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Abstract. We consider star-shaped tubular domains consisting of a number of non intersecting semi-infinite
strips of small thickness that are connected by a central region of diameter proportional to the thickness
of the strips. At the thin-domain limit, the region reduces to a network of half-lines with the same end
point (junction). We show that the solutions of uniformly elliptic partial differential equations set on the
domain with Neumann boundary conditions converge, in the thin-domain limit, to the unique solution of a
second-order partial differential equation on the network satisfying an effective Kirchhoff-type transmission
condition at the junction. The latter is found by solving an “ergodic”-type problem at infinity obtained after
a first-order blow up at the junction.
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1. Introduction

The aim of the paper is to study the asymptotic behavior of solutions of uniformly elliptic
partial differential equation (pde for short) set on thin tubular domains around a fixed network
with one junction. In the thin-domain limit, we obtain a pde on the network coupled with a
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nonlinear effective transmission condition at the junction. In analogy to the classical electrostatic
theory, we are referring to this coupling as a (nonlinear) Kirchhoff condition. The results are
easily generalized to networks and thin domains with multiple junctions and other boundary
conditions.

Since the limiting function is not smooth at the junction (the first derivatives are not contin-
uous), the problem can be thought as a singular perturbation one, the transmission condition
providing the necessary balance for the derivatives.

The Kirchhoff conditions can be identified easily when considering linear divergence form
equations in thin domains by a simple integration by parts.

This argument, however, fails when dealing with nonlinear elliptic equations and a new
approach is needed. Since the sought after condition involves derivatives of the limiting solution
at the junction, it is natural to use a first-order blow up at the origin. This leads to a problem in an
unscaled domain. The derivatives at the origin become linear growth conditions at infinity. The
effective transmission condition then arises as a compatibility condition of the linear growths at
infinity in order for the blown-up problem to have a solution. The analysis gives rise to a novel
ergodic problem.

The thin domain limit for a class of convex first-order Hamilton–Jacobi equations was stud-
ied by Achdou and Tsou [1]. A related problem for a linear pde which is small stochastic
anisotropic and possibly degenerate perturbation of Hamiltonian flows has been by studied Ishii
and Souganidis [5], where we refer to other previous works.

Organization of the paper

The paper is organized as follows. In the next section, we describe the general setting and
assumptions, introduce the problem and state the results. Section 3 is devoted to the proof of the
ergodic problem that yields the condition at the junction. In Section 4 we prove the convergence
result.

2. The setting, assumptions and results

The setting

We consider a star-shaped network consisting of k > 1 straight edges

Gi =R+ζi ,

where, for i = 1, . . . ,k, ζi is a unit vector in Rd , ζi 6= ζ j if i 6= j and R+ = (0,∞). To fixe the ideas,
each Gi should be thought as the positive half line in the ζi direction.

We denote by ζ⊥i the Rd−1-plane which is orthogonal to ζi . A point x ∈Rd \ {0} is written as

x = xiζi +x ′
i with xi ∈R+ and x ′

i ∈ ζ⊥i .

The network G and its interior G 0 are respectively

G = {0}∪
k⋃

i=1
Gi and G 0 =

k⋃
i=1

Gi .

Moreover, for ρ > 0,
Wρ ⊂Rd is the open neighborhood of 0 given by

Wρ =
{

x ∈Rd : x ·ζi < ρ for all i = 1, . . . ,k
}
.

Finally, for each i = 1, . . . ,k, ωi is the Rd−1−unit ball in ζ⊥i centered at the origin.
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Let Σ be an open connected subset of Rd with smooth boundary such that 0 ∈Σ and

Σ\W 1 =
k⋃

i=1
Zi ,

where, for each i = 1, . . . ,k, Zi is the open half strip (tube) around Gi given by

Zi =
{

z = ziζi + z ′
i : zi > 1 and z ′

i ∈ωi
}
;

note that the choice of W1 instead of Wr0 , for some r0 > 0, is made only to simplify the presenta-
tion.

The set
K̃0 =Σ∩W1

can be thought as small dilation of the junction zone around the origin.
For each ε> 0, the thin domain Σε around G is

Σε = εΣ,

and, for each i = 1, . . . ,k,

Zi ,ε = εZi =
{

z = ziζi + z ′
i : zi > ε and z ′

i ∈ εωi
}
.

To set up the problem, we will see partition of unity (ηi )i=1,...,k subordinate to W1 and Z1, . . . , Zk ,
that is, for each i = 1, . . . ,k, ηi ∈C∞

c (Σ; [0,∞)) are such that

k∑
i=1

ηi = 1 and ηi = 1 in Z i . (1)

The assumptions

For i = 1, . . . ,k, we consider the maps Fi ∈C (S d ,Σ;R) and F i ∈C (S d ,Σ;R), where S d is the space
of d ×d symmetric matrices in Rd , and we assume that

Fi : S d ×Σ→R is uniformly elliptic and Lipschitz continuous, (2)

and {
F i is uniformly elliptic, Lipschitz continuous, and

1−positively homogeneous in the first argument,
(3)

and there exists C > 0 such that, uniformly in (A, x) ∈S d ×Σ,

|Fi (A, x)−F i (A, x)| ≤C . (4)

Note that, since the homogeneity of F i implies that F i (0, · ) = 0, it follows from (4) that

|Fi (0, · )| ≤C . (5)

An example of Fi and F i are the classical Isaacs nonlinearities given by

Fi (A, x) = inf
α

sup
β

[− tr
[
aα,β

i (x)A
]− f α,β

i (x)
]
,

and
F i (A, x) = inf

α
sup
β

[− tr
[
aα,β

i (x)A
]]

,

with aα,β
i ∈S d and f α,β

i ∈R satisfy the necessary conditions needed for (2), (3) and (4) to hold.
Recall that any uniformly elliptic and Lipschitz continuous function has a max-min represen-

tation. In order, however, to have (4) we need to assume that

sup
α

sup
β

∣∣ f α,β
i (x)

∣∣≤C .
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The problem

We are interested in the behavior, as ε→ 0, of the solution uε of the boundary value problem

F
(
D2uε, x,

x

ε

)
+uε = 0 in Σε

∂uε
∂n

= 0 on ∂Σε, (6)

with F : S d ×Σ×Σ→R defined by

F (A, x, y) =∑k
i=1ηi (y)Fi (A, x). (7)

It is immediate from (1) and (2) and with C as in (5) that

F is uniformly elliptic and Lipschitz continuous and |F (0, · )| ≤C . (8)

For future use, we also introduce F : S d ×Σ×Σ→R defined by

F (A, x, y) =
k∑

i=1
η(y)F i (A, x). (9)

It is again easy to see from (1), (2), (3) and (4) that
F is uniformly elliptic, Lipschitz continuous, and 1−positively homogeneous

in the first argument, and

|F −F | ≤C on S d ×Σ×Σ.

(10)

We remark that the nonlinearity F in (4) is only an example. The general picture the reader
should keep in mind is that we have elliptic equations on each of the Gi which are extended to Zi

and are patched (this is the role of the partition of unity) smoothly in a neighborhood of 0 to give
an F on Σ. The dependence on x/ε is necessary in order to deal with the fact that near O all the
variables interact.

There are, of course, other ways than (7) to do this. Indeed, we may consider F satisfying (8)
and admitting a “uniform recession” function, that is, a uniformly elliptic F ∈ C 0,1(S d ×Σ×Σ)
such that, for some C > 0 and ε> 0 small,∣∣∣∣εF

(
1

ε
A,εx, x

)
−F (A,0, x)

∣∣∣∣≤Cε. (11)

Before we continue with the statement of the results, we mention that it is possible to study
more general boundary value problems with equations like

F
(
D2uε,Duε,uε,

x

ε
, x

)
= 0 in Σε

and different boundary conditions (oblique, state constraints, etc.).
To explain the key ideas and keep the exposition simple, in this note we study the simplest

possible case, that is, (6).

The results

It is well known that, given (8) and for ε> 0, (6) has a unique (viscosity) solution uε ∈C 0,1(Σε) with
bounds independent of ε. Thus, along subsequences ε→ 0, the uε’s converge locally uniformly in
Σε to u ∈C 0,1(G ). The aim is to characterize u as the unique solution of a pde on the network. The
main issue is to understand the equation at the junction.

To state the main result, we introduce some additional notation. For each i = 1, . . . ,k, let
Fi :R×G i →R be defined by

Fi (z, xi ) = Fi (zζi ⊗ζi , xiζi ). (12)

C. R. Mathématique, 2020, 358, n 7, 797-809
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It is immediate from (2) that, for each i = 1, . . . ,k,{
Fi ∈C (R×G i ) is uniformly elliptic, Lipschitz continuous and

bounded in [−R,R]× [0,∞) for each R > 0.
(13)

In what follows, we say that a Lipschitz continuous map G : Rk → R is strictly decreasing, if
there exists ν> 0 such that, for all i = 1, . . . ,k,

ν≤−Gzi . (14)

The convergence result is stated next.

Theorem 1. Assume (1), (2), (3), (4) and (7) and let F ∈ C (S d ×Σ×Σ) be as in (9). There exists a
Lipschitz continuous and strictly decreasing with respect to each of its argument G :Rk →R, which
depends on (Fi )i=1,...,k , (ηi )i=1,...,k and Σ, such that, if u ∈ ⋂k

i=1 C 2,1(Gi ) ∩C 0,1(G ) is the unique
solution of

Fi (uxi xi , xi )+u = 0 in Gi for each i = 1, . . . ,k and G(ux1 (0+), . . . ,uxk (0+)) = 0, (15)

then, as ε→ 0 and locally uniformly, uε→ u.

There are two novelties in Theorem 1. The first, which is more conceptual, is the identification
of the nonlinear coupling G . This is the topic of Theorem 2 and is motivated below. The second,
which is technical, is the proof of the convergence, which involves the construction of unusual
and new super-and sub-solutions of (6), which are motivated by a formal blow up argument
explained next. The fact that limits of the uε’s satisfy the claimed equations in each Gi is a routine
consequence of the stability of solutions. The wellposedness of (15) follows from recent work of
the authors [6].

To explain the appearance of G , we begin with the simple linear example

−∆uε+uε = 0 in Σε
∂uε
∂n

= 0 on ∂Σε, (16)

ignoring the fact that in this trivial setting it is clear that uε ≡ 0.
Fix R > 0 and consider the truncated sets

ΣR
ε = {

x ∈Σε : xi < R for all i=1,. . . , k} and ΓR
ε,i = {x ∈ Zε,i : xi = R}. (17)

Integrating (16) by parts over ΣR
ε and using the boundary condition we find

K∑
i=1

∫
ΓR
ε,i

∂uε
∂n

dS(y)+
∫
ΣR
ε

uεdx = 0. (18)

Assume next, that, as ε→ 0, uε → u uniformly in ΣR
ε , Duε → Du locally uniformly in ΣR

ε \ {0},
and, for simplicity, that, for i = 1, . . . ,k, there exist a1, . . . , ak ∈ (0,∞) such that

|ΓR
ε,i | = ai |ΓR

ε,1|.
Then, dividing (18) by |ΓR

ε,1|, and letting ε,R → 0 leads to the classical Kirchhoff transmission
condition

K∑
i=1

ai uxi (0+) = 0. (19)

Integration by parts is, of course, useless in the nonlinear setting of Theorem 1. To explain how
G arises, we argue again formally, assuming that, as ε→ 0, uε → u locally uniformly in Σε. Since
we are interested in the behavior of the first derivatives of the limit at the origin, it is rather natural
that to assert that, near 0,

uε(x) ≈ u(0)+εv
( x

ε

)
, (20)
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where a v : Σ→ R is a “corrector”-type function that must behave at infinity like the derivatives
of u at the origin. Note that although we borrow terms from the theory homogenization like
corrector and later ergodic problem, the ansatz is really about blowing up at the origin.

For each i = 1, . . . ,k, let

pi = uxi (0+).

It follows that v must satisfy, uniformly for x⊥
i with |x⊥

i | ≤ 1,

lim
xi→∞

v(xi , x⊥
i )

xi
= pi . (21)

Inserting (20) in (6) and using the definition of F in K̃0, we find

F

(
1

ε
D2v

( x

ε

)
, x,

x

ε

)
+u(0)+εv

( x

ε

)
≈ 0.

Hence, on Σ, we must have

εF

(
1

ε
D2v(y),εy, y

)
≈ 0,

Then, (10) yields that v must satisfy

F (D2v,0, y) = 0 in Σ1 and
∂v

∂n
= 0 on ∂Σ1. (22)

The issue, of course, is whether (22) admits a solution v satisfying (21) for each i = 1, . . . ,k.
It turns out that the existence of such v requires a compatibility condition on the pi ’s, that

is, given p1, . . . , pk−1, there exists a unique pk such that (22) has a solution v satisfying (21). The
relationship among the pi ’ cam be thought as an ergodic condition at infinity.

The result is formulated in the following theorem. To avoid confusion with the nonlinearities
F and F earlier, we rewrite the problem asF̂ (D2v̂ , x) = 0 in Σ, ∂v̂

∂n = 0 on ∂Σ,

limxi→∞
v̂(xi ,x′

i )
xi

= pi uniformly in x ′
i ∈ωi and i = 1, . . . ,k.

(23)

Theorem 2. Assume that F̂ ∈C 0,1(S d ×Σ) is uniformly elliptic, Lipschitz continuous and F̂ (0, · ) =
0 on Σ. There exists a unique up to a multiplicative constant, Lipschitz continuous, and strictly
decreasing with respect to each argument G : Rk → R such that (23) has a unique up to constants
solution v ∈C 1(Σ)∩C 0,1(Σ) if and only if G(p1, . . . , pk ) = 0.

The proof of Theorem 2 is based on solving an ergodic-type problem with Neumann condi-
tions in a truncated domain followed by a delicate analysis of what happens as the truncation is
removed. This is the place where the compatibility condition arises.

We present next two simple examples to give a flavor of what is behind Theorem 2 and to
emphasize the way G depends on F̂ and Σ1.

We begin with a two-dimensional problem with ζ1 = (1,0) and ζ2 = (−1,0) and Σ the tube
around the x-axis with cross section radius 1. We write x for the horizontal coordinate and y for
the vertical. Finally we denote by p± the slopes of v at ±∞. Note that, in order to write a single
equation, in the tube Z2 we have changed from x > 0 to x < 0. This is reflected in the change of
sign in the x →−∞ limit.

We are interested in a solution v̂ ∈C 1(Σ)∩C 0,1(Σ) of

F̂ (D2v̂ , x) = 0 in Σ,
∂v̂

∂n
= 0 on ∂Σ, lim

x→±∞
v̂(x, y)

x
=±p± uniformly in y. (24)

We assume that F̂ is independent of y and uniformly elliptic, Lipschitz continuous, and
1−positively homogeneous, hence F̂ (0, x) = 0.

C. R. Mathématique, 2020, 358, n 7, 797-809
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It follows that v̂ = v̂(x, y) = v̂(x) and the equation in (24) is now

F̂

((
v̂xx 0

0 0

)
, x

)
= 0.

Since, in view of the uniform ellipticity, F̂ is strictly decreasing in v̂xx and F̂ (0, x) = 0, it follows
that we must have v̂xx = 0. Hence, v̂ must be linear and the slopes must satisfy the Kirchhoff
condition becomes −p+−p− = 0.

The next example shows how G may depend on the domain. We work again with d = 2, and,
consider, for λ ∈ [0,∞) \ {1}, the boundary value problem

−vxx −λvy y = 0 in R× (−1,1) uy ( · ,±1) = 0, lim
x→±∞

u(x, y)

x
=±p± uniformly in y ∈ [−1,1].

An argument similar to the one above yields again the Kirchhoff condition p+−p− = 0.
We choose next ζ1 = (0,1) and ζ2 = (1,0). The resulting domain Σ is a deformation of the one

in the previous example. We consider the same equation as above. Similar considerations lead to
the transmission condition p1 −λp2 = 0.

3. The proof of Theorem 2

Like with many ergodic-type problems, the proof consists of three main steps. The first is
to identify and solve an approximate problem. The second is to obtain bounds, which are
independent of the approximation, that allow for the passage in the limit to obtain the “ergodic
constant”. The last is to show the uniqueness of the latter.

In preparation for the proof, we recall that

F̂ : S d ×Σ→R is uniformly elliptic, Lipschitz continuous, and F̂ (0, · ) = 0 on Σ. (25)

and we set up some more notation.
For R > 1 and each i = 1, . . . ,k, Z R

i is the truncated tube Z R
i = {x ∈ Zi : xi < R}, its outer

boundary ΓR
i = {x ∈ Zi : xi = R}, and the truncated domain

ΣR = {x ∈Σ : xi < R for all i = 1, . . . ,k}.

We consider the approximate problem

F̂ (D2vR , y) = 0 in ΣR ,
∂vR

∂n
= 0 on ∂Σ∩ΣR ,

∂vR

∂n
= pi on ΓR

i for i = 1, . . . ,k. (26)

Before we begin with the analysis of (26), we state as separate lemmata two observations which
will be used in several places in this section. The proof of the first is straightforward consequence
of the maximum principle and Hopf’s lemma, hence we omit it.

Lemma 3. Assume R > 1 and (25) and let vR be a solution of (26). Then,

inf
Σ

R
vR = min

1≤i≤K
inf
ΓR

i

vR and sup
Σ

R
vR = min

1≤i≤K
sup
ΓR

i

vR (27)

and

[1,R] 3 ρ→ inf
Σ
ρ

vR is nonincreasing and [1,R] 3 ρ→ sup
Σ
ρ

vR is nondecreasing. (28)

Lemma 4. Assume R > 1 and (25), let vR be a solution of (26) and fix i ∈ {1, . . . ,k}. Then, for every
z, ẑ ∈ Z R

i such that zi < ẑi ,

inf
w∈ζ⊥i

vR (zi , w)+pi (ẑi − zi ) ≤ vR (ẑ) ≤ sup
w∈ζ⊥i

vR (zi , w)+pi (ẑi − zi ). (29)

C. R. Mathématique, 2020, 358, n 7, 797-809
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Proof. Since the arguments are similar, we only show the lower bound.
The properties of F̂ imply that v(ẑ) = inf

Γ
z·ζi
i

vR +pi (ẑi − zi ) solves

F̂ (D2v, ẑ) = 0 in Z R
i \ Z zi

i .

Moreover, it is immediate that

∂v

∂n
= 0 on ∂Z R

i ∩∂Σ,
∂v

∂n
=−pi on ΓR

i and vR ≥ v on Γ
zi
i .

The comparison principle then yields the lower bound in (29) for all ẑ ∈ Z
R
i \ Z zi

i . �

The next result, which establishes the existence of solutions of (26) provided the pi ’s satisfy a
condition should be thought as an “ergodic”-type problem in ΣR .

Theorem 5. Fix R > 1 and assume (25). Then, for any p1, . . . , pk−1 ∈ R, there exists a unique
pk = pR

k , which is a strictly increasing with respect to each pi with i ∈ {1, . . . ,k −1}, such that (26)

has a unique up to additive constants solution vR ∈C 0,1(Σ
R

).

Proof. Fix p1, . . . , pk ∈R, and, for δ> 0, consider the approximate problem{
δvR,δ+ F̂ (D2vR,δ, y) = 0 in ΣR ,
∂vR,δ
∂n = 0 on ∂Σ∩ΣR and

∂vR,δ
∂n =−pi on ΓR

i for i = 1, . . . ,k,
(30)

which, in view of the classical viscosity theory (see, for example, Crandall, Ishii and Lions [4])
has a unique solution vR,δ. It follows from (25) (see, for example, Barles, da Lio, Lions and
Souganidis [2]) that the function v̂R,δ = vR,δ − vR,δ(0) and the constant−δvR,δ(0) converge, as

δ→ 0, to a unique v̂R ∈C 0,1(Σ
R

) and ĉR = ĉR (p1, . . . , pk ) ∈R satisfying the boundary value problem{
F̂ (D2v̂R , y) = ĉR in ΣR ,

v̂R (0) = 0, ∂v̂R
∂n = 0 on ∂Σ∩ΣR and ∂v̂R

∂n =−pi on ΓR
i for i = 1, . . . ,k.

(31)

It follows from the strong maximum (see, for example, Trudinger [7]) that

(i) ĉR is strictly decreasing with respect to its arguments, and
(ii) if p1, . . . , pk−1 are fixed and pk is large (resp. small), then ĉR (p1, . . . , pk ) is negative (resp.

positive).

Since ĉR (p1, . . . , pk−1, pk ) is strictly decreasing in pk , there exists a unique pR
k =ΦR (p1, . . . , pk−1),

with ΦR : Rk−1 → R strictly decreasing. Then the solution of (31) actually solves (26), and
ĉR (p1, . . . , pk ) =ΦR (p1, . . . , pk−1)−pk

R = 0. �

We proceed now with the proof of the main result.

Proof of Theorem 2. We first show that there exists G : Rk → R such that, if G(p1, . . . , pk ) = 0,
then (23) has a solution v ∈ C 1(Σ)∩C (Σ). The uniqueness of G and v̂ up to a multiplicative and
additive constants respectily is a simple consequence of the maximum principle.

The claim will follow if we establish enough estimates to show that, as R →∞ and up to some
normalizations, v̂R and ĉR converge respectively to a solution of and the compatibility condition
in (23). The bounds needed for this convergence are the core of the proof.

We remark that, without loss of generality, we may assume that there exists C > 0 such that,
along at least a subsequence denoted the same way as the full family, R →∞,

pR
k ≥−C . (32)

Indeed, if, as R →∞, pR
k →−∞, then, for some C > 0 and all R →∞, we have pR

k ≤ C . Then we
modify the argument below replacing inf by sup.

C. R. Mathématique, 2020, 358, n 7, 797-809
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We work with the subsequence along which (32) holds, but, for simplicity, we do not repeat
this fact.

Next we fix some R0 ∈ (1,R). Since v̂R is unique up to a constant, in what follows we assume
without any loss of generality that

inf
ΣR0

v̂R = 0. (33)

First we prove, using Lemma 4, (33) and the Harnack inequality, that the v̂R ’s are uniformly
bounded in ΣR1 for all R1 ∈ (1,R0) with the bound depending only on R0 −R1 and the ellipticity
constants of F̂ . We use this bound and again Lemma 4 to show that pR

k are actually bounded
uniformly in R. With this information, we employ Lemma 4 again to prove that the v̂R ’s are
bounded uniformly in R for all compact subsets of ΣR . The classical elliptic regularity theory
then yields the bounds necessary to obtain that, along subsequences, the v̂R ’s converge locally
uniformly in Σ to some v̂ ∈C 1(Σ) which solves

F̂ (D2v̂ , y) = 0 and
∂v̂

∂n
= 0 on ∂Σ.

To conclude, we need show v̂ also satisfies the limiting growth at infinity.
We continue with the bound on ΣR1 for all R1 ∈ (1,R0). It follows from Lemma 4 and (32) that,

for each i = 1, . . . ,K ,

inf
Γ

R0
i

v̂R ≥ inf
Γ

R1
i

v̂R +pi (R0 −R1) ≥ inf
Γ

R1
i

v̂R +C (R0 −R1). (34)

Then Lemma 3 yields

inf
ΣR0

v̂R ≥ inf
ΣR1

v̂R −C (R0 −R1),

and, in view of (33),

inf
ΣR1

v̂R ≤C (R0 −R1). (35)

Since v̂R is a nonnegative solution of a homogenous uniformly elliptic pde inΣR0 , the Harnack
inequality and (35) imply that, for each R1 ∈ (1,R0), there exists CR1 , which depends on R0 −R1
and the ellipticity constants of F̂ , such that

sup
ΣR1

v̂R ≤CR1 . (36)

We show next that the pR
k ’s are also bounded from above. Indeed, fix R2,R1 ∈ (1,R0) such that

R2 < R1. Then, using (33), (36) and Lemma 4, we find

inf
Γ

R1
K

v̂R ≥ inf
Γ

R2
K

v̂R +pR
k (R1 −R2) ≥ pR

k (R1 −R2).

It follows that there exists C > 0, which depends on (32) and (36), such that

pR
k ≤C . (37)

We show next that the v̂R ’s are bounded uniformly in R in compact subsets of Σ.
Applying once more Lemma 4 and the bounds already obtained for R1 < R0, we find that,

for each i = 1, . . . ,k, any R2 ∈ (R0,R), all (xi , x ′
i ) with xi ≥ R2 and some uniform C > 0 coming

from (36),

pi xi +C ≥ v̂R (xi , x ′
i ) ≥ pi xi −C . (38)

Note that, (38) not implies the claimed local uniform bound but also establishes the asymp-
totic behavior as xi →∞.

We conclude with the other direction of the claim, that is, if there exists a unique up to additive
constants solution of (26), then we must have G(p1, . . . , pk ) = 0.
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We argue by contradiction. The arguments are similar, so we assume, for definiteness, that
G(p1, . . . , pk ) > 0. Since G is strictly decreasing, there exist p̃i > pi such that

G(p̃1, . . . , p̃k ) = 0. (39)

Let ṽ be the solution of (32) with asymptotic slopes p̃1, . . . , p̃k which exists in view of (39) and
the first part of the ongoing proof.

Then v̂− ṽ must have a maximum in Σ, which is not possible in view of the properties of F̂ and
the maximum priciple. �

4. The proof of Theorem 1

For the proof relies on a novel construction of super-and sub-solutions of (6) near the junction
which uses the properties of the nonlinear Kirchhoff condition.

Proof of Theorem 1. The assumptions on F and the theory of uniformly elliptic equations yield
that the family (uε)ε>0 is bounded in Σε, uniformly in ε, and precompact in C 0,α

loc (Σε). It follows
that, along subsequences εn → 0, uεn converge locally uniformly to some u ∈ C 0,α(G ). We prove
that u is a solution of (15). Then, since (15) has a unique solution, it follows that the whole family
converges and the result is proven.

We show next that any limit u is a sub-solution of (15). Since the super-solution property
follows similarly, we omit the details. In what follows we denote the sequence by ε.

Assume that, for some smooth φ ∈ (⋂k
i=1 C 2,1(Gi )

)∩C 0,1(G ), u −φ attains a strict local maxi-

mum x in G ∩Br0 (x) for some r0 > 0 and, without any loss of generality, u(x) =φ(x) = 0.
If x = xi ∈ Gi \ {0} for some i = 1, . . . ,k, the conclusion follows in a straightforward manner

from the stability properties of the viscosity solutions and the definition of Fi modulo a small
additional argument needed to study Neumann boundary condition of (6). For the convenience
of the reader we sketch this argument next.

To fix the ideas, we assume that i = 1 and ζ1 = e1 = (1,0, . . . ,0) and write x and y instead of
x1 and x⊥

i . The map (x, y) → uε(x, y)−φ(x) attains a maximum Σε∩Br0 (x) at some (xε, yε) near
(x1,0). The only difficulty arises if |yε| = ε/2.

To avoid this problem, for δ > 0, we look at maxima points (xε,δ, yε,δ) of (x, y) → uε(x, y) −
φε,δ(x, y) inΣε∩Br0 (x), whereφε,δ(x, y) =φ(x)−δd(y), d(y) being a regularization of the distance
function of y to the boundary of [−ε/2,ε/2] such that d > 0 in (−1/2,1/2) and d(±ε/2) = 0. It is, of
course, immediate that, as ε,δ→ 0, (xε,δ, yε,δ) → (x1,0).

If |yε,δ| = ε/2, then
∂φε,δ
∂n (xε,δ, yε,δ) =−δ, which, in view of viscosity definition of the Neumann

boundary condition, means that we need to use the equation and, hence, we must have

F1

((
φxx (xε,δ) 0

0 0(δ)

)
, (xε,δ, yε,δ)

)
≤ 0; (40)

note that in (40) we used that (1) and (7) imply that F = F1 in Z1,ε.
A similar inequality holds if |yε,δ| < ε/2, and, thus, after letting ε,δ→ 0, we find

Fi (φx1x1 (x1), x1)+u(x1) ≤ 0.

We turn now to the more difficult case x = 0 and argue by contradiction, that is, we assume
that, for some σ> 0,

min
(
G(p1, . . . , pk ), min

1≤i≤k
[u(0)+Fi (φxi xi (0+),0)]

)
=σ, (41)

where, for i = 1, . . . ,k, pi =φxi (0+).
Using (41) we construct, for ε > 0 sufficiently small, a super-solution wε ∈ C (Σε) of (6), such

that, as ε→ 0, wε→φ uniformly in Σε∩Br (0) for some r < r0.
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Then it follows from the comparison principle that

max
Σε∩Br (0)

(uε−wε) ≤ max
Σε∩∂Br (0)

(uε−wε),

and, after letting ε→ 0,
0 = u(0)−φ(0) ≤ max

G∩∂Br (0)
(u −φ) < 0,

which is contradiction.
For the next argument, it is necessary to extend φ to a functionΦε :Σε→R such that

Φε ≡ 0 in W ε
2

and Φε(x) =φi (xi ) if x ∈ εZi . (42)

We proceed with the construction of wε. Since, in view of (41), G(p1, . . . , pk ) ≥ σ > 0 and G is
strictly decreasing with respect to each pi , there exist q1, . . . , qk such that

qi > pi and G(q1, . . . , qK ) = 0.

Let v ∈C 1(Σ1)∩C (Σ) be the solution of (23) with v(0) =−M , where M > 0 is to be chosen below,
and, for each i = 1, . . . ,k,

lim
xi→∞

v(xi , x ′
i )

xi
= qi uniformly for x ′

i ∈ωi .

It follows that there exist δ> 0 and a sufficiently large R0 > 0 such that, for each i = 1, . . . ,k, and
uniformly in x ′

i ∈ωi ,
v(xi , x ′

i ) ≥ xi (pi +δ) if xi > R0. (43)

Hence, for each i = 1, . . . ,k, all x = (xi , x ′
i ) ∈WεR0 ∩ (Gi ×ωi ) and uniformly for x ′

i ∈ωi ,

εv

(
εR0

ε
, x ′

i

)
= εv(R0, x⊥

i ) ≥ εR0(pi +δ). (44)

For each i = 1, . . . ,k, let φi be the restriction of φ on Gi , and set C0 = max1,...,k ‖φi ,xi xi ‖. Then,
since it is assumed that φ(0) = 0,

φi (εR0) ≤ εR0pi +C0ε
2R2

0 .

Using (44) we find that, for sufficiently small ε, every i = 1, . . . ,k and uniformly on x ′
i ∈ω,

εv

(
εR0

ε
, x ′

i

)
≥φ(εR0)+ εR0δ

2
. (45)

Next, for small ε and C1 = C + ‖Dv‖R0 + 1, C coming from (10), we consider the solution
ṽε ∈C 0.1(WR0 ∩Σ) of {

F (D2ṽε,εx, x) = εC1 in WR0 ∩Σ,

ṽε = v on ∂WR0 ∩Σ and ∂ṽε
∂n = 0 on WR0 ∩∂Σ,

(46)

which, in view of the properties of F , exists.
The comparison principle and classical arguments from the theory of nonlinear elliptic equa-

tions (see, for example, Caffarelli and Cabre [3]) yield C2 > 0, which depends on the ellipticity and
Lipschitz constants of F and the choice of C1 in (46), such that

0 ≤ ṽ − v ≤ εC2 on WR0 ∩Σ. (47)

We choose M sufficiently large so that, for some ρ ∈ (1,R0) and sufficiently small ε,

ṽ ≤ 0 in Wρ ∩Σ. (48)

Indeed, if L is the Lipshitz constant of v , for x ∈WR0 ∩Σ, we have

ṽ(x) ≤ v(x)+εC2 ≤−M +L|x|+εC2,

and, if M ∈ (L,LR0) and ε is sufficiently small, then (48) holds.
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Next define vε :Σε→R by

vε(x) =
{
εṽ( x

ε ) if x ∈Σ\WεR0 ∩Σ,

εv( x
ε ) otherwise,

(49)

and set
wε = min

[
vε, φ̃

]
. (50)

It turns out that, for ε small enough, wε is a super-solution of (6), and

lim
ε→0

sup
x∈G ,y∈Σε∩Bρ (0),|x−y |≤ε

(Wε(y)−φ(x)) = 0 for all ρ ∈ (0,R0]. (51)

With these two at hand we may conclude the proof of the theorem using the argument presented
earlier.

We return to the proofs of the two claims above. The second is a direct consequence of (45),
the definition of ṽ and (48).

The proof of the super-solution property is more complicated. In what follows, we argue as if
wε were smooth and leave it up to the reader to fill in the usual details for the justification in the
viscosity sense.

We first observe that, in view of (48) and (42), wε = vε in W ε
2

, while (45) and (49) imply that

wε = vε in Σ1 \WεR0 .
Next observe that (41) and (42) yield that, for ε small enough,

F
(
D2Φε, x,

x

ε

)
+Φε ≥ 0 in Σε \Wε and

∂Φε

∂n
= 0 on ∂Σε∩ (Σε \Wε), (52)

while vε is a supersolution of

F (D2vε, x)+ vε ≥ 0 in Σε∩WεR0 and
∂vε
∂n

= 0 on ∂Σε∩WεR0 . (53)

The first claim follows by an argument similar to the one at the beginning of the proof since it
involves only the equation satisfied on each Gi .

For (53), we first observe that the boundary condition is immediate from the analogous
property of ṽε, while arguing as if vε where smooth, we find that in WεR0

F
(
D2ṽε, x,

x

ε

)
+ ṽε = F

(
1

ε
D2ṽ

( x

ε

)
, x,

x

ε

)
+εṽ

( x

ε

)
.

Hence, in view of (5), we get

F
(
D2vε, x,

x

ε

)
+vε ≥ F

(
1

ε
D2ṽ

( x

ε

)
, x,

x

ε

)
+εṽ

( x

ε

)
−C = 1

ε

(
F

(
D2ṽ

( x

ε

)
, x,

x

ε

)
+ε2ṽ

( x

ε

)
−εC

)
. (54)

It follows from (54), always in WεR0 and for ε small, that

F
(
D2vε, x,

x

ε

)
+ vε ≥ 1

ε

(
F

(
D2ṽ

( x

ε

)
, x,

x

ε

)
+ε2ṽ

( x

ε

)
−ε(C +1+‖Dv‖)

)
≥ 0, (55)

the last inequality coming from (46). �
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