logo CRAS
Comptes Rendus. Mathématique
Théorie des nombres
Harmonic number identities via polynomials with r-Lah coefficients
[Identités sur les nombres harmonique via des polynômes à coefficients r-Lah]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 535-550.

Dans cet article, des polynômes à coefficients faisant intervenir les nombres r-Lah sont utilisés pour établir plusieurs formules de sommation en fonction des coefficients binomiaux, des nombres de Stirling et des nombres harmoniques ou hyper-harmoniques. De plus, nous introduisons le nombre asymétrique-hyper-harmonique et nous étudions ses propriétés de base.

In this paper, polynomials whose coefficients involve r-Lah numbers are used to evaluate several summation formulae involving binomial coefficients, Stirling numbers, harmonic or hyperharmonic numbers. Moreover, skew-hyperharmonic number is introduced and its basic properties are investigated.

Reçu le : 2020-02-05
Révisé le : 2020-04-18
Accepté le : 2020-04-19
Publié le : 2020-09-14
DOI : https://doi.org/10.5802/crmath.53
Classification : 11B75,  11B68,  47E05,  11B73,  11B83
@article{CRMATH_2020__358_5_535_0,
     author = {Levent Karg\i n and M\"um\"un Can},
     title = {Harmonic number identities via polynomials with r-Lah coefficients},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {535--550},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.53},
     language = {en},
     url = {comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_5_535_0/}
}
Levent Kargın; Mümün Can. Harmonic number identities via polynomials with r-Lah coefficients. Comptes Rendus. Mathématique, Tome 358 (2020) no. 5, pp. 535-550. doi : 10.5802/crmath.53. https://comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_5_535_0/

[1] Rachid Ait-Amrane; Hacène Belbachir Non-integerness of class of hyperharmonic numbers, Ann. Math. Inform., Volume 37 (2010), pp. 7-11

[2] Rachid Ait-Amrane; Hacène Belbachir Are the hyperharmonics integral, A partial answer via the small intervals containing primes, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 3-4, pp. 115-117

[3] Hacène Belbachir; Amine Belkhir Cross recurrence relations for r-Lah numbers, Ars Comb., Volume 110 (2013), pp. 199-203

[4] Arthur T. Benjamin; David Gaebler; Robert Gaebler A combinatorial approach to hyperharmonic numbers, Integers, Volume 3 (2003), pp. 1-9

[5] Arthur T. Benjamin; Gregory O. Preston; Jennifer J. Quinn A Stirling encounter with harmonic numbers, Math. Mag., Volume 75 (2002) no. 2, pp. 95-103

[6] David H. Borwein; Jonathan M. Bailey; Roland Girgensohn Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc., Volume 38 (1995) no. 2, pp. 277-294

[7] Khristo N. Boyadzhiev A series transformation formula and related polynomials, Int. J. Math. Math. Sci., Volume 23 (2005), pp. 3849-3866

[8] Khristo N. Boyadzhiev Harmonic number identities via Euler’s transform, J. Integer Seq., Volume 12 (2009) no. 6, 09.6.1, 8 pages

[9] Khristo N. Boyadzhiev Series transformation formulas of Euler type, Hadamard product of series, and harmonic number identities, Indian J. Pure Appl. Math., Volume 42 (2011) no. 5, pp. 371-386

[10] Khristo N. Boyadzhiev Power series with skew-harmonic numbers, dilogarithms, and double integrals, Tatra Mt. Math. Publ., Volume 56 (2013), pp. 93-108

[11] Khristo N. Boyadzhiev Binomial transform and the backward difference, Adv. Appl. Discrete Math., Volume 13 (2014) no. 1, pp. 43-63

[12] Khristo N. Boyadzhiev Notes on the Binomial Transform. Theory and table with appendix on Stirling transform, World Scientific, 2018

[13] Khristo N. Boyadzhiev; Ayhan Dil Geometric polynomials: properties and applications to series with zeta values, Anal. Math., Volume 42 (2016) no. 3, pp. 203-224

[14] Andrei Z. Broder The r-Stirling numbers, Discrete Math., Volume 49 (1984), pp. 241-259

[15] Mümün Can; Muhammet Cihat Dağli Extended Bernoulli and Stirling matrices and related combinatorial identities, Linear Algebra Appl., Volume 444 (2014), pp. 114-131

[16] José Luis Cereceda An introduction to hyperharmonic numbers (classroom note), Int. J. Math. Educ. Sci. Technol., Volume 46 (2015) no. 3, pp. 461-469

[17] Junesang Choi Finite summation formulas involving binomial coefficients, harmonic numbers and generalized harmonic numbers, J. Inequal. Appl., Volume 1 (2013), 49

[18] Wenchang Chu Summation formulae involving harmonic numbers, Filomat, Volume 26 (2012) no. 1, pp. 143-152

[19] Wenchang Chu; De Donno Livia Hypergeometric series and harmonic number identities, Adv. Appl. Math., Volume 34 (2005) no. 1, pp. 123-137

[20] John H. Conway; Richard K. Guy The book of numbers, Springer, 1996

[21] Ayhan Dil; Khristo N. Boyadzhiev Euler sums of hyperharmonic numbers, J. Number Theory, Volume 147 (2015), pp. 490-498

[22] Ayhan Dil; Veli Kurt Polynomials related to harmonic numbers and evaluation of harmonic number series II, Appl. Anal. Discrete Math., Volume 5 (2011) no. 2, pp. 212-229

[23] Ayhan Dil; Veli Kurt Polynomials related to harmonic numbers and evaluation of harmonic number series I, Integers, Volume 12 (2012), a38, pp. 1-18

[24] Ayhan Dil; István Mező A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., Volume 206 (2008) no. 2, pp. 942-951

[25] Ayhan Dil; István Mező; Mehmet Cenkci Evaluation of Euler-like sums via Hurwitz zeta values, Turk. J. Math., Volume 41 (2017) no. 6, pp. 1640-1655

[26] Ayhan Dil; Erkan Muniroğlu Applications of derivative and difference operators on some sequences (2019) (https://arxiv.org/abs/1910.01876)

[27] Philippe Flajolet; Bruno Salvy Euler sums and contour integral representations, Exp. Math., Volume 7 (1998) no. 1, pp. 15-35

[28] Haydar Göral; Doğa Can Sertbaş Almost all hyperharmonic numbers are not integers, J. Number Theory, Volume 147 (2017), pp. 495-526

[29] Som Prakash Goyal; R. K. Laddha On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh, Volume 11 (1997) no. 2, pp. 99-108

[30] Bai-Ni Guo; Feng Qi Some integral representations and properties of Lah numbers, J. Algebra Number Theory Acad., Volume 4 (2014) no. 3, pp. 77-87

[31] Ken Kamano Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech., Volume 56 (2011) no. 2, pp. 11-15

[32] Levent Kargin Some formulae for products of geometric polynomials with applications, J. Integer Seq., Volume 20 (2017) no. 4, Article 17.4.4.

[33] Levent Kargin; Bayram Çekim Higher order generalized geometric polynomials, Turk. J. Math., Volume 42 (2018) no. 3, pp. 887-903

[34] Levent Kargin; Roberto B. Corcino Generalization of Mellin derivative and its applications, Integral Transforms Spec. Funct., Volume 27 (2016) no. 8, pp. 620-631

[35] Bernd C. Kellner Identities between polynomials related to Stirling and harmonic numbers, Integers, Volume 14 (2014), A54

[36] Peter M. Knopf The operator (xd dx) n and its application to series, Math. Mag., Volume 76 (2003) no. 5, pp. 364-371

[37] István Mező About the non-integer property of hyperharmonic numbers, Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math., Volume 50 (2007), pp. 13-20

[38] István Mező Analytic extension of hyperharmonic numbers, Online J. Anal. Comb., Volume 4 (2009), 1

[39] István Mező; Ayhan Dil Euler–Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math., Volume 7 (2009) no. 2, pp. 310-321

[40] István Mező; Ayhan Dil Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, Volume 130 (2010) no. 2, pp. 360-369

[41] Gábor Nyul; Gabriella Rácz The r-Lah numbers, Discrete Math., Volume 338 (2015) no. 10, pp. 1660-1666

[42] Peter Paule; Carsten Schneider Computer proofs of a new family of harmonic number identities, Adv. Appl. Math., Volume 31 (2003) no. 2, pp. 359-378

[43] Aleksandar Petojević A note about the Pochhammer symbol, Mathematica Moravica, Volume 12 (2008) no. 1, pp. 37-42

[44] R. Sita Rama Chandra Rao; A. Siva Rama Sarma Some identities involving the Riemann zeta function, Indian J. Pure Appl. Math., Volume 10 (1979), pp. 602-607

[45] József Sándor; Borislav Crstici Handbook of number theory. Vol II, Kluwer Academic Publishers, 2004

[46] Madjid Sebaoui; Diffalah Laissaoui; G. Guettai; Mourad Rahmani On s-Lah polynomials, Ars Comb., Volume 142 (2019), pp. 111-118

[47] Jürgen Spieß Some identities involving harmonic numbers, Math. Comput., Volume 55 (1990) no. 132, pp. 839-863

[48] Michael Z. Spivey Combinatorial sums and finite differences, Discrete Math., Volume 307 (2007) no. 24, pp. 3130-3146

[49] Leopold Theisinger Bemerkung über die harmonische Reihe, Monatsh. Math. Phys., Volume 26 (1915), pp. 132-134

[50] Ce Xu Euler sums of generalized hyperharmonic numbers, J. Korean Math. Soc., Volume 55 (2018) no. 5, pp. 1207-1220

[51] Qinglun Yan; Yaqing Liu Harmonic number identities involving telescoping method and derivative operator, Integral Transforms Spec. Funct., Volume 28 (2017) no. 10, pp. 703-709