logo CRAS
Comptes Rendus. Mathématique
Geometry
Quasihyperbolic mappings in length metric spaces
Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 237-247.

In this paper, we discuss the local properties of quasihyperbolic mappings in metric spaces, which are related to an open problem raised by Huang et al in 2016. Our result is a partial solution to this problem, which is also a generalization of the corresponding result obtained by Huang et al in 2016.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.154
Classification: 30L10,  53C23,  30L99,  30F10
Qingshan Zhou 1; Yaxiang Li 2; Yuehui He 3

1 School of Mathematics and Big Data, Foshan university, Foshan, Guangdong 528000, People’s Republic of China
2 Department of Mathematics, Hunan First Normal University, Changsha, Hunan 410205, People’s Republic of China
3 Department of Mathematics, Shantou University, Shantou, Guangdong 515063, People’s Republic of China
@article{CRMATH_2021__359_3_237_0,
     author = {Qingshan Zhou and Yaxiang Li and Yuehui He},
     title = {Quasihyperbolic mappings in length metric spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {237--247},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {3},
     year = {2021},
     doi = {10.5802/crmath.154},
     language = {en},
}
TY  - JOUR
TI  - Quasihyperbolic mappings in length metric spaces
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 237
EP  - 247
VL  - 359
IS  - 3
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.154
DO  - 10.5802/crmath.154
LA  - en
ID  - CRMATH_2021__359_3_237_0
ER  - 
%0 Journal Article
%T Quasihyperbolic mappings in length metric spaces
%J Comptes Rendus. Mathématique
%D 2021
%P 237-247
%V 359
%N 3
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.154
%R 10.5802/crmath.154
%G en
%F CRMATH_2021__359_3_237_0
Qingshan Zhou; Yaxiang Li; Yuehui He. Quasihyperbolic mappings in length metric spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 237-247. doi : 10.5802/crmath.154. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.154/

[1] Arne Beurling; Lars V. Ahlfors The boundary correspondence under quasiconformal mappings, Acta Math., Volume 96 (1956), pp. 125-142 | Article | MR: 86869 | Zbl: 0072.29602

[2] Manzi Huang; Yaxiang Li; Xiantao Wang; Qingshan Zhou Rough quasi-mappings and Gromov hyperbolic spaces (2021) (Submited)

[3] Manzi Huang; Antti Rasila; Xiantao Wang; Qingshan Zhou Semisolidity and locally weak quasi-symmetry of homeomorphisms in metric spaces, Stud. Math., Volume 242 (2018) no. 3, pp. 267-301 | Article | Zbl: 1421.30079

[4] Xiaojun Huang; Hongjun Liu; Jingsong Liu Local properties of quasi-hyperbolic mappings in metric spaces, Ann. Acad. Sci. Fenn., Math., Volume 41 (2016) no. 1, pp. 23-40 | Article | Zbl: 1334.30023

[5] Walter Rudin Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991 | Zbl: 0867.46001

[6] Karl Theodor Sturm On the geometry of metric measure spaces. I., Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | Article | MR: 2237206 | Zbl: 1105.53035

[7] Pekka Tukia; Jussi Väisälä Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn., Math., Volume 5 (1980), pp. 97-114 | Article | MR: 595180 | Zbl: 0403.54005

[8] Pekka Tukia; Jussi Väisälä Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn., Math., Volume 6 (1981), pp. 303-342 | Article | MR: 658932 | Zbl: 0448.30021

[9] Jussi Väisälä Free quasiconformality in Banach spaces. I, Ann. Acad. Sci. Fenn., Math., Volume 15 (1990) no. 2, pp. 355-379 | Article | MR: 1087342 | Zbl: 0696.30022

[10] Jussi Väisälä The free quasiworld, freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin, 1996) (Banach Center Publications), Volume 48, Polish Academy of Sciences, Institute of Mathematics, 1999, pp. 55-118 | MR: 1709974 | Zbl: 0934.30018

Cited by Sources: