Comptes Rendus
Analyse harmonique
Fourier Quasicrystals with Unit Masses
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1207-1211.

The sum of δ-measures sitting at the points of a discrete set Λ forms a Fourier quasicrystal if and only if Λ is the zero set of an exponential polynomial with imaginary frequencies.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.142
Alexander Olevskii 1 ; Alexander Ulanovskii 2

1 School of Mathematics, Tel Aviv University, 69978 Ramat Aviv, Israel.
2 Stavanger University, 4036 Stavanger, Norway.
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1207_0,
     author = {Alexander Olevskii and Alexander Ulanovskii},
     title = {Fourier {Quasicrystals} with {Unit} {Masses}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1207--1211},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.142},
     language = {en},
}
TY  - JOUR
AU  - Alexander Olevskii
AU  - Alexander Ulanovskii
TI  - Fourier Quasicrystals with Unit Masses
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1207
EP  - 1211
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.142
LA  - en
ID  - CRMATH_2020__358_11-12_1207_0
ER  - 
%0 Journal Article
%A Alexander Olevskii
%A Alexander Ulanovskii
%T Fourier Quasicrystals with Unit Masses
%J Comptes Rendus. Mathématique
%D 2020
%P 1207-1211
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.142
%G en
%F CRMATH_2020__358_11-12_1207_0
Alexander Olevskii; Alexander Ulanovskii. Fourier Quasicrystals with Unit Masses. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1207-1211. doi : 10.5802/crmath.142. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.142/

[1] Mihail N. Kolountzakis Fourier pairs of discrete support with little structure, J. Fourier Anal. Appl., Volume 22 (2016) no. 1, pp. 1-5 | DOI | MR | Zbl

[2] Pavel Kurasov; Peter C. Sarnak Stable polynomials and crystalline measures, J. Math. Phys., Volume 61 (2020) no. 8, 083501, 13 pages | DOI | MR | Zbl

[3] Nir Lev; Alexander Olevskii Quasicrystals with discrete support and spectrum, Rev. Mat. Iberoam., Volume 32 (2016) no. 4, pp. 1341-1352 | MR | Zbl

[4] Boris Ya. Levin Lectures on Entire Fuctions, Translations of Mathematical Monographs, 150, American Mathematical Society, 1996 | Zbl

[5] Yves F. Meyer Quasicrystals, diophantine approximation and algebraic numbers, Beyond quasicrystals. Papers of the winter school, Les Houches, France, March 7-18, 1994, Springer, 1995, pp. 3-16 | DOI | Zbl

[6] Yves F. Meyer Measures with locally finite support and spectrum, Proc. Natl. Acad. Sci. USA, Volume 113 (2016) no. 12, pp. 3152-3158 | DOI | MR | Zbl

[7] Yves F. Meyer Measures with locally finite support and spectrum, Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 1025-1036 | DOI | MR | Zbl

[8] Yves F. Meyer Curved model sets and crystalline measures (2020) (to be published in Applied and Numerical Harmonic Analysis, Springer)

[9] Alexander Olevskii; Alexander Ulanovskii Fourier quasicrystals with unit masses (2020) (https://arxiv.org/abs/2009.12810)

[10] Alexander Olevskii; Alexander Ulanovskii A Simple Crystalline Measure (2020) (https://arxiv.org/abs/2006.12037)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Quasicrystals are sets of stable sampling

Basarab Matei; Yves Meyer

C. R. Math (2008)


Uniqueness sets for unbounded spectra

Alexander Olevskii; Alexander Ulanovskii

C. R. Math (2011)


Interpolation by functions with small spectra

Alexander Olevskii; Alexander Ulanovskii

C. R. Math (2007)