logo CRAS
Comptes Rendus. Mathématique

Probabilités
The distribution of the maximum of an ARMA(1, 1) process
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 909-916.

We give the cumulative distribution function of M n =maxX 1 ,...,X n , the maximum of a sequence of n observations from an ARMA(1, 1) process. Solutions are first given in terms of repeated integrals and then for the case, where the underlying random variables are absolutely continuous. The distribution of M n is then given as a weighted sum of the nth powers of the eigenvalues of a non-symmetric Fredholm kernel. The weights are given in terms of the left and right eigenfunctions of the kernel.

These results are large deviations expansions for estimates, since the maximum need not be standardized to have a limit. In fact, such a limit need not exist.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.111
@article{CRMATH_2020__358_8_909_0,
     author = {Christopher S. Withers and Saralees Nadarajah},
     title = {The distribution of the maximum of an ARMA(1, 1) process},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {909--916},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.111},
     language = {en},
}
Christopher S. Withers; Saralees Nadarajah. The distribution of the maximum of an ARMA(1, 1) process. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 909-916. doi : 10.5802/crmath.111. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.111/

[1] Handbook of Mathematical Functions (Milton Abramowitz; Irene A. Stegun, eds.), Applied Mathematics Series, Volume 55, U.S. Department of Commerce, National Bureau of Standards, 1964 | Zbl 0171.38503

[2] Holger Rootzén The rate of convergence of extremes of stationary normal sequences, Adv. Appl. Probab., Volume 15 (1983), pp. 54-80 | Article | MR 688006 | Zbl 0508.60023

[3] Holger Rootzén Extreme value theory for moving average processes, Ann. Probab., Volume 14 (1986), pp. 612-652 | Article | MR 832027 | Zbl 0604.60019

[4] Christopher S. Withers; Saralees Nadarajah The distribution of the maximum of a first order autoregressive process: The continuous case, Metrika, Volume 74 (2011) no. 2, pp. 247-266 | Article | MR 2822160 | Zbl 1230.62124

[5] Christopher S. Withers; Saralees Nadarajah The distribution of the maximum of a first order moving average: The continuous case, Extremes, Volume 17 (2014) no. 1, pp. 1-24 | Article | MR 3179968 | Zbl 1305.62082

[6] Christopher S. Withers; Saralees Nadarajah The distribution of the maximum of a second order autoregressive process: The continuous case, 2020 (Technical Report, Department of Mathematics, University of Manchester, UK)