Comptes Rendus
Analyse et géométrie complexes
On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1213-1226.

In this paper we consider two functionals of the Fekete–Szegö type: Φ f (μ)=a 2 a 4 -μa 3 2 and Θ f (μ)=a 4 -μa 2 a 3 for analytic functions f(z)=z+a 2 z 2 +a 3 z 3 +..., zΔ, (Δ={z:|z|<1}) and for real numbers μ. For f which is univalent and convex in the direction of the imaginary axis, we find sharp bounds of the functionals Φ f (μ) and Θ f (μ). It is possible to transfer the results onto the class 𝒦 (i) of functions convex in the direction of the imaginary axis with real coefficients as well as onto the class 𝒯 of typically real functions. As corollaries, we obtain bounds of the second Hankel determinant in 𝒦 (i) and 𝒯.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.144
Classification : 30C50
Paweł Zaprawa 1

1 Lublin University of Technology, Department of Mathematics, Faculty of Mechanical Engineering, Nadbystrzycka 38D, 20-618, Lublin, Poland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_11-12_1213_0,
     author = {Pawe{\l} Zaprawa},
     title = {On the {Fekete{\textendash}Szeg\"o} type functionals for functions which are convex in the direction of the imaginary axis},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1213--1226},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {11-12},
     year = {2020},
     doi = {10.5802/crmath.144},
     language = {en},
}
TY  - JOUR
AU  - Paweł Zaprawa
TI  - On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1213
EP  - 1226
VL  - 358
IS  - 11-12
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.144
LA  - en
ID  - CRMATH_2020__358_11-12_1213_0
ER  - 
%0 Journal Article
%A Paweł Zaprawa
%T On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis
%J Comptes Rendus. Mathématique
%D 2020
%P 1213-1226
%V 358
%N 11-12
%I Académie des sciences, Paris
%R 10.5802/crmath.144
%G en
%F CRMATH_2020__358_11-12_1213_0
Paweł Zaprawa. On the Fekete–Szegö type functionals for functions which are convex in the direction of the imaginary axis. Comptes Rendus. Mathématique, Volume 358 (2020) no. 11-12, pp. 1213-1226. doi : 10.5802/crmath.144. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.144/

[1] Johnny E. Brown; Anna Tsao On the Zalcman conjecture for starlike and typically real functions, Math. Z., Volume 191 (1986) no. 3, pp. 467-474 | DOI | MR | Zbl

[2] Nak Eun Cho; Bogumiła Kowalczyk; On Sang Kwon; Adam Lecko; Young-Jong Sim Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., Volume 11 (2017) no. 2, pp. 429-439 | MR | Zbl

[3] Nak Eun Cho; Bogumiła Kowalczyk; On Sang Kwon; Adam Lecko; Young-Jong Sim The bounds of some determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc., Volume 41 (2018) no. 1, pp. 523-535 | MR | Zbl

[4] Jae Ho Choi; Yong Chan Kim; Toshiyuki Sugawa A general approach to the Fekete–Szegö problem, J. Math. Soc. Japan, Volume 59 (2007) no. 3, pp. 707-727 | DOI | Zbl

[5] Iason Efraimidis; Dragan Vukotić Applications of Livingston-type inequalities to the generalized Zalcman functional, Math. Nachr., Volume 291 (2018) no. 10, pp. 1502-1513 | DOI | MR | Zbl

[6] Michael Fekete; Gábor Szegö Eine Bemerkung uber ungerade schlichte Funktionen, J. Lond. Math. Soc., Volume 8 (1933) no. 2, pp. 85-89 | DOI | MR | Zbl

[7] Toshio Hayami; Shigeyoshi Owa Generalized Hankel determinant for certain classes, Int. J. Math. Anal., Ruse, Volume 4 (2010) no. 49-52, pp. 2573-2585 | MR | Zbl

[8] Walter Kurt Hayman On the second Hankel determinant of mean univalent functions, Proc. Lond. Math. Soc., Volume 18 (1968), pp. 77-94 | DOI | MR | Zbl

[9] Aini Janteng; Suzeini Abdul Halim; Maslina Darus Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse, Volume 1 (2007) no. 13-16, pp. 619-625 | MR | Zbl

[10] Wilfred Kaplan Close to convex schlicht functions, Mich. Math. J., Volume 1 (1952), pp. 169-185 | MR | Zbl

[11] Wolfram Koepf On the Fekete–Szegö problem for close-to-convex functions, Proc. Am. Math. Soc., Volume 101 (1987) no. 1, pp. 89-95 | Zbl

[12] Deekonda Vamshee Krishna; Thoutreddy Ramreddy Hankel determinant for starlike and convex functions of order alpha, Tbil. Math. J., Volume 5 (2012) no. 1, pp. 65-76 | DOI | MR | Zbl

[13] Samuel Krushkal Univalent functions and holomorphic motions, J. Anal. Math., Volume 66 (1995), pp. 253-275 | DOI | MR | Zbl

[14] Samuel Krushkal Proof of the Zalcman conjecture for initial coefficients, Georgian Math. J., Volume 17 (2010) no. 4, pp. 663-681 | MR | Zbl

[15] See Keong Lee; Vaithiyanathan Ravichandran; Shamani Supramaniam Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., Volume 2013 (2013), 281, 17 pages | MR | Zbl

[16] Liulan Li; Saminathan Ponnusamy On the generalized Zalcman functional λa n 2 -a 2n-1 in the close-to-convex family, Proc. Am. Math. Soc., Volume 145 (2017) no. 2, pp. 833-846 | MR | Zbl

[17] Richard J. Libera; Eligiusz J. Złotkiewicz Early coefficients of the inverse of a regular convex function, Proc. Am. Math. Soc., Volume 85 (1982) no. é, pp. 225-230 | DOI | MR | Zbl

[18] Wancang Ma The Zalcman conjecture for close-to-convex functions, Proc. Am. Math. Soc., Volume 104 (1988) no. 3, pp. 741-744 | MR | Zbl

[19] William Ma Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., Volume 234 (1999) no. 1, pp. 328-339 | MR | Zbl

[20] James W. Noonan; Derek Keith Thomas On the Hankel determinants of areally mean p-valent functions, Proc. Lond. Math. Soc., Volume 25 (1972), pp. 503-524 | DOI | MR | Zbl

[21] Khalida Inayat Noor On the Hankel determinant problem for strongly close-to-convex functions, J. Nat. Geom., Volume 11 (1997) no. 1, pp. 29-34 | MR | Zbl

[22] Rintaro Ohno; Toshiyuki Sugawa Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., Volume 58 (2018) no. 2, pp. 227-241 | DOI | MR | Zbl

[23] Christian Pommerenke On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | MR | Zbl

[24] Christian Pommerenke On the Hankel determinants of univalent functions, Mathematika, Volume 14 (1967), pp. 108-112 | DOI | MR | Zbl

[25] Dorina Răducanu; Paweł Zaprawa Second Hankel determinant for close-to-convex functions, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 10, pp. 1063-1071 | DOI | MR | Zbl

[26] Malcolm I. S. Robertson On the theory of univalent functions, Ann. Math., Volume 37 (1936) no. 2, pp. 374-408 | DOI | MR | Zbl

[27] Wimberley C. Royster; Michael Ziegler Univalent functions convex in one direction, Publ. Math., Volume 23 (1976) no. 3-4, pp. 340-345 | MR | Zbl

[28] Kataezyna Trabka-Wiȩcaław; Paweł Zaprawa; Magdalena Gregorczyk; Andrzej Rysak On the Fekete–Szegö type functionals for close-to-convex functions, Symmetry, Volume 11 (2019) no. 12, 1497, 17 pages | DOI

[29] Paweł Zaprawa Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016) no. 7, 3792367, 7 pages | MR | Zbl

[30] Paweł Zaprawa On the Fekete–Szegö type functionals for starlike and convex functions, Turk. J. Math., Volume 42 (2018) no. 2, pp. 537-547 | Zbl

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Second Hankel determinant for close-to-convex functions

Dorina Răducanu; Paweł Zaprawa

C. R. Math (2017)


Fekete–Szegö inequality for certain spiral-like functions

Allu Vasudevarao

C. R. Math (2016)


The Fekete–Szegö functional associated with k-th root transformation using quasi-subordination

Palpandy Gurusamy; Janusz Sokół; Srikandan Sivasubramanian

C. R. Math (2015)