pure braid group of the surface M.

2. Quotients of surface braid groups

Our main purpose is to study the Coxeter-type quotient of surface braid groups B, (M)(q)
obtained by considering Uf =1, for g = 3 and where o is the classical Artin generator, see [2].
We will use presentations of surface braid groups that have in the set of generators the Artin
generators.

We start this section with the following elementary result that will be useful in this work.

Lemma 3. Let a and b be positive integers and let g be an element in a group G. If g* =1 and
g? =1 then g = 1, where d = gcd(a, b) denotes the greatest common divisor of the integers a
and b.

Proof. This result is a consequence of the Bezout’s identity: if a and b are integers (not both
0), then there exist integers u and v such that gcd(a,b) = au + bv, see [18, Theorem 1.7,
Section 1.2]. O

We recall Coxeter’s result for braid groups over the disk that strongly motivates this paper.
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Theorem 4 ([8]). Let p = 3, and let B,,(p) denote the quotient of the braid group B, by the relation
a’lg = 1. Then B, (p) is finite if and only if

(n,p)€4@3,3), 3,4), 3,5), 4,3), (5,3)}.

Motivated by this unexpected result from Coxeter’s work on the classical braid groups, we
are interested in exploring these quotients for surface braid groups, as we show in the following
sections.

2.1. Braid groups over surfaces different from the sphere and the projective plane

Let n = 2 and let B, (M) denote the braid groups over a surface M. Compared with the case of
the disk (see [8]) the group B, (M)(q) is infinite for any integer g = 3, for closed surfaces different
from the sphere and the projective plane. The goal of this section is to prove Theorem 1. To do it,
we will use the following presentations of surface braid groups that have in the set of generators,
the Artin generators.

Proposition 5 (Theorem 1.4 of [21]). Ler Mg be an orientable surface of genus g = 1. The group
B (Mg,0) admits the following presentation.
Generators: 01,02,...,0,-1 andp;jforl<si<nandl < j<2g.
Relations:
O @ ooj=0gjo4li-jlz2;
(i) 0;0i110;=0i4+10i0+1.
D) () (pj34P72g-1Pi2gPi2g—1) """ (0,07 Pi2Pi1) = Aijiv1 + Ain A7y AT
(i) pijoki=prpijifi<k lisoddandj<lori<k,lisevenandj<Il-1;
(iii) (a) P}épikpjk = Bi_jlpikBij ifi<j;
(b) ijpikpﬁ = P,-_leijPikBi_jlpik ifi<j;
(©) P}épikpjk = PikBijPichi_jlpi_kl ifi>j;
(d) ijpikp;]i = Bi_jlpikBij ifi>j;
(V) @ Py \Pj2tPj2i-1= B} Pi2e-1BijP7 5, Pi2eBij ifi < ji
(b) Pj21-1052tP7 by = P31 BijPi2e-1B;} pizep;}, By} Pige-1 ifi < j;
() p]_'ét_lpj,thj,Zt—l = Pi,ztpi,Zt—lBi_jIP;%t_l ifi>j;
() pj2i-10)260 55,y = Pi2eBij ifi > j;
W) @ pjhpj2t-10j20 = B;} pize1 ifi >
() pj2epj2-1075, = Pi3,BijPizipi2i-1 ifi < j;
(©) P}étpj,zt—lpj,zt = Pi,ztBijP{,%,Pi,zt—lBBijPi,ztBB{jlP,Tét ifi>j;
(d) Pj,z:ﬂj,zr—m]_ét = Bi_jlPi,zz—lp,-_étB,-_jlpi,ZtBij ifi>j;
i) (@) pypijpk =B piBikp;; pijpiB;. p;) Bik ifi <k, j>1and (C);
(b) pkipijPx) = P;; BikpiiBlpijBikp;) Bl pi ifi <k, j>1and (O);
© py)PijPkl=pPuB;lp; BikpijBip; ) Bikp;! ifi >k, j>1and (C);
) pripijpy] =B o' Bikpitpijpy; By pitBix ifi > k, j <l and (C);
where:
(D #@t,2t-1) and (j,1)# (2t—1,20),

1 -1 1

C
and Ajj=0;_,-0; ©

2 - 2
Bij=0i0j205,0j50; Tj19i0j-2
(11D (@) oipjr=pjk0; ifj#iori+1;

.s 1
(i) pik=0iPi+1,k0; -

Now we consider the non-orientable cases.
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Proposition 6 (Theorem 1.2 of [21]). Let Mg be a non-orientable surface of genus g = 2. The
group By, (Mg ) admits the following presentation.
Generators: 01,0,...,0p-1 andpjjforl<i<nandl<j<g.
Relations:
0] () gioj=0j0;,i—-j=2;
(i) 0i0;+10;=0i110i0}41.
N 2 o2 2 _ -1 -1 .
In (1) ‘Digpi,g—l .. .pi,l _ :Ai,i+1 .. .A'i’”Ai,l .. .Ai,i—l’
(i) pijpki=pkipijifi<kandj<l;
(i) (@ pjppikpjk =B} pik ifi < j;
(b) pjkpikPTy = Pii Bijo% ifi < i
(©) P}épikpjk = p4Bij o3 ifi> i
() pjkpikpy; = pikBij ifi> j;
(iv) (@ pg,pijpkr=B; puBikp;; pijpiB; p7' Bik ifi <k, j>1;
(b) pripijpy) =Py, BikpiB; pijBikp; Byl pir ifi <k, j>1;
© py)pijPri=pPuBy ;) BikpijBy 0] Bikpi] ifi >k, j>1;
) pripijpy; =B 0y Bikpipijp;; By pitBik ifi >k, j<l.
(I10) i) oipjxk=pjroi ifj#iori+1;
(i) pik= Uipi+1,k(7;1; where
Bij =0; '”0-]._20-?710.]_'712'”01'_1
- 1

and  Ajj=0;

N 2 seee )
2770 0j10i0j-2

forlsi<j<n.

We are now ready to prove Theorem 1. Throughout the proof, the abelianization of a group G
will be denoted by G®.

Proof of Theorem 1. Let g = 3 and n = 3 integers and let M be a closed surface different from the
sphere and the projective plane.

(1). The proof of this item follows using a presentation of the braid group over orientable
surfaces given in Proposition 5. Since the argument is similar in both cases (orientable and non-
orientable) we give more details for the non-orientable case below.

(2). Let
M= RP*#.--#RP*,

where g = 2 is the genus of the non-orientable surface M. We give a presentation of the
abelianization of the group B,(M)(q). To do this, we use the presentation of B, (M) given by
Scott, see Proposition 6:
Generators: 01,...,0p-1and p; jwherel<i<n,1<j<g.
Relations: All generators commute. From this and using the Scott’s presentation, we get the

following information:

(1) From Proposition 6(I-ii) it follows thato; =041, fori=1,...,n—-2.

(2) From Proposition 6(III-ii) we get p; x = pi+1,k, forl<i=n-1,1<k=<g.

(3) In Proposition 6(II) were defined elements A; ; and B; j, forall 1 =i < j < n, as
conjugates of Uf. From Proposition 6(II-iii), (see also [21, Theorem 1.1, II(iii)]) we
obtain, forall1<i<j<n,B;;=1in(B, (M)(q))ab. So, in (By, (M)(q))"lb it holds that
0? =1, foralll=i=n-1,aswellas A; j=1,foralll<i<j<n.

(4) As a consequence of the previous item and Proposition 6(II-i) (see also [21, Theo-
rem 1.1, II(i)]) we get p?'g/olz.‘gh1 --~/olz.‘1 =1,foralli=1,...,n—1.
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The other relations in Proposition 6 do not contribute further information about (Bn (M) (q))ab.

Since 0'% =1 and cri] =1, we have Uf = 1, where d = gcd(2, q), by Lemma 3. Therefore, a
presentation of the abelianization of B, (M)(q) is given by the following.
Generators: o1 and p,jforl1<j=<g.
Relations:
(1) All generators commute.
2 0'% =1, and af =1, for g = 3. By Lemma 3, this implies that af =1, for g = 3, where
d=gcd(2,q).
®) PPl 1P =1
We recall that a presentation of the fundamental group of the non-orientable surface M of genus
g is given by
1 (M) = (p1,..., pg | P55, P2 =1). 3)
Hence, from the computations above, we have proved this item

(B.(M) ()™ = Z4 & H, (M),
where d = gcd(2, g).

(3). Since the first homology group of the closed surfaces different from the sphere and the
projective plane are infinite:
7% if M is orientable of genus g,

Hon=" L )
78 &7, if Misnon-orientable of genus g,

then we conclude that the Coxeter-type quotient B, (M)(q) is infinite. U

2.2. The sphere and the projective plane

Now, we exhibit some information of B, (M)(q) when M is either the sphere or the projective
plane.

From [9] we know that the sphere braid group with 7 strings, B, (S?), admits a presentation
with generators o; for i = 1,2,...,n—1 and relations as in (2) plus:

o the surface relation o; "'Un—zUi_IO'n—z ---01=1.

Recall that a perfect group G is a group such that G = [G, G].

Proposition 7. Let g =2 and n =3 integers. Letd = gcd(q, 2(n—1)).
(1) The abelianization of B,,(S?)(q) is isomorphic to the cyclic group Z ;.
(2) Ifg and2(n—1) are coprimes then B, (S?) (q) is perfect.

Proof. Let g =2 and n > 3 integers and let d = gcd(q, 2(n - 1)). Using the presentation of B,,(S?)
we conclude that the abelianization of the quotient group B,,(S?)(q) has the presentation

(o1 ] of =1, 20D =),

where the second equality comes from the surface relation. Lemma 3 implies that the order of
o1 € (Bn(§2)(q))ab is equal to d, where d = gcd(q,2(n—1)). From this, we proved the first item.
From the first item of this result and the hypothesis of the second item, we get o, = 1. Since
the abelianization of B, (S?)(g) is the trivial group, then we conclude that B, (S?)(q) is perfect,
proving the second item. O

For the special case of few strings, in Theorem 2 we have the result for the Coxeter-type
quotient of the sphere braid group, that we prove below. When analyzing the case of four strings,
we use triangle groups as defined in [19, Appendix I, Section 7], see also [1].
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Proof of Theorem 2. Let g =3.

(1). Since the group B; (S?) =27, is generated by o, then the result of this item follows immedi-
ately from Lemma 3.

(2). Recall from [9, third lemma on p. 248] (see also [19, Chapter 11, Proposition 2.4]) that Bs ($?)
has order 12 and the elements ¢; and o have order 4. So, from Lemma 3, in B3(S$?) it holds
ot=1, ifged@d,q) =4,
o?=1, ifged@d,q)=2,
oy1=1, ifged4,q9)=1.
From this, it is clear that B3(S?)(q) = B3(S?) if gcd(4,q) = 4, and that B3(S?)(g) is the trivial
group {1} if gcd(4, g) = 1. Finally, suppose that gcd(4, g) = 2, then it follows from the proof of [9,

third lemma on p. 248] (see also the proof of [19, Chapter 11, Proposition 2.4]) that Bs ($? (9) = Ss
in this last case, completing the proof of this item.

(3). The group B4(S?)(q) admits the following presentation:

4

010201 =020102, 020302 =030203, 0103 20301,>

2 _
Ba(S )(q)—<01,az,03 0102020501 =1, 0 =1
We used the GAP System [22] to show that B4(S?)(g) is a finite group in the following cases:

(g =3) The group B4(S?)(3) is isomorphic to the alternating group Aj,.
(g =4) In this case the group B4(S?)(4) has order 192.

(g =5) The group B4(S?)(5) is isomorphic to the alternating group As.
We elucidate the routine used in the GAP computations for the case B4(S?)(3), the other cases are
similar:

f3 := FreeGroup("a","b","c");;

gens:= GeneratorsOfGroup (f3);;

a:= gens[1];;b:= gens[2];;c:= gens[3];;

B4S23:= f3/[ axb*axbA-1xar-1xbA-1, bxcxbxcA-1xbA-1xcA-1,
axcxar—-1xcA-1, a3, bA3, cA3, axbxcA2xbxa |;

Order (B4S23);

StructureDescription (B4S23);

Now, for g = 6, we show that the group B, ($?) (q) is infinite. Let ((01051)) be the normal closure
of the element 01051 in B4(S?) (). Then

By(S®) (@) /01031 = (01,02 | 010201 = 020102, (0102)° =1, a7 =1).
Taking a = 010201 and b = 0,0, follows that (ab) = 01‘1 and so
By(SH(q) /€103y =(a, b| a*=b*=(ab)? =1).
Hence By (SZ)(q) / (o103 1y is isomorphic to the triangular group T'(2,3, g) that is infinite if, and
only if g = 6, see [19, Theorem 7.1, Appendix I]. U

Now we move to the case of the projective plane. Recall a presentation of the braid group of
the projective plane.

Proposition 8 (Section III of [7]). The braid group of the projective plane on n strings, B,(RP?)
admits the following presentation.

Generators: 01,02,...,0,-1,P1,02---»Pn-
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Relations:
(D) oioj=0j0;ifli-jl=z2.
(I) 0;0i410;=0;+10i0;4) fori=1,...,n—2.
() oipj=pjo;forj#i,i+]1.
(IV) p;j=0ipis10ifori=1,...,n—1.
V) pé‘jlpi‘lpmpi =0§2-
(VD) p1=0102+-0p—20%_0p-2"-02071.
For the case of braid groups over the projective plane we have the following.

Proposition 9. Let q = 2 and n = 2 integers. The abelianization of the group B,(RP?)(q) is
isomorphic to Z if q is odd, otherwise it is the Klein four group Z, & Z.

Proof. We obtain the result from Lemma 3 and the presentation of B, (RP?) given by Van Buskirk
in [7] (see Proposition 8 and also [19, p. 202, Theorem 4.1]). O

Remark 10. Except for the information of Theorem 2, we do not know under which conditions
on n and g the groups B, (M)(q) are finite, when M is either the sphere or the projective plane.

3. Quotients of crystallographic surface braid groups

The quotients of surface braid groups B, (M) by the commutator subgroup of the respective pure
braid group [P, (M), P,(M)] considered in this section were deeply studied in [12] for the case of
the disk and in [13] for the case of closed surfaces, in both cases exploring its connection with
crystallographic groups.

In what follows, we analyze the Coxeter-type quotient groups B, (M) /[P, (M), P,(M)] (g) by
adding to the presentation of B, (M)/[P,(M),P,(M)] the relation of = 1, for braid groups over
closed orientable surfaces and also for the disk.

3.1. Braid groups over the disk

Unlike the case of the Coxeter quotient of the Artin braid group [8], see Theorem 4, for all n,q = 3
the Coxeter-type quotient B, /[Py, P,] () is finite. The following result is part of the dissertation
thesis of the third author, see [20, Theorem 3.3].

Theorem 11. Letn,q =3 and k € N. For any integer number q = 3, the group Bn/[Pn,Pn] (q) is
finite.

(@) Ifq=2k+1, then B, /[Py, Pyl (q) is isomorphictoZ,.

(b) When q =2k, then B, /Py, Pn] () has order "("T_Uk -nl.

Proof. Let n,q = 3 and suppose that cri’ = 1. The integer q is equal to 2k +r, with0 < r <1 and
r,keN.

For item (a), as a consequence of the presentation of the Artin braid group B,, given in (2) we
get Ul._lUi+10'i = 0i+10,-017+11, foralll1 <i<n-2, and so 0? =1,forall1 <i < n-2. Hence,
g; = 0;2’“ = AZZ.‘H, forall 1 =i < n-1, where A; ; is an Artin generator of the pure Artin braid
group. So, in the group Bn/[Pn,Pn] (g) itholds 0,01 =1, forall1 =i < j < n-1. Therefore,

0i0i+10;=0i+10i0jy1 <= 0i0i4+10;=0+104+10;
> O0;=0j+1,

forall1<i<n-1.Then, B,/[Py, Pyl (¢) is isomorphic to {0 | a’f = 1), proving item (a).

Now we prove item (b). By hypothesis, we have O'%k = 1. As before, we may conclude
that 02 = 1, forall 1 < i < n, so A¥,, =1, forall 1 <i < n. Recall the definition of the

i,i+1
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pure Artin generator A;,j = crj_laj_g---05'--0]‘320]‘._11. So, Af,j =1, foralll<i<j<n We
recall that the group P, /[Py, Py is free Abelian with a basis given by the classes of pure Artin
generators {4; j | 1 =i < j < n}. Hence, in B, /[Py, Pyl (¢) the natural projection of the group
Py /[Pn, Py] < By /[Py, Pyl is isomorphic to

Zix-xZg.

————

n(n-1)
2
From the above we get the following short exact sequence
1— Zyx--xZg— By/[Pyn,Pnl (g) — S — 1.
———
n(nz—l)
Therefore the middle group B, / [Py, Pyl () has finite order
item (b).

From items (a) and (b) we proved that for any integer number g = 3, the group B, /[Py, P, (q)
is finite. 0

"("T_Dk - n! and with this we verify

3.2. Braid groups over orientable surfaces

Let M be a compact, orientable surface without boundary of genus g = 1, and let n = 2. We will
use the presentation of B, (M)/[P,(M), P,(M)] given in [13].

Proposition 12 ([13, Proposition 9]). Let M be a compact, orientable surface without boundary
of genus g = 1, and let n = 1. The quotient group B,(M)/[P,(M),P,(M)] has the following
presentation.
Generators: 01,...,0,-1,4;,, 1<i<n,1=<r<2g.
Relations:

(@) The Artin relations:

0i0j=0;0; foralll<i,j<n-1,|i-jl=2,
0i0i+10;=0;410;0;41 foralll<i<sn-2.

(b) o?:l,foralli:l,...,n—l.
© lair ajsl=1,foralli,j=1,...,nandr,s=1,...,28.
d) oiaj,07" =agrforalll<sisn-1,1<j<nandl<r=2g.

In [14, Figure 9] we may see geometrically the elements a; , of Proposition 12. We have the
following result about Coxeter-type quotients and the quotient groups considered in [13].

Proposition 13. Let M be a compact, orientable surface without boundary of genusg=1, q=3
and let n = 2. The group B,(M) /[Py (M), P,(M)] (q) is infinite.
(1) If q is odd, the Coxeter-type quotient B, (M)/[Pn(M),P,(M)] (g) is isomorphic to a free
Abelian group of rank 2g.
(2) The group B,(M)/[Pn(M),P,(M)] (q) is isomorphic to the crystallographic group quo-
tient By (M) /[Pn(M), P, (M)] if q is even.

Proof. Let M be acompact, orientable surface without boundary of genus g = 1, andlet n = 2. We
shall use the presentation of the quotient groups B, (M)/[P,(M), P, (M)] given in Proposition 12.
From Proposition 12(b) we have that in B, (M)/[P,(M), P,(M)] (¢) it holds a? =1,foralll<is<
n-1.

Hence, forall 1 <i < n -1, itis true that a? =1and a? = 1. If g is odd, then from Lemma 3 we
geto;=1,forall1 =i <n-1, provingitem (1). In the case that g is even then, forall1<si<n-1,
012. =1 independently of the number ¢, getting item (2). d
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