logo CRAS
Comptes Rendus. Mathématique
Harmonic analysis
Lipschitz Conditions in Damek–Ricci Spaces
Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 675-685.

In this paper we extend classical Titchmarsh theorems on the Fourier–Helgason transform of Lipschitz functions to the setting of L p -space on Damek–Ricci spaces. As consequences, quantitative Riemann–Lebesgue estimates are obtained and an integrability result for the Fourier–Helgason transform is developed extending ideas used by Titchmarsh in the one dimensional setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.211
Classification: 43A30,  42B10
Salah El Ouadih 1; Radouan Daher 2

1 Laboratory MC, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakech, Morocco
2 Laboratory TAGMD, Faculty of Sciences Aïn Chock, Hassan II University, Casablanca, Morocco
@article{CRMATH_2021__359_6_675_0,
     author = {Salah El Ouadih and Radouan Daher},
     title = {Lipschitz {Conditions} in {Damek{\textendash}Ricci} {Spaces}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {675--685},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {6},
     year = {2021},
     doi = {10.5802/crmath.211},
     language = {en},
}
TY  - JOUR
TI  - Lipschitz Conditions in Damek–Ricci Spaces
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 675
EP  - 685
VL  - 359
IS  - 6
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.211
DO  - 10.5802/crmath.211
LA  - en
ID  - CRMATH_2021__359_6_675_0
ER  - 
%0 Journal Article
%T Lipschitz Conditions in Damek–Ricci Spaces
%J Comptes Rendus. Mathématique
%D 2021
%P 675-685
%V 359
%N 6
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.211
%R 10.5802/crmath.211
%G en
%F CRMATH_2021__359_6_675_0
Salah El Ouadih; Radouan Daher. Lipschitz Conditions in Damek–Ricci Spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 675-685. doi : 10.5802/crmath.211. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.211/

[1] Jean-Philippe Anker; Ewa Damek; Chokri Yacoub Spherical analysis on harmonic AN groups, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (1996) no. 4, pp. 643-679 | MR: 1469569 | Zbl: 0881.22008

[2] Francesca Astengo; Roberto Camporesi; Bianca Di Blasio The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Aust. Math. Soc., Volume 55 (1997) no. 3, pp. 405-424 | Article | MR: 1456271 | Zbl: 0894.43003

[3] Francesca Astengo; Bianca Di Blasio A Paley–Wiener theorem on NA harmonic spaces, Colloq. Math., Volume 80 (1999) no. 2, pp. 211-233 | Article | MR: 1703838 | Zbl: 0938.43003

[4] William O. Bray Growth and integrability of Fourier transforms on Euclidean space, J. Fourier Anal. Appl., Volume 20 (2014) no. 6, pp. 1234-1256 | Article | MR: 3278867 | Zbl: 1306.42011

[5] William O. Bray; Mark A. Pinsky Growth properties of Fourier transforms via moduli of continuity, J. Funct. Anal., Volume 255 (2008) no. 9, pp. 2265-2285 | Article | MR: 2473257 | Zbl: 1159.42006

[6] William O. Bray; Mark A. Pinsky Growth properties of the Fourier transform, Filomat, Volume 26 (2012) no. 4, pp. 755-760 | Article | MR: 3099016 | Zbl: 1289.42031

[7] Michael Cowling; Anthony Dooley; Adam Korányi; Fulvio Ricci An approach to symmetric spaces of rank one via groups of Heisenberg type, J. Geom. Anal., Volume 8 (1998) no. 2, pp. 199-237 | Article | MR: 1705176 | Zbl: 0966.53039

[8] Radouan Daher; Julio Delgado; Michael Ruzhansky Titchmarsh theorems for Fourier transforms of Hölder-Lipschitz functions on compact homogeneous manifolds, Monatsh. Math., Volume 189 (2019) no. 1, pp. 23-49 | Article | Zbl: 1418.43002

[9] Radouan Daher; Mohamed El Hamma An analog of Titchmarsh’s theorem for the generalized Dunkl transform, J. Pseudo-Differ. Oper. Appl., Volume 7 (2016) no. 1, pp. 59-65 | Article | MR: 3463538 | Zbl: 1338.47031

[10] Radouan Daher; Mohamed El Hamma; Salah El Ouadih An analog of Titchmarsh’s theorem for the generalized Fourier-Bessel Transform, Lobachevskii J. Math., Volume 37 (2016) no. 2, pp. 114-119 | Article | MR: 3505588

[11] Radouan Daher; Salah El Ouadih Best trigonometric approximation and Dini-Lipschitz classes, J. Pseudo-Differ. Oper. Appl., Volume 9 (2018) no. 4, pp. 903-912 | MR: 3863698 | Zbl: 1401.43002

[12] Ewa Damek; Fulvio Ricci Harmonic analysis on solvable extensions of H-type groups, J. Geom. Anal., Volume 2 (1992) no. 3, pp. 213-248 | Article | MR: 1164603 | Zbl: 0788.43008

[13] Mohamed El Hamma; Radouan Daher Dini Lipschitz functions for the Dunkl transform in the space L 2 ( d ,w k (x)dx), Rend. Circ. Mat. Palermo, Volume 64 (2015) no. 2, pp. 241-249 | MR: 3371408 | Zbl: 1320.42007

[14] Salah El Ouadih; Radouan Daher Characterization of Dini-Lipschitz functions for the Helgason Fourier transform on rank one symmetric spaces, Adv. Pure Appl. Math., Volume 7 (2016) no. 4, pp. 223-230 | MR: 3552463 | Zbl: 1348.42010

[15] Salah El Ouadih; Radouan Daher Jacobi–Dunkl Dini Lipschitz functions in the space L p (,A α,β (x)dx), Appl. Math. E-Notes, Volume 16 (2016), pp. 88-98 | MR: 3519702 | Zbl: 1355.42024

[16] Salah El Ouadih; Radouan Daher Lipschitz conditions for the generalized discrete Fourier transform associated with the Jacobi operator on [0,π], C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 3, pp. 318-324 | Article | MR: 3621262 | Zbl: 1362.42006

[17] Said Fahlaoui; Mustapha Boujeddaine; Mohammed El Kassimi Fourier transforms of Dini-Lipschitz functions on rank 1 symmetric spaces, Mediterr. J. Math., Volume 13 (2016) no. 6, pp. 4401-4411 | Article | MR: 3564511

[18] Mogens Flensted-Jensen; Tom H. Koornwinder Jacobi functions: the addition formula and the positivity of the dual convolution structure, Ark. Mat., Volume 17 (1979), pp. 139-151 | Article | MR: 543509 | Zbl: 0409.33009

[19] Tom H. Koornwinder Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions: Group theoretical aspects and applications (Mathematics and its Applications), Volume 18, Reidel Publishing Company, 1984, pp. 1-85 | Zbl: 0584.43010

[20] Pratyoosh Kumar; Swagato K. Ray; Rudra P. Sarkar The role of restriction theorems in harmonic analysis on harmonic NA groups, J. Funct. Anal., Volume 258 (2010) no. 7, pp. 2453-2482 | Article | MR: 2584750 | Zbl: 1206.43008

[21] Selma Negzaoui Lipschitz conditions in Laguerre hypergroup, Mediterr. J. Math., Volume 14 (2017) no. 5, 191, 12 pages | MR: 3686827 | Zbl: 1376.43008

[22] Sergei S. Platonov Approximation of functions in the L 2 Metric on noncompact rank 1 symmetric spaces, Algebra Anal., Volume 11 (1999) no. 1, pp. 244-270

[23] Sergei S. Platonov The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Math. J., Volume 46 (2005) no. 6, pp. 1108-1118 | Article | Zbl: 1150.42307

[24] Swagato K. Ray; Rudra P. Sarkar Fourier and Radon transform on harmonic NA groups, Trans. Am. Math. Soc., Volume 361 (2009) no. 8, pp. 4269-4297 | MR: 2500889 | Zbl: 1180.43005

[25] François Rouvière Espaces de Damek-Ricci, géométrie et analyse, Analyse sur les groupes de Lie et théorie des représentations (Séminaires et Congrès), Volume 7, Société Mathématique de France, 2003, pp. 45-100 | Zbl: 1045.53034

[26] Edward C. Titchmarsh Introduction to the theory of Fourier integrals, Clarendon Press, 1937 | Zbl: 0017.40404

[27] Mary Weiss; Antoni Zygmund A note on smooth functions, Indag. Math., Volume 62 (1959), pp. 52-58 | Article | Zbl: 0085.05701

[28] Mohammed S. Younis Fourier transforms in L p spaces (1970) (Ph. D. Thesis)

[29] Mohammed S. Younis Fourier transforms of Lipschitz functions on compact groups (1974) (Ph. D. Thesis) | MR: 2702872

[30] Mohammed S. Younis Fourier transforms of Dini-Lipschitz functions, Int. J. Math. Math. Sci., Volume 9 (1986) no. 2, pp. 301-312 | Article | MR: 848228 | Zbl: 0595.42006

Cited by Sources: