logo CRAS
Comptes Rendus. Mathématique

Théorie des nombres
A short proof of the canonical polynomial van der Waerden theorem
[Une démonstration courte du théorème de van der Waerden polynomial canonique]
Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959.

Nous présentons une nouvelle démonstration courte du théorème de van der Waerden polynomial canonique, récemment établi par Girão.

We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.101
Classification : 05D10,  11B30
@article{CRMATH_2020__358_8_957_0,
     author = {Jacob Fox and Yuval Wigderson and Yufei Zhao},
     title = {A short proof of the canonical polynomial van der Waerden theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {957--959},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {8},
     year = {2020},
     doi = {10.5802/crmath.101},
     language = {en},
}
Jacob Fox; Yuval Wigderson; Yufei Zhao. A short proof of the canonical polynomial van der Waerden theorem. Comptes Rendus. Mathématique, Tome 358 (2020) no. 8, pp. 957-959. doi : 10.5802/crmath.101. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.101/

[1] Vitaly Bergelson; Alexander Leibman Polynomial extensions of van der Waerden’s and Szemerédi’s theorems, J. Am. Math. Soc., Volume 9 (1996) no. 3, pp. 725-753 | Article | MR 1325795 | Zbl 0870.11015

[2] Pál Erdős; Ronald L. Graham Old and new problems and results in combinatorial number theory, Monographies de l’Enseignement Mathématique, Volume 28, L’Enseignement Mathématique, 1980, 128 pages | MR 592420 | Zbl 0434.10001

[3] Pál Erdős; Richard Rado A combinatorial theorem, J. Lond. Math. Soc., Volume 25 (1950), pp. 249-255 | Article | MR 37886 | Zbl 0038.15301

[4] António Girão A canonical polynomial van der Waerden’s theorem (https://arxiv.org/abs/2004.07766) | Zbl 2020

[5] Loo Keng Hua Introduction to number theory, Springer, 1982 | MR 665428 | Zbl 0483.10001

[6] Yuriĭ V. Linnik An elementary solution of the problem of Waring by Schnirelman’s method, Mat. Sb., N. Ser., Volume 12(54) (1943), pp. 225-230 | MR 0009777 | Zbl 0063.03580

[7] Endre Szemerédi On sets of integers containing no k elements in arithmetic progression, Acta Arith., Volume 27 (1975), pp. 199-245 | Article | MR 369312 | Zbl 0303.10056