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Avant-propos / Foreword
Géométrie algébrique / Algebraic geometry

Géométrie algébrique complexe, en mémoire de Jean-Pierre Demailly
/ Complex algebraic geometry, in memory of Jean-Pierre Demailly

Géométrie algébrique complexe, en mémoire
de Jean-Pierre Demailly : Avant-propos

Complex algebraic geometry, in memory of Jean-Pierre
Demailly: Foreword

Claire Voisin a

a CNRS, Institut de Mathématiques de Jussieu-Paris rive gauche, France

The English version is available after the French version

Demailly est un spécialiste d’analyse et de géométrie algébrique complexes. Son œuvre s’ins-
crit dans une grande tradition mathématique, remontant à Riemann, qui étudie les variétés al-
gébriques sur le corps des nombres complexes sous l’angle de la géométrie différentielle com-
plexe et leur applique des méthodes qui peuvent être très analytiques. Par exemple, Hodge dé-
veloppa la théorie des formes harmoniques et l’appliqua aux variétés kählériennes compactes,
produisant le fameux théorème de décomposition de Hodge, qui reste de nos jours l’énoncé le
plus qualitatif dont on dispose concernant la topologie des variétés algébriques projectives sur
les nombres complexes. Il fut suivi de peu par Kodaira et son magnifique théorème de plonge-
ment, donnant la généralisation optimale du théorème de plongement de Riemann pour les sur-
faces de Riemann compactes. Demailly s’inscrit dans cette tradition et plusieurs de ses contribu-
tions majeures sont liées aux travaux de Kodaira qu’elles généralisent d’une façon spectaculaire
et extrêmement importante pour la géométrie algébrique moderne.

Demailly appartient aussi à l’école de Lelong, qui utilise l’analyse pour étudier des objets
beaucoup moins, voire pas du tout, réguliers, à savoir des courants au lieu de formes différen-
tielles. On sait que les fonctions holomorphes sur une variété complexe compacte connexe sont
constantes. On leur substitue donc des sections holomorphes de fibrés en droites holomorphes,
le quotient de deux telles sections fournissant une fonction méromorphe. C’est la « positivité » de
ce fibré en droites qui garantit l’existence de telles sections non identiquement nulles. Mais de
quelle notion de positivité s’agit-il ? Dans le théorème de Kodaira, la positivité est donnée par le
choix d’une métrique de classe C∞ sur le fibré en droites, telle que la forme de Chern, ou courbure
de la connexion de Chern associée, soit positive dans le sens le plus fort possible, c’est-à-dire soit
une forme de Kähler. La conclusion est alors que le fibré en droites est ample, ce qui est aussi la
plus forte notion de positivité pour un fibré en droites dont on dispose en géométrie algébrique.
Demailly a utilisé la théorie et l’analyse des courants de courbure associés à des métriques moins
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régulières et cela lui a permis d’introduire et caractériser des notions moins restrictives de po-
sitivité, telles que la pseudo-effectivité, pour les fibrés en droites. C’est via les estimées L2 à la
Hörmander qu’il caractérise la pseudo-effectivité. En combinant ce type de techniques avec la
résolution d’équation de Monge–Ampère à second membre singulier, il a également été un pion-
nier sur le problème de la grande amplitude effective, où l’on demande quelles puissances ten-
sorielles d’un fibré en droites ample possèdent suffisamment de sections pour fournir un plon-
gement dans l’espace projectif.

Une variété complexe ou algébrique lisse possède toujours au moins un fibré en droites
holomorphe, à savoir son fibré canonique (qui peut être trivial). La géométrie birationnelle dans
sa forme moderne étudie les propriétés du fibré canonique. C’est un fait remarquable que les
formes pluricanoniques des variétés projectives lisses sont contravariantes sous les applications
rationnelles dominantes entre variétés de même dimension. L’une des grandes conjectures du
domaine est qu’une variété projective lisse est uniréglée, c’est-à-dire couverte par une famille
de courbes rationnelles (ou surfaces de Riemann de genre 0), si et seulement si elle ne possède
aucune forme pluricanonique non nulle (le « seulement si » étant facile). Dans le magnifique
article The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira
dimension [1], Boucksom, Demailly, Păun et Peternell montrent qu’une variété projective lisse
est uniréglée si et seulement si son fibré canonique n’est pas pseudo-effectif, ce qui est une
condition plus forte que l’annulation des plurigenres, mais l’énoncé constitue néanmoins un pas
important vers cette conjecture. Cet article fournit aussi une caractérisation duale (dans l’esprit
de Moishezon–Nakai) extrêmement intéressante du cône des diviseurs pseudo-effectifs.

Une autre contribution majeure de Demailly est l’article Numerical characterization of the
Kähler cone of a compact Kähler manifold [2] écrit avec Păun, où ils démontrent un superbe
résultat généralisant le critère de Moishezon–Nakai pour l’amplitude des fibrés en droites. Le
critère de Moishezon–Nakai dit qu’un fibré en droites est ample s’il est de degré strictement
positif sur toutes les courbes contenues dans la variété et plus généralement, les puissances de
sa forme de courbure (ou première classe de Chern) sont d’intégrale strictement positive sur tout
fermé algébrique (ou analytique) de la variété. Le théorème de Demailly–Păun étend ce résultat
à la positivité des classes de formes fermées de type (1,1) sur une variété kählérienne compacte.
Dans ce cas, la variété peut ne contenir aucune sous-variété complexe propre, mais leur résultat
est que le cône des classes (1,1) positives est une composante connexe du cône déterminé par la
positivité de toutes ces intégrales.

Demailly est également un leader en analyse complexe et il fait partie des rares mathémati-
ciens dont l’œuvre a une grande influence scientifique dans plusieurs domaines. Son école, l’en-
semble de ses étudiants et leurs orientations mathématiques, témoignent largement de cette ou-
verture. La raison pour laquelle je n’ai mentionné ci-dessus que certains de ses résultats liés à
la géométrie complexe (algébrique ou kählérienne) est non seulement le fait que je ne suis pas
moi-même compétente dans la partie « analyse complexe », mais aussi que le présent volume
rassemble des articles relevant pour la plupart de la géométrie algébrique complexe. Un autre
volume en hommage à Demailly, d’inspiration plus analytique, sera publié au PAMQ.

Jean-Pierre Demailly était un grand scientifique inspiré à la fois par l’analyse et la géométrie.
Il laisse une œuvre magnifique d’un impact considérable. Ce volume qui lui est consacré célèbre
la partie de son œuvre touchant la géométrie algébrique et rend hommage à une personnalité
exceptionnelle à tous points de vue.

Claire Voisin
CNRS, IMJ-PRG
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English version

Demailly’s work is mainly devoted to complex analysis and algebraic geometry. It follows a
great mathematical tradition, going back to Riemann, where algebraic varieties over the field of
complex numbers are studied via complex differential geometry, using methods from analysis.
For example, Hodge developped the theory of harmonic forms and applied it to compact Kähler
manifolds, proving the famous Hodge decomposition theorem, which is still today the most
qualitative theorem concerning the topology of projective algebraic varieties over the field of
complex numbers. Soon after, Kodaira proved his magnificent embedding theorem, establishing
the optimal generalization in higher dimension of the Riemann embedding theorem for compact
Riemann surfaces. Demailly continues this tradition and several of his major contributions,
which are related to the work of Kodaira, generalize it in a spectacular and extremely important
way for modern algebraic geometry.

Demailly also belongs to the Lelong school, where analysis is used to study objects with
very low regularity, namely currents instead of differential forms. It is known that holomorphic
functions on a compact connected complex manifold are constant. We thus use as a substitute
holomorphic sections of holomorphic line bundles, the quotient of two such sections being a
meromorphic function. The “positivity” of this line bundle guarantees the existence of such
nonzero sections. The question is “which notion of positivity do we use ?”. In the Kodaira theorem,
positivity is given by the choice of a C∞ metric on the line bundle, such that the Chern form,
or curvature of the associated Chern connection, is positive in the strongest possible sense,
namely is a Kähler form. The conclusion then is that the line bundle is ample, which is also
the strongest positivity notion for a line bundle that appears in algebraic geometry. Demailly
used the theory and the analysis of curvature currents associated to less regular metrics and
this led him to introduce and characterize less restrictive notions of positivity, such as pseudo-
effectivity, for line bundles. He succeeded characterizing pseudo-effectivity via L2 estimates à
la Hörmander. Combining this type of technics with the resolution of singular Monge–Ampère
equations, he obtained pioneering results on the problem of effective very ampleness, where one
asks which powers of an ample line bundle have enough global sections to provide an embedding
in projective space.

A complex manifold or smooth algebraic variety always carries at least one holomorphic (al-
gebraic) line bundle, namely its canonical bundle (which can be trivial). Modern birational geo-
metry studies the properties of the canonical bundle. It is a remarkable fact that pluricanonical
forms on smooth projective varieties are contravariant under the dominant rational maps bet-
ween varieties of the same dimension. A big conjecture in the field is that a smooth projective
variety is uniruled, that is swept-out by a family of rational curves (or genus 0 Riemann surfaces),
if and only if it has no nonzero pluricanonical form (the “only if” being easy). In the superb article
The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimen-
sion [1], Boucksom, Demailly, Păun and Peternell prove that a smooth projective variety is uniru-
led if and only if its canonical bundle is not pseudo-effective, a condition which is stronger than
the vanishing of the plurigenera, but the statement is nevertheless an important step towards
the conjecture. This paper also provides a very interesting dual characterization (in the spirit of
Moishezon–Nakai) of the cone of pseudo-effective divisors.

Another major contribution of Demailly is the paper Numerical characterization of the Kähler
cone of a compact Kähler manifold [2], written with Păun, where they prove a superb result ge-
neralizing the Moishezon–Nakai criterion for the ampleness of the line bundle. The Moishezon–
Nakai criterion says that a line bundle an a smooth projective variety is ample if has strictly po-
sitive degree on all curves contained in the variety and more generally, the powers of its curva-
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ture form (or first Chern class) have strictly positive integral on any closed algebraic (or analytic)
subset of the variety. The Demailly–Păun theorem extends this result to the positivity of classes
of closed forms of type (1,1) on a compact Kähler manifold. In this case, the manifold may not
contain any proper closed analytic subset, but their result is that the cone of positive (1,1)-classes
is a connected component of the cone determined by the positivity of all these integrals.

Demailly is also a leader in complex analysis and he is one of the few mathematicians whose
work is greatly influential in several areas. His school, his students and their mathematical
orientations, illustrate this breadth. The reason why I mentioned above only his results related
to complex geometry (algebraic or Kähler) is not only the fact that I am not myself competent in
the analytic aspects of his work, but also that mots papers presented in this volume are related
to complex algebraic geometry. Another volume dedicated to Demailly, with more emphasis on
analysis, will be published in PAMQ.

Jean-Pierre Demailly was a great scientist inspired both by analysis and geometry. His mathe-
matical work is splendid and highly influential. This volume dedicated to him emphasizes the
algebrogeometric aspects of his work and honors an exceptional personality.

Claire Voisin
CNRS, IMJ-PRG
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Non-Archimedean Green’s functions and
Zariski decompositions

Fonctions de Green non-archimédiennes et
décompositions de Zariski

Sébastien Boucksom ∗,a andMattias Jonsson b
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b Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA
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To the memory of Jean-Pierre Demailly, with admiration

Abstract. We study the non-Archimedean Monge–Ampère equation on a smooth projective variety over a
discretely or trivially valued field. First, we give an example of a Green’s function, associated to a divisorial
valuation, which is not Q-PL (i.e. not a model function in the discretely valued case). Second, we produce
an example of a function whose Monge–Ampère measure is a finite atomic measure supported in a dual
complex, but which is not invariant under the retraction associated to any snc model. This answers a question
by Burgos Gil et al. in the negative. Our examples are based on geometric constructions by Cutkosky and
Lesieutre, and arise via base change from Green’s functions over a trivially valued field; this theory allows us
to efficiently encode the Zariski decomposition of a pseudoeffective numerical class.

Résumé. Nous étudions l’équation de Monge–Ampère non-archimédienne sur une variété projective lisse
sur un corps de valuation discrète ou triviale. Tout d’abord, nous donnons un exemple de fonction de Green,
associée à une valuation divisorielle, qui n’est pasQ-PL (i.e. pas une fonction modèle, dans le cas de valuation
discrète). Ensuite, nous produisons un exemple de fonction dont la mesure de Monge–Ampère est à support
dans un complexe dual, mais qui n’est invariante par la rétraction associée à aucun modele snc. Ceci répond
négativement à une question de Burgos Gil et al. Nos exemples sont basés sur des constructions géométriques
de Cutkosky et Lesieutre, et sont produits par changement de base à partir de fonctions de Green sur un corps
trivialement valué ; cette théorie nous permet d’encoder de façon efficace la décomposition de Zariski de
toute classe pseudo-effective.
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Manuscript received 31 March 2023, accepted 28 September 2023.
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Introduction

In the seminal paper [43], Yau studied the Monge–Ampère equation

(ω+ddcϕ)n =µ (MA)

on a compact n-dimensional Kähler manifold (X ,ω), where µ is a smooth, strictly positive
measure on X of mass

∫
ωn , and ϕ a smooth function on X such that the (1,1)-form ω+ddcϕ

is positive. Yau proved that there exists a smooth solution ϕ, unique up to a constant. If ω is a
rational class, say ω= c1(L) for an ample line bundle L, then ϕ can be viewed as a positive metric
on L, and (ω+ddcϕ)n its the curvature measure.

As observed by Kontsevich, Soibelman, and Tschinkel [31, 32], when studying degenerating
1-parameter families of Kähler manifolds, it can be fruitful to use non-Archimedean geometry in
the sense of Berkovich over the field C((ϖ)) of complex Laurent series. In this context, a Monge–
Ampère operator was introduced by Chambert–Loir [19], and a version of (MA) was solved by
the authors and Favre [11]; see below. Uniqueness of solutions was proved earlier by Yuan and
Zhang [44].

Now, the method in [11] is variational in nature, inspired by [4] in the complex case. It has the
advantage of being able to deal with more general measures µ, but the drawback of providing less
regularity information on the solution. In fact, [11] only gives a continuous solution, and is thus
closer in spirit to the work of Kołodziej [30] than to [43].

It is therefore interesting to ask whether we can say more about the regularity of ϕ in (MA), at
least for special measures µ. In the non-Archimedean setting, there are many possible regularity
notions; to describe the one we are focusing on, we first need to make the non-Archimedean
version of (MA) more precise, following [10, 11].

Let X be a smooth projective variety over K =C((ϖ)) of dimension n. Consider a simple normal
crossing (snc) model X of X , over the valuation ring K ◦ = C[[ϖ]]. The dual complex ∆X embeds
in the Berkovich analytification X an, and there is a continuous retraction pX : X an →∆X .

A semipositive closed (1,1)-form on X an in the sense of loc. cit. is represented by a nef relative
numerical class ω ∈ N1(X /SpecK ◦) for some snc model X . We assume that the image [ω] of ω
in N1(X ) is ample. In this case, there is a natural space CPSH(ω) = CPSH(X ,ω) of continuous ω-
plurisubharmonic (psh) functions, and a Monge–Ampère operator taking a functionϕ ∈ CPSH(ω)
to a positive Radon measureϕ→ (ω+ddcϕ)n on X an of mass [ω]n ; see also [20] for a local theory.
When [ω] is rational, so that [ω] = c1(L) for an ample (Q-)line bundle L on X , we can view any
ϕ ∈ CPSH(ω) as a semipositive continuous metric on Lan, with curvature measure (ω+ddcϕ)n .

As in [11], let us normalize the Monge–Ampère operator and write

MAω(ϕ) := 1
[ω]n (ω+ddcϕ)n .

The main result in [11] is that if µ is a Radon probability measure on X an supported in some
dual complex, then there exists ϕ ∈ CPSH(ω), unique up to an additive real constant, such that
MAω(ϕ) = µ. More precisely, this was proved assuming that X is defined over an algebraic
curve, an assumption that was later removed in [18]. Here we want to study whether for special
measures µ, the solution is regular in some sense.

We first consider the class of piecewise linear (PL) functions. A function ϕ ∈ C0(X an) is (Q-)PL
if it is associated to a vertical Q-divisor on some snc model, and PL functions are also known as
model functions. The set PL(X ) of PL functions is a dense Q-linear subspace of C0(X an), and it is
closed under taking finite maxima and minima.

If ϕ ∈ PL(X )∩CPSH(ω), then the measure µ = MAω(ϕ) is a rational divisorial measure, i.e.
a rational convex combination of Dirac masses at divisorial valuations. For example, when
[ω] = c1(L) is rational, the space PL(X )∩CPSH(ω) can be identified with the space of semipositive
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model metrics on Lan, represented by a nef model L of L, and MAω(ϕ) can be computed in terms
of intersection numbers of L .

Assuming ω rational, one may ask whether, conversely, the solution to MAω(ϕ) = µ, with µ a
rational divisorial measure, is necessarily PL. Here we focus on the case when µ = δx is a Dirac
measure, where x ∈ X div is a divisorial valuation. In this case, it was proved in [11] that the
solution ϕx ∈ CPSH(ω) to the Monge–Ampère equation

MAω(ϕx ) = δx , ϕx (x) = 0 (⋆)

is the Green’s function of x, given by ϕx = sup{ψ ∈ CPSH(ω) |ψ(x) ≤ 0}.

Theorem A. Assume that ω is a rational semipositive closed (1,1)-form with [ω] ample, and that
x ∈ X div is a divisorial valuation. Let ϕx ∈ CPSH(ω) be the Green’s function satisfying (⋆) above.
Then:

(i) in dimension 1, ϕx ∈ PL(X );
(ii) in dimension ≥ 2, it may happen that ϕx ̸∈ PL(X ).

Writing [ω] = c1(L), Theorem A says that the metric on Lan corresponding to ϕx is a model
metric in dimension 1, but not necessarily in dimension 2 and higher. This answers a question
in [11], see Remark 8.8 in loc. cit.

Here (i) is well known, for example from the work of Thuillier [42]; see Section 8.5. As for (ii),
we present one example where X is an abelian surface, and another one where X = P3; see
Examples 99 and 100.

We will discuss the structure of these examples shortly, but mention here that they are both
R-PL, i.e. they belong to the smallest R-linear subspace RPL(X ) of C0(X an) containing PL(X )
and stable under max and min. The question then arises whether also in higher dimension, the
solutionϕx to (⋆) is R-PL for any divisorial valuation x. While we don’t have a counterexample to
this exact question (withω rational, but see Example 67), we prove that the situation can be quite
complicated in dimensions three and higher.

Namely, let us say that a function ϕ ∈ C0(X an) is invariant under retraction if ϕ = ϕ ◦ pX for
some (and hence any sufficiently high) snc model X . For example, a function on X an is R-PL iff it
is invariant under retraction and its restriction to any dual complex ∆X is R-PL in the sense that
it is affine on the cells of some subdivision of ∆X into real simplices.

Ifϕ ∈ CPSH(ω) is invariant under retraction, sayϕ=ϕ◦pX , then the Monge–Ampère measure
MAω(ϕ) is supported in∆X . However, if µ is supported in∆X , then the solutionϕ to MAω(ϕ) =µ
may not satisfy ϕ=ϕ◦pX , see [25, Appendix A]. Still, one may ask whether ϕ is invariant under
retraction, that is, ϕ=ϕ◦pX ′ for any sufficiently high snc model X ′, see Question 2 in loc. cit.. A
version of this question (see Remark 77) in the context of Calabi–Yau varieties plays a key role in
the recent work of Yang Li [36], see also [1, 28, 37]. Our next result provides a negative answer in
general.

Theorem B. Let X = P3
K , with K = C((ϖ)), and let ω be the closed (1,1)-form associated to the

numerical class of O (1) onP3
K ◦ . Then there existsϕ ∈ CPSH(ω) such that MAω(ϕ) has finite support

in some dual complex, but ϕ is not invariant under retraction. In particular, ϕ ̸∈RPL(X ).

Let us now say more about the examples underlying Theorem B and Theorem A(ii). They all
arise in the isotrivial case, when the variety X over K is the base change of a smooth projective
variety Y over C, and the (1,1)-form ω is defined by the pullback of an ample numerical class
θ ∈ N1(Y ) to the trivial (snc) model YK ◦ of X = YK . In this case, we can draw on the global
pluripotential theory over a trivially valued field developed in [13], a theory which interacts
well with algebro-geometric notions such as diminished base loci and Zariski decompositions
of pseudoeffective classes.
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Specifically, given a smooth projective complex variety Y , and an ample numerical class
θ ∈ N1(Y ), we have a convex set CPSH(θ) = CPSH(Y ,θ) ⊂ C0(Y an) of continuous θ-psh functions,
where Y an now denotes the Berkovich analytification of Y with respect to the trivial absolute
value on C. A divisorial valuation on Y is of the form v = t ordE , where t ∈ Q≥0 and E ⊂ Y ′ is
a prime divisor on a smooth projective variety Y ′ with a proper birational morphism Y ′ → Y .
When instead t ∈ R≥0, we say that v is a real divisorial valuation. If Σ ⊂ Y an is a finite set of real
divisorial valuations, then we consider the Green’s function of Σ, defined as

ϕΣ := sup{ϕ ∈ CPSH(Y ,θ) |ϕ|Σ ≤ 0}.

By [13], ϕΣ ∈ CPSH(Y ,θ), and the Monge–Ampère measure of ϕΣ is supported in Σ.
The base change X = YC((ϖ)) → Y induces a surjective map π : X an → Y an, and this map admits

a canonical section σ : Y an → X an, called Gauss extension, and whose image consists of all C×-
invariant points in X an. For any ϕ ∈ CPSH(Y ,θ) we have π⋆ϕ ∈ CPSH(X ,ω), and

MAω(π⋆ϕ) =σ⋆MAθ(ϕ).

In particular, if v ∈ Y div, then π⋆ϕ{v} is the Green’s function for x := σ(v) ∈ X div. As both π⋆ and
σ⋆ preserve the classes of Q-PL and R-PL functions, we see that in order to prove Theorem A(ii),
it suffices to find a surface Y and v ∈ Y div, such that ϕv :=ϕ{v} is notQ-PL.

Further, to prove Theorem B, it suffices to find a finite set Σ of real divisorial valuations on
Y = P3

C
such that π⋆ϕΣ fails to be invariant under retraction. Indeed, the Gauss extension map

σ takes real divisorial valuations to Abhyankar valuations, and these are exactly the ones that
lie in a dual complex. We then use the following criterion. Define the center of any function
ϕ ∈ PSH(Y ,θ) by

ZY (ϕ) := cY {ϕ< supϕ},

where cY : Y an → Y is the center map, see Section 3. We show that if π⋆ϕ is invariant under
retraction, then ZY (ϕ) ⊂ Y is a strict Zariski closed subset, see Corollary 97. It therefore suffices
to find a Green’s function ϕΣ whose center is Zariski dense.

Our analysis of the Green’s functions ϕΣ is based on a relation between θ-psh functions and
families of b-divisors. Namely, we can pick a proper birational morphism ρ : Y ′ → Y , with Y ′

smooth, prime divisors Ei ⊂ Y ′, and ci ∈ R>0, such that Σ = {c−1
i ordEi }. If we set D := ∑

i c−1
i Ei ,

then we can express ϕΣ in terms of the b-divisorial Zariski decomposition of the numerical
class ρ⋆θ − λ[D], for λ ∈ (−∞,λpsef], where λpsef ∈ R is the largest λ such that this class is
pseudoeffective (psef), see Theorem 57. The analysis of the Zariski decomposition of a psef class
θ in terms of θ-psh functions is of independent interest.

Let us first consider the case of dimension two. The Zariski decomposition of ρ⋆θ−λD is then
an R-PL function of λ, and this implies that the Green’s function ϕΣ is R-PL. On the other hand,
ϕΣ need not be Q-PL. In fact, we prove in Theorem 60 that ϕΣ is Q-PL iff the pseudoeffective
threshold λpsef is a rational number. To prove Theorem A(ii), it therefore suffices to find a
divisorial valuation v on a surface Y such that λpsef is irrational, and such examples can be found
with Y an abelian surface, and v = ordE for a prime divisor E on Y .

Using a geometric construction by Cutkosky [21], we also give an example of a divisorial
valuation v on Y =P3 such thatϕv isR-PL but notQ-PL for θ = c1(O (1)), see Example 65. BeingR-
PL, this example is invariant under retraction. As explained above, in order to prove Theorem B,
it suffices to find Σ such that the center cY (ϕΣ) is a Zariski dense subset of Y . Using the notation
above, we show that the center contains the image on Y of the diminished base locus of the
pseudoeffective class ρ⋆θ−λpsef[D] on Y ′. We can then use a construction of Lesieutre [35], who
showed that if Y =P3, θ = c1(O (1)), and ρ : Y ′ → Y is the blowup at nine very general points, then
there exists an effective R-divisor D on Y ′ supported on the exceptional locus on ρ, such that the
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diminished base locus of ρ⋆θ−D is Zariski dense. If we write D = ∑9
i=1 ci Ei , then we can take

Σ= {c−1
i ordEi }.

Structure of the paper

The article is organized as follows. In Section 1 we recall some facts from birational geometry
and pluripotential theory over a trivially valued field. This is used in Section 2 to relate θ-psh
functions and suitable families of b-divisors, after which we study the center of a θ-psh function
in Section 3. In Section 4 we define the extremal function Vθ ∈ PSH(θ) associated to a psef class:
by evaluating this function at divisorial valuations we recover the minimal vanishing order of
θ along a valuation. The extremal function is also closely related to various notions of Zariski
decomposition of a psef class, as explored in Section 5. After all this, we are finally ready to study
Green’s functions in Section 6 and Section 7. Finally, in Section 8 and Section 9 we turn to the
discretely valued case and prove Theorems A and B.

Notation and conventions

A variety over a field F is a geometrically integral F -scheme of finite type. We use the abbrevia-
tions usc for “upper semicontinuous”, lsc for “lower semicontinuous”, and iff for “if and only if”.
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1. Preliminaries

Throughout the paper (except in Section 8) X denotes a smooth projective variety over an
algebraically closed field k of characteristic 0.

1.1. Positivity of numerical classes and base loci

We denote by N1(X ) the (finite dimensional) vector space of numerical equivalence classes
θ = [D] of R-divisors D on X . It contains the following convex cones, corresponding to various
positivity notions for numerical classes:

• the pseudoeffective cone Psef(X ), defined as the closed cone generated by all classes of
effective divisors;

• the big cone Big(X ), the interior of Psef(X );
• the nef cone Nef(X ), equal to the closed convex cone generated by all classes of basepoint

free line bundles;
• the ample cone Amp(X ), the interior of Nef(X );
• the movable cone Mov(X ), the closed convex cone generated by all classes of line bundles

with base locus of codimension at least 2.

These cones satisfy
Nef(X ) ⊂ Mov(X ) ⊂ Psef(X ),

where the first (resp. second) inclusion is an equality when dim X ≤ 2 (resp. dim X ≤ 1), but is in
general strict for dim X > 2 (resp. dim X > 1). We will make use of the following simple property:
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Lemma 1. If θ ∈ N1(X ) is movable, then θ|E ∈ N1(E) is pseudoeffective for any prime divisor E ⊂ X .

The asymptotic base locus B(D) ⊂ X of aQ-divisor D is defined as the base locus of OX (mD) for
any m ∈ Z>0 sufficiently divisible. The diminished (or restricted) base locus and the augmented
base locus of an R-divisor D are respectively defined as

B−(D) :=
⋃
A
B(D + A) and B+(D) :=

⋂
A
B(D − A),

where A ranges over all ample R-divisors such that D − A (resp. D + A) is a Q-divisor. Since
ampleness is a numerical property, these loci only depend on the numerical class θ = [D] ∈ N1(X ),
and will be denoted by B−(θ) ⊂B+(θ).

The augmented base locus B+(θ) is Zariski closed, and satisfies

θ ∈ Big(X ) ⇐⇒B+(θ) ̸= X and θ ∈ Amp(X ) ⇐⇒B+(θ) =;.

The diminished base locus satisfies

B−(θ) =
⋃

ε∈Q>0

B+(θ+εω) (1)

for any ω ∈ Amp(X ). It is thus an at most countable union of subvarieties, which is not Zariski
closed in general, and can even be Zariski dense (see [35]). We further have

θ ∈ Psef(X ) ⇐⇒B−(θ) ̸= X ;

θ ∈ Nef(X ) ⇐⇒B−(θ) =;;

θ ∈ Mov(X ) ⇐⇒ codimB−(θ) ≥ 2.

1.2. The Berkovich space

We use [13, §1] as a reference. The Berkovich space X an is defined as the Berkovich analytification
of X with respect to the trivial absolute value on k [3]. We view it as a compact (Hausdorff)
topological space, whose points are semivaluations, i.e. valuations v : k(Y )× → R for some
subvariety Y ⊂ X . We denote by vY ,triv ∈ X an the trivial valuation on k(Y ), and set vtriv := vX ,triv.
These trivial semivaluations are precisely the fixed points of the scaling action R>0 × X an → X an

given by (t , v) 7→ t v .
We denote X div ⊂ X an the (dense) subset of divisorial valuations, of the form v = t ordE with

t ∈ Q≥0 and E a prime divisor on a birational model π : Y → X (the case t = 0 corresponding
to v = vtriv, by convention). In the present work, where R-divisors arise naturally, it will be
convenient to allow t to be real, in which case we will say that v = t ordE is a real divisorial
valuation. We denote by

X div
R =R>0X div

the set of real divisorial valuations. It is contained in the space X lin ⊂ X an of valuations of linear
growth (see [17] and [13, §1.5]).

1.3. Rational and real piecewise linear functions

In [13], various classes of Q-PL functions on X an were introduced, and the purpose of what
follows is to discuss their R-PL counterparts.

First, any ideal b⊂OX defines a homogeneous function

log |b| : X an −→ [−∞,0]

such that log |b|(v) :=−v(b) for v ∈ X an.



Sébastien Boucksom and Mattias Jonsson 11

Second, any flag ideal a, i.e. a coherent fractional ideal sheaf on X ×A1 invariant under the
Gm-action onA1 and trivial on X ×Gm , defines a continuous function

ϕa : X an −→R

given by ϕa(v) =−σ(v)(a), where σ : X an → (X ×A1)an is the Gauss extension, defined as follows.
If v is a valuation on k(Y ) for some subvariety Y ⊂ X , then σ(v) is the unique valuation on
k(Y ×A1) = k(Y )(ϖ) with the following property: if f = ∑

j f jϖ
j ∈ k(Y )[ϖ], then σ(v)( f ) =

min j {v( f j )+ j }.
Concretely, any flag ideal can be written a = ∑

λ∈Zaλϖ−λ for a decreasing sequence of ideals
aλ ⊂OX such that aλ =OX for λ≪ 0 and aλ = 0 for λ≫ 0, and then ϕa = maxλ(log |aλ|+λ).

We denote by:

• PL+
hom(X ) the set ofQ+-linear combinations of functions of the form log |b| with b⊂OX a

nonzero ideal;
• PL+(X ) the set of functions ϕ ∈ C0(X an) of the form ϕ = maxi {ψi +λi } for a finite family
ψi ∈ PL+

hom(X ) and λi ∈Q; equivalently, functions of the form ϕ = 1
mϕa for a flag ideal a

and m ∈Z>0;
• PL(X ) the set of differences of functions in PL+(X ), called rational piecewise linear

functions (Q-PL functions for short).

The sets PL+
hom(X ) are stable under addition and max, while PL(X ) is a Q-vector space, stable

under max, and is dense in C0(X an).
As in [13, §3.1], we denote by PL(X )R the R-vector space generated by PL(X ). It is not stable

under max anymore; to remedy this, we further introduce:

• the set PL+(X )R of R+-linear combinations of functions in PL+(X );
• the set RPL+(X ) of finite maxima of functions in PL+(X )R;
• the set RPL(X ) of differences of functions in RPL+(X ); we call its elements real piecewise

linear functions (R-PL functions for short).

As one immediately sees, the sets PL+(X )R andRPL+(X ) are convex cones in C0(X an), andRPL(X )
is thus an R-vector space. Further, RPL+(X ), and hence RPL(X ), are clearly stable under max.
Thus RPL(X ) is the smallest R-linear subspace of C0(X an) that is stable under max and contains
PL(X ).

Finally, introduce the convex cone PL+
hom(X )R of R+-linear combinations of functions in

PL+
hom(X ) (this is again not stable under max anymore). We then have:

Lemma 2. A function ϕ ∈ C0(X an) lies in RPL+(X ) iff ϕ = maxi {ψi + λi } for a finite family
ψi ∈ PL+

hom(X )R and λi ∈R.

Proof. Since any function in RPL+(X ) is a finite max of functions ϕ ∈ PL+(X )R, it suffices to
show that ϕ is of the desired form. Write ϕ = ∑r

i=1 tiϕi with ti ∈ R>0 and ϕi ∈ PL+(X ), i.e.
ϕi = max j {ψi j +λi j } with ψi j ∈ PL+

hom(X ) and λi j ∈Q. Then

ϕ= max
j1,..., jr

r∑
i=1

ti
(
ψi ji +λi ji

)
.

Since each
∑

i tiψi ji lies in PL+
hom(X )R, this shows that ϕ is of the desired form.

Conversely, assume ϕ= maxi {ψi +λi } for a finite family ψi ∈ PL+
hom(X )R and λi ∈ R. For each

i , write ψi =
∑

j ti jψi j with ψi j ∈ PL+
hom(X ) ≤ 0. Pick v ∈ X an and i such that ϕ(v) =ψi (v)+λi .

Since ϕ is bounded, we can find c ∈Q such that ψi j (v) ≥ c for all j . This shows that ϕ= maxi ϕi

with ϕi := ∑
j ti j max{ψi j ,c}+λi . For all i , j , max{ψi j ,c} lies in PL+(X ), thus ϕi ∈ PL+(X )R, and

hence ϕ ∈RPL+(X ). □
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1.4. Homogeneous functions vs. b-divisors

We use [7, §1] and [13, §6.4] as references for what follows. Recall that

• a (real) b-divisor over X is a collection B = (BY ) of R-divisors on all (smooth) birational
models Y → X , compatible under push-forward as cycles, i.e. an element of the R-vector
space

Z1
b(X )R := lim←−−

Y

Z1(Y )R;

• a b-divisor B = (BY ) is effective if BY is effective for all Y ; if B ,B ′ are b-divisors, then we
write B ≤ B ′ iff B ′−B is effective;

• a b-divisor B ∈ Z1
b(X )R is said to be R-Cartier if there exists a model Y , called a determi-

nation of B , such that BY ′ is the pullback of BY for all higher birational models Y ′; thus
the space of R-Cartier b-divisors is given by

Carb(X )R := lim−−→
Y

Z1(Y )R.

Example 3. Any R-divisor D on a model Y → X determines an R-Cartier b-divisor D ∈ Carb(X )R,
obtained by pulling back D to all higher models, and any R-Cartier b-divisor is of this form.

For any B ∈ Z1
b(X )R and v ∈ X div, we define v(B) ∈ R as follows: pick a prime divisor E on a

birational model Y → X and t ∈Q≥0 such that v = t ordE , and set

v(B) := t ordE (BY ).

This is independent of the choices made, and the function ψB : X div →R defined by

ψB (v) := v(B)

is homogeneous (with respect to the scaling action ofQ>0).

Definition 4. We say that a homogeneous functionψ : X div →R is of divisorial type if ψ(ordE ) = 0
for all but finitely many prime divisors E ⊂ X .

The next result is straightforward:

Lemma 5. The map B 7→ψB sets up a vector space isomorphism between Z1
b(X )R and the space of

homogeneous functions of divisorial type on X div. Moreover, B ∈ Z1
b(X )R is effective iffψB ≥ 0.

We endow Z1
b(X )R with the topology of pointwise convergence on X div. If Ω is a topological

space, then a map f : Ω→ Z1
b(X )R is thus continuous iff v ◦ f : Ω→R is continuous for all v ∈ X div.

We will also say that f : Ω→ Z1
b(X )R is lsc (resp. usc) iff v◦ f : Ω→R is lsc (resp. usc) for all v ∈ X div.

If Ω is a convex subset of a real vector space, then we say that f : Ω→ Z1
b(X )R is convex if v ◦ f

is convex for all v ∈ X div. This amounts to f ((1− t )x0 + t x1) ≤ (1− t ) f (x0)+ t f (x1) for x0, x1 ∈Ω,
0 ≤ t ≤ 1. We say that f is concave if − f is convex.

Finally, if Ω ⊂ R is an interval, then f : Ω→ Z1
b(X )R is increasing (resp. decreasing) if v ◦ f is

increasing (resp. decreasing) for each v ∈ X div.
Next we will generalize [13, Theorem 6.32] to real coefficients.

Definition 6. We denote by Car+b (X )R the convex cone of divisors B ∈ Carb(X )R that are antieffec-
tive and relatively semiample over X . We also set Car+b (X )Q := Carb(X )Q∩Car+b (X )R.

Proposition 7. The map B 7→ ψB induces an isomorphism between Carb(X )R and the R-vector
space generated by (the restrictions to X div of) all functions log |b| with b ⊂ OX a nonzero ideal.
This isomorphism restricts to a bijection

Car+b (X )R
∼−→ PL+

hom(X )R.
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Proof. The first point is a consequence of [13, Theorem 6.32], which also yields

Car+b (X )Q
∼−→ PL+

hom(X ).

Since the right-hand side generates the convex cone PL+
hom(X )R, it suffices to show that the

convex cone of antieffective and relatively semiample divisors in Carb(X )R is generated by
antieffective and semiample divisors in Carb(X )Q. By definition of a relatively semiample R-
Cartier b-divisor, we have B = ∑

i ti Bi with ti > 0 and Bi ∈ Carb(X )Q relatively semiample. By
the Negativity Lemma (see [7, Proposition 2.12]), B ′

i := Bi −Bi ,X is antieffective, and still relatively
semiample. Denoting by BX = −∑

α cαEα the irreducible decomposition of the antieffective R-
divisor BX , we infer

B =
∑

i
ti B ′

i +
∑
α

cα(−Eα)

where −Eα ∈ Carb(X )Q is antieffective and relatively semiample. The result follows. □

1.5. Numerical b-divisor classes

The space of numerical b-divisor classes is defined as

N1
b(X ) := lim←−−

Y

N1(Y ),

equipped with the inverse limit topology (each finite dimensional R-vector space N1(Y ) being
endowed with its canonical topology).

Any b-divisor defines a numerical b-divisor class. This yields a natural quotient map

Z1
b(X )R −→ N1

b(X ) B 7−→ [B ].

One should be wary of the fact this map is not continuous with respect to the topology of
pointwise convergence of Z1

b(X )R. However, we observe:

Lemma 8. For any finite set E of prime divisors on X , the quotient map B 7→ [B ] is continuous on
the subspace Z1

b(X )R,E of b-divisors B such that BX is supported by E .

Proof. For any model Y → X , each BY with B ∈ Z1
b(X )R,E lives in the finite dimensional vector

space generated by the strict transforms of the elements of E and the π-exceptional prime
divisors. Thus B 7→ [BY ] ∈ N1(Y ) is continuous on Z1

b(X )R,E , and the result follows. □
The set of numerical classes of R-Cartier b-divisors can be identified with the direct limit

lim−−→
Y

N1(Y ) ⊂ N1
b(X ).

In particular, any numerical class θ ∈ N1(X ) defines a numerical b-divisor class θ = (θY )Y ∈
N1

b(X ), where θY is the pullback of θ to Y .

Definition 9. The cone of nef b-divisor classes

Nefb(X ) ⊂ N1
b(X )

is defined as the closed convex cone generated by all classes of nef R-Cartier b-divisors.

Here an R-Cartier b-divisor B is said to be nef if BY is nef for some (hence any) determination
Y of B .

The following characterization is essentially formal (see [7, Lemma 2.10]).

Lemma 10. A b-divisor B ∈ Z1
b(X )R is nef iff BY is movable for all birational models Y → X . In

other words, Nefb(X ) = lim←−−Y
Mov(Y ).

We finally record the following version of the Negativity Lemma (see [7, Proposition 2.12]).

Lemma 11. If B ∈ Z1
b(X )R is nef, then B ≤ BY for any birational model Y → X .
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1.6. Plurisubharmonic functions

We use [13, §4] as a reference. Given aQ-line bundle L ∈ Pic(X )Q and a numerical class θ ∈ N1(X ),
we denote by

• H gf(L) = H
gf
Q

(L) the set of generically finite Fubini–Study functions for L, i.e. functions
ϕ : X an →R∪ {−∞} of the form

ϕ= m−1 max
i

{log |si |+λi },

where m ∈Z>0 is sufficiently divisible, (si ) is a (nonempty) finite set of nonzero sections
of mL, and λi ∈Q;

• Hhom(L) ⊂ H gf(L) the set of homogeneous Fubini–Study functions, for which the λi can
be chosen to be 0;

• PSH(θ) the set of θ-psh functions ϕ : X an → R∪ {−∞}, ϕ ̸≡ −∞, obtained as limits of
decreasing nets (ϕi ) of generically finite Fubini–Study functions ϕi for Q-line bundles
Li such that c1(Li ) → θ in N1(X ). We also write PSH(L) := PSH(c1(L));

• CPSH(θ) ⊂ PSH(θ) the subset of continuous θ-psh functions;
• PSHhom(θ) ⊂ PSH(θ) the subset of homogeneous θ-psh functions, that is, functions
ϕ ∈ PSH(θ) such that ϕ(t v) = tϕ(v) for v ∈ X an and t ∈R>0.

All functions in PSH(θ) are finite valued on the set X div ⊂ X an of divisorial valuations, and we
endow PSH(θ) with the topology of pointwise convergence on X div. For all ϕ,ψ ∈ PSH(θ), we
further have

ϕ≤ψ on X div ⇐⇒ϕ≤ψ on X an.

In particular, the topology of PSH(θ) is Hausdorff. The set of θ-psh functions is preserved by the
action of R>0 given by (t ,ϕ) 7→ t ·ϕ, where (t ·ϕ)(v) := tϕ(t−1v).

Lemma 12. For any θ ∈ N1(X ) we have:

(i) PSH(θ) ̸= ;⇒ θ ∈ Psef(X );
(ii) 0 ∈ PSH(θ) ⇔ θ ∈ Nef(X );

(iii) θ ∈ Big(X ) ⇒ PSH(θ) ̸= ;.

As we shall see in Proposition 27, (i) is in fact an equivalence, rendering (iii) redundant.

Proof. For (i) and (ii) see [13, (4.1), (4.3)]. If θ is big, we find a big Q-line bundle L such that
θ− c1(L) is nef. Then PSH(θ) ⊃ PSH(L) ⊃H gf(L) ̸= ;, which proves (iii). □

Example 13. For any effective R-divisor D , ψD := ψD (see Lemma 5) satisfies −ψD ∈
PSHhom([D]).

Our assumption that X is smooth and k is of characteristic zero implies that the envelope
property holds for any class θ ∈ N1(X ), see [16, Theorem A]. This means that if (ϕα)α is any family
in PSH(θ) that is uniformly bounded above, and ϕ := supαϕα, then the usc regularization ϕ⋆,
given by ϕ⋆(x) = limsupy→x ϕ(y), is θ-psh.

The envelope property has many favorable consequences, as discussed in [13, §5]. For
example, for any birational model π : Y → X and any θ ∈ N1(X ) we have

PSH(π⋆θ) =π⋆PSH(θ), (2)

see [13, Lemma 5.13].
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1.7. The homogeneous decomposition of a psh function

We refer to [13, §6.3] for details on what follows. Fix θ ∈ N1(X ). For any ϕ ∈ PSH(θ) and λ≤ supϕ,
setting

ϕ̂λ := inf
t>0

{t ·ϕ− tλ} (3)

defines a homogeneous θ-psh function ϕ̂λ ∈ PSHhom(θ). The family (ϕ̂λ)λ≤supϕ is further
concave, decreasing, and continuous for the topology of PSHhom(θ) (i.e. pointwise convergence
on X div), and it gives rise to the homogeneous decomposition

ϕ= sup
λ≤supϕ

{ϕ̂λ+λ}. (4)

For λ = supϕ = ϕ(vtriv), the function ϕ̂max := ϕ̂supϕ computes the directional derivatives of ϕ at
vtriv, i.e.

ϕ̂max(v) = lim
t→0+

ϕ(t v)−ϕ(vtriv)

t
(5)

for v ∈ X an. The limit exists as the function t 7→ϕ(t v) on (0,∞) is convex and decreasing, see [13,
Proposition 4.12].

Example 14. Assume ϕ = ϕa for a flag ideal a = ∑
λ∈Zaλϖ−λ on X ×A1. Then ϕ̂max = log |aλmax |

where λmax := max{λ ∈Z | aλ ̸= 0} (see [13, Example 6.28]).

2. Psh functions and families of b-divisors

We work with a fixed numerical class θ ∈ N1(X ).

2.1. Homogeneous psh functions and b-divisors

Recall that a function ψ ∈ PSHhom(θ) is uniquely determined by its values on X div. We say that
ψ is of divisorial type if its restriction to X div is of divisorial type, that is, ψ(ordE ) = 0 for all but
finitely many prime divisors E ⊂ X .

Slightly generalizing [13, Theorem 6.40], we show:

Proposition 15. The map B 7→ψB in Section 1.4 sets up a 1–1 correspondence between:

(i) the set of b-divisors B ∈ Z1
b(X )R such that B ≤ 0 and θ+ [B ] ∈ N1

b(X ) is nef;
(ii) the set of θ-psh homogeneous functions ψ ∈ PSHhom(θ) of divisorial type.

Proof. Pick B as in (i). On the one hand, ψBX
∈ PSHhom(−BX ), see Example 13. On the other

hand, since θ + [B ] = (θ+ [BX ]) + ([B ] − [BX ]) is nef, it follows from [13, Theorem 6.40] that
ψB−BX

=ψB −ψBX
lies in PSHhom(θ+BX ). Thus

ψB ∈ PSH(θ+BX )+PSH(−BX ) ⊂ PSH(θ).

Conversely, pick ψ as in (ii), so that ψ =ψB with 0 ≥ B ∈ Z1
b(X )R. By [13, Corollary 6.17], we can

write ψ as the pointwise limit of a decreasing net (ψi ) such that ψi ∈Hhom(Li ) with Li ∈ Pic(X )Q
and limi c1(Li ) = θ. Then ψi = ψBi for a unique Cartier b-divisor 0 ≥ Bi ∈ Carb(X )Q such that
Li + Bi is semiample (see [13, Lemma 6.34]), and hence c1(Li ) + [Bi ] ∈ N1

b(X ) is nef. Further,
Bi ↘ B in Z1

b(X )R, and hence [Bi ] → [B ] in N1
b(X ) (see Lemma 8). Since c1(Li )+ [Bi ] is nef for all i ,

we conclude, as desired, that θ+ [B ] is nef. □
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2.2. Rees valuations

In order to formulate a version of Proposition 15 for general θ-psh functions, the following notion
will be useful.

Definition 16. Given any effective R-divisor D on X with irreducible decomposition D =∑
α cαEα

on X , we denote by ΓD ⊂ X div
R

the set of Rees valuations of D, defined as the real divisorial
valuations vα := c−1

α ordEα .

Note that vα(D) = 1 for all α. We can now state a variant of [13, Theorem 6.21]:

Proposition 17. Pick ψ ∈ PSHhom(θ), and an effective R-divisor D on X . Then

max
ΓD

ψ≤−1 ⇐⇒ψ+ψD ∈ PSHhom(θ−D).

Recall that 0 ≥−ψD ∈ PSHhom([D]).

Proof. If ψ+ψD ∈ PSHhom(θ−D), then ψ ≤ −ψD , and hence maxΓψ ≤ −1, since ψD ≡ 1 on ΓD .
Conversely, assume maxΓD ψ ≤ −1. Consider first the case where θ = c1(L) for a Q-line bundle
and ψ ∈Hhom(L). For any m sufficiently divisible we thus have ψ= 1

m maxi log |si | for a finite set
of nonzero section si ∈ H0(X ,mL). Using the notation of Definition 16, we get for all i and all α

c−1
α ordEα (si ) =− log |si |(vα) ≥ m,

and hence ordEα (si ) ≥ ⌈mcα⌉. This implies si = s′i sDm for some s′i ∈ H0(X ,m(L−Dm)), where

Dm := m−1⌈mD⌉ =
∑
α

m−1⌈mcα⌉Eα

and sDm ∈ H0(X ,Dm) is the canonical section. Since ψDm =− log |sDm |, we infer

ψ+ψDm = 1
m max

i
log |s′i | ∈Hhom(L−Dm) ⊂ PSHhom(L−Dm).

When m → ∞, ψDm decreases to ψD , and [Dm] → [D] in N1(X ), and we infer ψ +ψD ∈
PSHhom(L−D).

In the general case, ψ can be written as the pointwise limit of a decreasing net ψi ∈Hhom(Li ),
where Li ∈ Pic(X )Q satisfies that c1(Li )−θ is nef and tends to 0 (see [13, Corollary 6.17]). Pick
t ∈ (0,1). For all i large enough and all α, we then have c−1

α ψi (ordEα ) ≤−t , and hence

ψi + tψD ∈Hhom(Li − tD) ⊂ PSHhom(Li − tD)

by the previous step of the proof. Since ψi + tψD decreases to ψ+ tψD and Li − tD → θ− tD
in N1(X ), we infer ψ+ tψD ∈ PSHhom(θ − tD) (see [13, Theorem 4.5]). Pick any ω ∈ Amp(X ).
Thenψ+ tψD ∈ PSHhom(θ−D+ω) for all t ∈ (0,1) close to 1, so by the envelope property (see [13,
Theorem 5.11]), we getψ+ψD ∈ PSHhom(θ−D+ω). As this is true for allω ∈ Amp(X ), we conclude
ψ+ψD ∈ PSHhom(θ−D) (again see [13, Theorem 4.5]). □

2.3. Psh functions and families of b-divisors

We now extend Proposition 15 to general θ-psh functions. We say that ϕ ∈ PSH(θ) is of divisorial
type if the homogeneous psh function ϕ̂max ∈ PSHhom(θ) is of divisorial type, see Section 1.7.
By (5), this is equivalent to ϕ(ordE ) = supϕ for all but finitely many prime divisors E ⊂ X .

Theorem 18. There is a 1–1 correspondence between:

(i) the set of θ-psh functions ϕ ∈ PSH(θ) of divisorial type;
(ii) the set of continuous, concave, decreasing families (Bλ)λ≤λmax of b-divisors, for some

λmax ∈R, such that Bλ ≤ 0 and θ+ [Bλ] ∈ N1
b(X ) is nef for all λ≤λmax.
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The correspondence is given by

ϕ= sup
λ≤λmax

{ψBλ +λ}, ψBλ = ϕ̂λ. (6)

In particular, we have λmax = supϕ and ϕ̂max =ψBλmax
.

Proof. Pick a family (Bλ)λ≤λmax as in (ii). By Proposition 15, setting ψλ :=ψBλ defines a contin-
uous, concave and decreasing family (ψλ)λ≤λmax in PSHhom(θ). Since θ has the envelope prop-
erty, the usc upper envelope ϕ := sup⋆

λ≤λmax
(ψλ +λ) lies in PSH(θ). On X div, ϕ coincides with

supλ≤λmax
(ψλ +λ) (see [13, Theorem 5.6]). By Legendre duality, we further have ψλ = ϕ̂λ for

λ < λmax (see [13, Theorem 6.24]), and hence also for λ = λmax, by continuity of both sides on
(−∞,λmax].

Conversely, pick ϕ as in (i), so that ϕ̂max ∈ PSHhom(θ) is of divisorial type. For each λ ≤ supϕ
we then have 0 ≥ ϕ̂λ ≥ ϕ̂max, which shows that ϕ̂λ ∈ PSHhom(θ) is also of divisorial type. By
Proposition 15, we thus have ϕ̂λ = ψBλ for a b-divisor Bλ ≤ 0 such that θ+ [Bλ] is nef, and the
family (Bλ)λ≤supϕ is concave, decreasing and continuous, since so is (ϕ̂λ)λ≤supϕ. □

Remark 19. Not every θ-psh function is of divisorial type. For example, assume dim X = 1,
and pick a sequence (p j ) j∈N of closed points on X , with corresponding ideals m j ⊂ OX , and
a sequence ε j in R>0 such that

∑
j ε j ≤ degθ. Then ϕ := ∑

j ε j log |m j | ∈ PSH(θ), and −ε j =
ϕ(ordp j ) < supϕ= 0 for all j (see [13, Example 4.13]).

3. The center of a θ-psh function

In this section we introduce the notion of the center of a θ-psh function. This is a subset of X
defined in terms of the locus on X an where ϕ is smaller than its maximum.

3.1. The center map

For any v ∈ X an, we denote by cX (v) ∈ X its center, and by

ZX (v) := {cX (v)} ⊂ X

the corresponding subvariety. The center map cX : X an → X is surjective and anticontinuous,
i.e. the preimage of a closed subset is open. In particular, any subvariety Z ⊂ X is of the form
Z = ZX (v) for some v ; we can simply take v = ordZ .

More generally, for any subset S ⊂ X an we set

ZX (S) :=
⋃
v∈S

ZX (v). (7)

This is smallest subset of X that contains cX (S) and is closed under specialization.

3.2. The center of a θ-psh function

We can now introduce

Definition 20. We define the center on X of any θ-psh function ϕ ∈ PSH(θ) as

ZX (ϕ) := ZX ({ϕ< supϕ}) ⊂ X .

Example 21. For any nonzero ideal b ⊂ OX , the function ψ = log |b| is θ-psh if θ is sufficiently
ample, and then ZX (ϕ) = V (b). More generally, if ϕ = ∑

i ti log |bi | with ti ∈ R>0 and bi ⊂ OX a
nonzero ideal, then ZX (ϕ) =⋃

i V (bi ).
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Recall that to any θ-psh function ϕ ∈ PSH(θ) we can associate a homogeneous θ-psh function
ϕ̂max ∈ PSHhom(θ), see Section 1.7.

Lemma 22. For any ϕ ∈ PSH(θ) we have {ϕ < supϕ} = {ϕ̂max < 0}. As a consequence, ZX (ϕ) =
ZX (ϕ̂max). Moreover, the following conditions are equivalent:

(i) ϕ is of divisorial type;
(ii) ϕ̂max is of divisorial type;

(iii) ZX (ϕ) = ZX (ϕ̂max) contains at most finitely many prime divisors E ⊂ X .

Proof. Pick any v ∈ X an. By (5) and the fact that t 7→ ϕ(t v) is decreasing and convex, it follows
that ϕ(v) < supϕ iff ϕ̂max(v) < 0. Thus ZX (ϕ) = ZX (ϕ̂max) since supϕ̂max = 0.

Now the equivalence (i) ⇔ (ii) is definitional, and (ii) ⇔ (iii) is clear since a prime divisor E ⊂ X
belongs to ZX (ϕ̂max) iff ϕ̂max(ordE ) < 0. □

Together with Example 14, Lemma 22 implies

Corollary 23. If ϕ=ϕa for a flag ideal a=∑
λ∈Zaλϖ−λ on X ×A1, then ZX (ϕa) =V (aλmax ), where

λmax := max{λ ∈Z | aλ ̸= 0}.

Theorem 24. For anyϕ ∈ PSH(θ), the center ZX (ϕ) is a strict subset of X , and an at most countable
union of (strict) subvarieties. Moreover, we have c−1

X (ZX (ϕ)) = {ϕ< supϕ}.

Proof. Note that ZX (ϕ) does not contain the generic point of X , so ZX (ϕ) ̸= X . Also note that by
Lemma 22 we may assume that ϕ is homogeneous.

If ϕ ∈ Hhom(L) for a Q-line bundle L, so that ϕ = 1
m maxi log |si | for a finite set of nonzero

sections si ∈ H0(X ,mL), then ZX (ϕ) = ⋂
i (si = 0), which is Zariski closed. In general, ϕ can

be written as the limit of a decreasing sequence ϕm ∈ Hhom(Lm) with Lm ∈ Pic(X )Q such that
c1(Lm) → θ (see [13, Remark 6.18]). For any v ∈ X div we then have

cX (v) ∈ ZX (ϕ) ⇐⇒ϕ(v) < 0 ⇐⇒ϕm(v) < 0 for some m,

i.e. ZX (ϕ) =⋃
m ZX (ϕm), an at most countable union of strict subvarieties.

Next pick v ∈ X an, and set Z = ZX (v). By [13, Proposition 4.12], ϕ(t v) = tϕ(v) converges to
ϕ(vZ ,triv) = supZ an ϕ as t → +∞, and hence ϕ(v) < 0 ⇔ ϕ ≡ −∞ on Z an. By definition of the
center, if cX (v) lies in ZX (ϕ), then we can find w ∈ X an such that ϕ(w) < 0 and cX (v) ∈ ZX (w),
i.e. Z ⊂ ZX (w). Then ϕ ≡ −∞ on ZX (w)an ⊃ Z an, which yields ϕ(v) < 0. Conversely, assume
ϕ(v) < 0, and hence ϕ ≡ −∞ on Z an. We can find w ∈ X div such that Z = ZX (w). Since ϕ ≡ −∞
on Z an = ZX (w)an, we get ϕ(w) < 0, and hence cX (v) ∈ ZX (w) ⊂ ZX (ϕ). □

For later use we record

Lemma 25. If ϕi ∈ PSH(θi ), i = 1,2, then ZX (ϕ1 +ϕ2) = ZX (ϕ1)∪ZX (ϕ2).

3.3. Centers of PL functions

The following result will play a crucial role in what follows.

Lemma 26. If ϕ ∈ PSH(θ) lies in RPL+(X ) (resp. RPL(X )), then ZX (ϕ) is Zariski closed (resp. not
Zariski dense) in X .

Proof. Assume firstϕ ∈RPL+(X ), and write ϕ= maxi {ψi +λi } for a finite setψi ∈ PL+
hom(X )R and

λi ∈ R. As in Example 14, we then have maxi λi = supϕ, and ϕ̂max = maxλi=supϕψi . This shows
that

ZX (ϕ) = ZX (ϕ̂max) =
⋂

λi=supϕ
ZX (ψi )
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is Zariski closed (see Example 21). Assume next ϕ ∈ RPL(X ) and write ϕ = ϕ1 −ϕ2 with ϕ1,ϕ2 ∈
RPL+(X ). After replacing θ with a sufficiently ample class, we may assume that ϕ1,ϕ2 are θ-psh.
By (5) we have ϕ̂max = ϕ̂max

1 − ϕ̂max
2 , and hence

ZX (ϕ) = ZX (ϕ̂max) ⊂ ZX (ϕ̂max
1 )∪ZX (ϕ̂max

2 ) = ZX (ϕ1)∪ZX (ϕ2),

which cannot be Zariski dense, since ZX (ϕ1) and ZX (ϕ2) are both Zariski closed strict subsets by
the first part of the proof. □

4. Extremal functions and minimal vanishing orders

Next we define a trivially valued analogue of an important construction in the complex analytic
case.

4.1. Extremal functions

For any θ ∈ N1(X ), we define the extremal function Vθ : X an → [−∞,0] as the pointwise envelope

Vθ := sup
{
ϕ ∈ PSH(θ) |ϕ≤ 0

}
. (8)

Proposition 27. For any θ ∈ N1(X ) we have

θ ∈ Psef(X ) =⇒Vθ ∈ PSHhom(θ);

θ ∉ Psef(X ) =⇒Vθ ≡−∞;

θ ∈ Nef(X ) ⇐⇒Vθ ≡ 0.

In particular, PSH(θ) is nonempty iff θ is pseudoeffective. For any ω ∈ Amp(X ), we further have

Vθ+εω↘Vθ as ε↘ 0. (9)

Proof. Since the action (t ,ϕ) 7→ t ·ϕ of R>0 preserves the set of candidate functions ϕ in (8), Vθ
is necessarily fixed by the action, and hence homogeneous. If θ is not psef, then PSH(θ) is empty
(see Lemma 12), and hence Vθ ≡−∞. By Lemma 12, we also have Vθ ≡ 0 iff θ is nef.

Next, assume θ ∈ Big(X ). Then PSH(θ) is non-empty (see Lemma 12), and the envelope
property implies that V ⋆

θ
is θ-psh and nonpositive. It is thus a candidate in (8), and hence

V ⋆
θ
≤Vθ , which shows that V ⋆

θ
=Vθ is θ-psh.

Assume now θ ∈ Psef(X ), and pick ω ∈ Amp(X ). For each ε > 0, the previous step yields
Vε :=Vθ+εω ∈ PSHhom(θ+εω). For 0 < ε< δ we further have PSH(θ) ⊂ PSH(θ+εω) ⊂ PSH(θ+δω),
and hence Vδ ≥ Vε ≥ Vθ . Set V := limεVε. For any δ > 0 fixed, we have Vε ∈ PSHhom(θ+δω) for
ε ≤ δ, and Vε ↘ V as ε→ 0. Thus V ∈ PSHhom(θ+δω) for all δ > 0, and hence V ∈ PSHhom(θ).
Since V is a candidate in (8), we get V ≤ Vθ , and hence Vθ = V = limεVε. This proves that Vθ is
θ-psh, as well as (9). □

4.2. Minimal vanishing orders

For θ ∈ Psef(X ), the function Vθ ∈ PSHhom(θ) is uniquely determined by its restriction to X div,
where it is furthermore finite valued. For any v ∈ X div we set

v(θ) :=−Vθ(v) = inf{−ϕ(v) |ϕ ∈ PSH(θ),ϕ≤ 0} ∈R≥0. (10)

Note that
v(θ) = sup

ε>0
v(θ+εω) (11)

for any ω ∈ Amp(X ), by (9). As we next show, these invariants coincide with the mini-
mal/asymptotic vanishing orders studied in [6, 22, 40].
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Proposition 28. Pick v ∈ X div. Then:

(i) the function θ 7→ v(θ) is homogeneous, convex and lsc on Psef(X ); in particular, it is
continuous on Big(X );

(ii) for any θ ∈ Psef(X ) we have

v(θ) ≤ inf
{

v(D) | D ≡ θ effective R-divisor
}

, (12)

and equality holds when θ is big.

Note that equality in (12) fails in general for θ is not big, as there might not even exist any
effective R-divisor D in the class of θ.

Proof. Using PSH(θ)+PSH(θ′) ⊂ PSH(θ+θ′) and PSH(tθ) = t PSH(θ) for θ,θ′ ∈ Psef(X ) and t > 0,
it is straightforward to see that θ 7→ v(θ) is convex and homogeneous on Psef(X ). Being also finite
valued, it is automatically continuous on the interior Big(X ). For any ω ∈ Amp(X ) and ε > 0,
θ 7→ v(θ+ εω) is thus continuous on Psef(X ), and (11) thus shows that θ 7→ v(θ) is lsc, which
proves (i).

Next pick θ ∈ Psef(X ). For each effective R-divisor D ≡ θ, the function −ψD ∈ PSHhom(θ),
see Example 13, is a competitor in (8). Thus −v(D) = ψD (v) ≤ Vθ(v) = −v(θ), which proves the
first half of (ii). Now assume θ is big, and denote by v ′(θ) the right-hand side of (12). Both v(θ)
and v ′(θ) are (finite valued) convex function of θ ∈ Big(X ). They are therefore continuous, and
it is thus enough to prove the equality v(θ) = v ′(θ) when θ = c1(L) with L ∈ Pic(X )Q big. To this
end, pick an ample Q-line bundle A, and set ω := c1(A). By [13, Theorem 4.15], for any ε > 0
we can find ϕ ∈ H gf(L + A) such that ϕ ≥ Vθ and ϕ(vtriv) = supϕ ≤ ε. By definition, we have
ϕ = m−1 maxi {log |si | +λi } with m sufficiently divisible and a finite family of nonzero sections
si ∈ H0(X ,m(L + A)) and constants λi ∈Q. Then maxi λi = m supϕ ≤ mε, and m−1v(si ) = v(Di )
with Di := m−1div(si ) ≡ θ+ω, and hence m−1v(si ) ≥ v ′(θ+ω). Thus

−v(θ) =Vθ(v) ≤ϕ(v) = m−1 max
i

{v(si )+λi } ≤−v ′(θ+ω)+ε.

This shows v ′(θ) ≥ v(θ) ≥ v ′(θ +ω), and hence v ′(θ) = v(θ), since limω→0 v ′(θ +ω) = v ′(θ) by
continuity on the big cone. □

Remark 29. If L ∈ Pic(X ) is big, then [22, Corollary 2.7] (or, alternatively, a small variant of the
above argument) shows that v(c1(L)) is also equal to the asymptotic vanishing order

v(∥L∥) := lim
m→∞

1
m min

{
v(s) | s ∈ H0(X ,mL) \ {0}

}

= inf
{

v(D) | D ∼Q L effectiveQ-divisor
}

.

Remark 30. Continuity of minimal vanishing orders beyond the big cone is a subtle issue. For
any v ∈ X div, the function θ 7→ v(θ), being convex and lsc on Psef(X ), is automatically continuous
on any polyhedral subcone (cf. [27]). When dim X = 2, it is in fact continuous on the whole
of Psef(X ), but this fails in general when dim X ≥ 3 (see respectively Proposition III.1.19 and
Example IV.2.8 in [40]).

4.3. The center of an extremal function

The following fact plays a key role in what follows.

Theorem 31. For any θ ∈ Psef(X ), the function Vθ ∈ PSHhom(θ) is of divisorial type (see Defini-
tion 4). Further, its center ZX (Vθ) coincides with the diminished base locus B−(θ) (see Section 1.1).

The proof relies on the next result, which corresponds to [40, Corollary III.1.11] (see also [6,
Theorem 3.12] in the analytic context).
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Lemma 32. Pick θ ∈ Psef(X ), and assume E1, . . . ,Er ⊂ X are distinct prime divisors such that
ordEi (θ) > 0 for all i . Then [E1], . . . , [Er ] are linearly independent in N1(X ). In particular, r ≤
ρ(X ) = dimN1(X ).

Proof. We reproduce the simple argument of [8, Theorem 3.5(v)] for the convenience of the
reader. By (11), after adding to θ a small enough ample class we assume that θ is big. Suppose∑

i ci [Ei ] = 0 with ci ∈R, so that G :=∑
i ci Ei is numerically equivalent to 0, and choose 0 < ε≪ 1

such that ordEi (θ)+εci > 0 for all i . Pick any effective R-divisor D ≡ θ and set D ′ := D +εG . Then
D ′ is effective, since

ordEi (D ′) = ordEi (D)+εci ≥ ordEi (θ)+εci > 0

for all i . Since G ≡ 0, we also have D ′ ≡ θ, and (12) thus yields for each i

ordEi (θ) ≤ ordEi (D ′) = ordEi (D)+εci .

Taking the infimum over D we get ordEi (θ) ≤ ordEi (θ)+εci (see Proposition 28(ii)), i.e. ci ≥ 0 for
all i . Thus G ≥ 0, and hence G = 0, since G ≡ 0. This proves ci = 0 for all i which shows, as desired,
that the [Ei ] are linearly independent. □

Proof of Theorem 31. By (10), the first assertion means that there are only finitely many prime
divisors E ⊂ X such that ordE (θ) > 0, and is thus a direct consequence of Lemma 32. Pick v ∈ X div.
The second point is equivalent to v(θ) > 0 ⇔ cX (v) ∈ B−(θ). When θ is big, this is the content
of [22, Theorem B]. In the general case, pick ω ∈ Amp(X ). Then v(θ) > 0 iff v(θ+ εω) > 0 for
0 < ε ≪ 1, by (11), while cX (v) ∈ B−(θ) iff cX (v) ∈ B−(θ+ εω) for 0 < ε ≪ 1, by (1). The result
follows. □

For later use, we also note:

Lemma 33. For any polyhedral subcone C ⊂ Psef(X ), we have:

(i) θ 7→ v(θ) is continuous on C for all v ∈ X div;
(ii) the set of prime divisors E ⊂ X such that ordE (θ) > 0 for some θ ∈C is finite.

Proof. As mentioned in Remark 30, any convex, lsc function on a polyhedral cone is continuous
(see [27]), and (i) follows. To see (ii), pick a finite set of generators (θi ) of C . Each θ ∈ C can be
written as θ = ∑

i tiθi with ti ≥ 0. By convexity and homogeneity of minimal vanishing orders,
this implies ordE (θ) ≤ ∑

i ti ordE (θi ), so that ordE (θ) > 0 implies ordE (θi ) > 0 for some i . The
result now follows from Lemma 32. □

5. Zariski decompositions

Next we study the close relationship between the extremal function in Section 4, and the various
versions of the Zariski decomposition of a psef numerical class.

5.1. The b-divisorial Zariski decomposition

Pick θ ∈ N1(X ) a psef class. By Theorem 31, the function X div ∋ v 7→ v(θ) =−Vθ(v) is of divisorial
type. We denote by

N(θ) ∈ Z1
b(X )R

the corresponding effective b-divisor, which thus satisfies

ψN(θ)(v) = v(N(θ)) = v(θ) =−Vθ(v)

for all v ∈ X div.
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Theorem 34. For any θ ∈ Psef(X ), the b-divisor class

P(θ) := θ− [N(θ)] ∈ N1
b(X )

is nef, and N(θ) is the smallest effective b-divisor with this property. Moreover,

N(θ) ≥ N(θ)Y (13)

for all birational models Y → X .

We call θ = P(θ)+ [N(θ)] the b-divisorial Zariski decomposition of θ. At least when θ is big, this
construction is basically equivalent to [33, Theorem D], and to the case p = 1 of [9, §2.2].

Note that the b-divisorial Zariski decomposition is birationally invariant:

Lemma 35. For any θ ∈ Psef(X ) and any birational model π : Y → X , we have

N(π⋆θ) = N(θ) and P(π⋆θ) = P(θ)

in Z1
b(X )R = Z1

b(Y )R and N1
b(X )R = N1

b(Y )R, respectively.

Proof. Since PSH(π⋆θ) =π⋆PSH(θ), see (2), we have Vπ⋆θ =π⋆Vθ , and the result follows. □
Proof of Theorem 34. Since ψ−N(θ) = Vθ is θ-psh, Proposition 15 shows that θ − [N(θ)] is nef,
which yields the last point, by the Negativity Lemma (see Lemma 11). Conversely, if E ∈ Z1

b(X )R
is effective with θ− [E ] nef, then −ψE ∈ PSHhom(θ), again by Proposition 15. Thus −ψE ≤ Vθ =
−ψN(θ), and hence E ≥ N(θ). □

As a consequence of Proposition 28, we get

Corollary 36. The map Psef(X ) ∋ θ 7→ N(θ) ∈ Z1
b(X ) is homogeneous, lsc, and convex.

5.2. The divisorial Zariski decomposition

For any θ ∈ Psef(X ), we denote by NX (θ) := N(θ)X the incarnation of N(θ) ∈ Z1
b(X )R on X , which

thus satisfies
NX (θ) =

∑
E⊂X

ordE (θ)E (14)

with E ranging over all prime divisors of X , and ordE (θ) = 0 for all but finitely many E .
For any effective R-divisor D on X with numerical class [D] ∈ Psef(X ), (12) yields

NX (D) := NX ([D]) ≤ D. (15)

More generally, the following variational characterization holds.

Theorem 37. For any θ ∈ Psef(X ), the class

PX (θ) := θ− [NX (θ)] ∈ N1(X )

is movable, and NX (θ) is the smallest effective R-divisor on X with this property.

Following [6], we call the decomposition

θ = PX (θ)+ [NX (θ)]

the divisorial Zariski decomposition of θ. It coincides with the σ-decomposition of [40].

Proof of Theorem 37. By definition, PX (θ) is the incarnation on X of θ− [N(θ)]. By Theorem 34,
the latter class is nef, and PX (θ) is thus movable, by Lemma 10.

To prove the converse, assume first that θ is movable. We then need to show NX (θ) = 0, i.e.
ordE (θ) = 0 for each E ⊂ X prime (see (14)). By (12), this is clear if θ = c1(L) for a big line bundle
L with base locus of codimension at least 2. Since the movable cone Mov(X ) is generated by the
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classes of such line bundles, the continuity of θ 7→ ordE (θ) on the big cone yields the result when
θ is further big, and the case of an arbitrary movable class follows by (11).

Finally, consider any θ ∈ Psef(X ) and any effective R-divisor D on X such that θ − [D] is
movable. For any E ⊂ X prime we then have ordE (θ − [D]) = 0 by the previous step, and
ordE ([D]) ≤ ordE (D) by (15)). Thus

ordE (θ) ≤ ordE (θ− [D])+ordE (D) = ordE (D).

This shows NX (θ) ≤ D , which concludes the proof. □

Remark 38. Theorem 37 implies the following converse of Lemma 10: a class θ ∈ N1(X ) is
movable iff θ =αX for a nef b-divisor class α ∈ Nefb(X ).

Corollary 39. Pick θ ∈ Psef(X ) and a prime divisor E ⊂ X . Then (θ − ordE (θ)E)|E ∈ N1(E) is
pseudoeffective.

Proof. We have θ−ordE (θ)[E ] = PX (θ)+∑
F ̸=E ordF (θ)[F ], where F ranges over all prime divisors

of X distinct from E . Since PX (θ) is movable, PX (θ)|E is psef. On the other hand, [F ]|E is psef for
any F ̸= E , and the result follows. □

Lemma 40. For any θ ∈ Psef(X ) and any birational model π : Y → X , the incarnation of N(θ) on
Y coincides with NY (π⋆θ). Further, the following are equivalent:

(i) the b-divisor N(θ) is R-Cartier, and determined on Y ;
(ii) PY (π⋆θ) is nef.

Proof. The first point follows from Lemma 35. If (i) holds then the nef b-divisor class θ−N(θ) is
R-Cartier and determined on Y . Thus (θ−N(θ))Y = π⋆θ−NY (π⋆θ) = PY (π⋆θ) is nef, and hence
(i) ⇒ (ii).

Conversely, assume (ii). Then N(θ)Y = NY (π⋆θ) is an effective b-divisor, and the b-divisor
class θ− [N(θ)Y ] = PY (π⋆θ) is nef. By Theorem 34 this implies N(θ) ≤ N(θ)Y , while N(θ) ≥ N(θ)Y

always holds (see (13)). This proves (ii) ⇒ (i). □

Since any movable class on a surface is nef, we get:

Corollary 41. If dim X = 2 then N(θ) = NX (θ) for all θ ∈ Psef(X ).

In contrast, see [40, Theorem IV.2.10] for an example of a big line bundle L on a 4-fold X such
that the b-divisor N(L) is not R-Cartier, i.e. PY (π⋆L) is not nef for any model π : Y → X .

5.3. Zariski exceptional divisors and faces

This section revisits [6, §3.3].

Definition 42. We say that:

(i) an effective R-divisor D on X is Zariski exceptional if NX (D) = D, or equivalently,
PX ([D]) = 0;

(ii) a finite family (Ei ) of prime divisors Ei ⊂ X is Zariski exceptional if every effectiveR-divisor
supported in the Ei ’s is Zariski exceptional.

We also define a Zariski exceptional face F of Psef(X ) as an extremal subcone such that PX |F ≡ 0.

Here a closed subcone C ⊂ Psef(X ) is extremal iff α,β ∈ Psef(X ), α+β ∈C implies α,β ∈C .
We first note:

Lemma 43. An effective R-divisor D on X is Zariski exceptional iff N(D) = D.



24 Sébastien Boucksom and Mattias Jonsson

Proof. Assume NX (D) = D . Then N(D) ≤ D , by Theorem 34, and N(D) ≥ NX (D) = D (see (13)).
The result follows. □

The above notions are related as follows:

Theorem 44. The following properties hold:

(i) if E ⊂ X is a prime divisor, then E is either movable (in which case E |E is psef), or it is
Zariski exceptional;

(ii) the set of Zariski exceptional families of prime divisors on X is at most countable;
(iii) for any θ ∈ Psef(X ), the irreducible components of NX (θ) form a Zariski exceptional

family; in particular, NX (θ) is Zariski exceptional;
(iv) each Zariski exceptional family (Ei ) is linearly independent in N1(X ), and generates a

Zariski exceptional face F :=∑
i R≥0[Ei ] of Psef(X );

(v) conversely, each Zariski exceptional face F of Psef(X ) arises as in (iv).

Proof. Assume E ⊂ X is a prime divisor. Then NX (E) ≤ E (see (15)), and hence NX (E) = cE with
c ∈ [0,1]. If c = 1, then E is Zariski exceptional. Otherwise,

E = (1− c)−1(E −NX (E)) ≡ (1− c)−1 PX (E)

is movable (and c = 0). This proves (i).
To see (ii), note that a Zariski exceptional prime divisor satisfies E = NX (E), and hence is

uniquely determined by its numerical class [E ] ∈ N1(X )Q. As a consequence, the set of Zariski
exceptional primes is at most countable, and hence so is the set of Zariski exceptional families.

Pick θ ∈ Psef(X ). We first claim that D := NX (θ) is Zariski exceptional. Since PX (θ) = θ− [D]
and PX (D) = [D −NX (D)] are both movable, θ− [NX (D)] is movable as well. Theorem 37 thus
yields NX (D) ≥ NX (θ) = D , which proves the claim in view of (15). Denote by D = ∑r

i=1 ci Ei

the irreducible decomposition of D , and set fi (x) := ordEi (
∑

j x j E j ) for 1 ≤ i ≤ r . This defines a
convex function fi : Rr

≥0 → R≥0 which satisfies fi (x) ≤ xi for all x, by (15). Since equality holds at
the interior point x = c ∈Rr

>0, we necessarily have fi (x) = xi for all x ∈Rr
≥0, which proves (iii).

Next pick a Zariski exceptional family (Ei ). By Lemma 32, the [Ei ] are linearly independent
in N1(X ). By definition, we have PX ≡ 0 on F := ∑

i R≥0[Ei ]. To see that F is an extremal face of
Psef(X ), pick D := ∑

i ci Ei with ci ≥ 0, and assume [D] = α+β with α,β ∈ Psef(X ). We need to
show that bothα and β lie in F . By Definition 42 we have D = NX (D) ≤ NX (α)+NX (β), and hence

[NX (α)]+ [NX (β)] ≤ PX (α)+PX (β)+ [NX (α)]+ [NX (β)] =α+β= [D] ≤ [NX (α)]+NX (β)], (16)

with respect to the psef order on N1(X ). Since Psef(X ) is strict, we infer PX (α) = PX (β) = 0 and
[D] = [NX (α)]+ [NX (β)]. Since NX (α)+NX (β)−D is effective, it follows that NX (α)+NX (β) = D .
This implies that NX (α) and NX (β) are supported in the Ei ’s, which proves, as desired, that
α= [NX (α)] and β= [NX (β)] both lie in F . Thus (iv) holds.

Conversely, assume that F ⊂ Psef(X ) is a Zariski exceptional face, and pick a class θ in its
relative interior F̊ . By (iii), the components (Ei ) of NX (θ) form a Zariski exceptional family, which
thus generates a Zariski exceptional face F ′ :=∑

i R≥0[Ei ]. Since F and F ′ are both extremal faces
containing θ in their relative interior, we conclude F = F ′, which proves (v). □

As a result, Zariski exceptional families are in 1–1 correspondence with Zariski exceptional
faces, which are rational simplicial cones generated by Zariski exceptional primes.

For surfaces, the notions above admit the following interpretation: see e.g. Theorems 5.4
and 4.8 in [6]:
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Theorem 45. Assume dim X = 2. Then:

(i) a finite family (Ei ) of prime divisors on X is Zariski exceptional iff the intersection matrix
(Ei ·E j ) is negative definite;

(ii) for any θ ∈ Psef(X ), θ = PX (θ)+[NX (θ)] coincides with the classical Zariski decomposition,
i.e. PX (θ) is nef, NX (θ) is Zariski exceptional, and PX (θ) ·NX (θ) = 0.

5.4. Piecewise linear Zariski decompositions

We introduce the following terminology:

Definition 46. Given any convex subcone C ⊂ Psef(X ), we say that the Zariski decomposition
is piecewise linear (PL for short) on C if the map N: C → Z1

b(X )R extends to a PL map N1(X ) →
Z1

b(X )R, i.e. a map that is linear on each cone of some finite fan decomposition of N1(X ). If the
fan and the linear maps on its cones can further be chosen rational, then we say that the Zariski
decomposition isQ-PL on C .

Lemma 47. Let C ⊂ Psef(X ) be a convex cone, and assume that C is written as the union of finitely
many convex subcones Ci . Then the Zariski decomposition is PL (resp. Q-PL) on C iff it is PL
(resp.Q-PL) on each Ci .

Proof. The “only if” part is clear. Conversely, assume the Zariski decomposition is PL (resp. Q-
PL) on each Ci . After further subdividing each Ci according to a fan decomposition of N1(X ),
we may assume that there exists a linear (resp. rational linear) map Li : N1(X ) → Z1

b(X )R that
coincides with N on Ci . If Ci has nonempty interior in C , then Li |VectC is uniquely determined
as the derivative of N at any interior point of Ci , and we have N ≥ Li on C by convexity of N, see
Corollary 36. Set F := maxi Li , where the maximum is over all Ci with nonempty interior in C .
Then F : N1(X ) → Z1

b(X )R is PL (resp. Q-PL), N ≥ F on C , and equality holds outside the union A
of all Ci with empty interior in C . Since A has zero measure, its complement is dense in C . Since
N−F is lsc, see Corollary 36, we infer N ≤ F on C , which proves the “if” part. □

As a consequence of [22, Theorem 4.1] and its proof (especially Proposition 4.7) we have:

Example 48. If X is a Mori dream space (e.g. of log Fano type), then:

• for each θ ∈ Psef(X ), the b-divisor N(θ) is R-Cartier;
• Psef(X ) is a rational polyhedral cone;
• the Zariski decomposition isQ-PL on Psef(X ).

The next result is closely related to the theory of Zariski chambers studied in [2].

Proposition 49. If dim X = 2, then the Zariski decomposition is Q-PL on any convex cone C ⊂
Psef(X ) with the property that the set of prime divisors E ⊂ X with ordE (θ) > 0 for some θ ∈ C is
finite.

By Lemma 33(ii), the finiteness condition on C is satisfied as soon as C is polyhedral.

Proof. For each Zariski exceptional face F of Psef(X ) with relative interior F̊ , set ZF := N−1
X (F̊ ).

Thus θ ∈ Psef(X ) lies in ZF iff the irreducible decomposition of NX (α) are precisely the generators
of F . By Theorem 45(ii), ZF is a convex subcone of Psef(X ) (whose intersection with Big(X ) is a
Zariski chamber in the sense of [2]); further, NX |ZF : ZF → F̊ is the restriction of the orthogonal
projection onto VectF , which is a rational linear map. By Corollary 41, the Zariski decomposition
is thusQ-PL on ZF . Finally, the finiteness assumption guarantees that C meets only finitely many
ZF ’s, and the result is thus a consequence of Lemma 47. □
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We conclude this section with a higher-dimensional situation in which Zariski decompositions
can be analyzed. Assuming again that dim X is arbitrary, consider next a 2-dimensional cone
C ⊂ N1(X ) generated by two classes θ,α ∈ N1(X ) such that θ ∈ Nef(X ) and α ∉ Psef(X ). Set

Cnef :=C ∩Nef(X ) ⊂Cpsef :=C ∩Psef(X ) ⊂C ,

and introduce the thresholds

λnef := sup{λ≥ 0 | θ+λα ∈ Nef(X )}, λpsef := sup{λ≥ 0 | θ+λα ∈ Psef(X )},

so that Cnef (resp. Cpsef) is generated by θ and θnef := θ+λnefα (resp. θpsef := θ+λpsefα).
The next result is basically contained in [41, §6.5].

Proposition 50. With the above notation, suppose that C contains the class of a prime divisor
S ⊂ X such that Nef(S) = Psef(S) and S|S is not nef. Then:

(i) θpsef = t [S] with t > 0;
(ii) λnef =λS

nef := sup{λ≥ 0 | (θ+λα)|S ∈ Nef(S)};
(iii) the Zariski decomposition is PL on Cpsef, with

N ≡ 0 on Cnef, N(aθnef +b[S]) = bS for all a,b ≥ 0.

Proof. The assumptions imply that S|S is not psef. By Theorem 44(i), S is thus Zariski excep-
tional, and [S] generates an extremal ray of Psef(X ). This ray is also extremal in Cpsef, which
proves (i).

Next, note that λnef ≤λS
nef ≤λpsef, by (i). Pick a curve γ⊂ X . We need to show (θ+λS

nefα)·γ≥ 0.
This is clear if γ⊂ S (since (θ+λS

nefα)|S is nef), or ifα·γ≥ 0 (since θ·γ≥ 0 andλS
nef ≥ 0). Otherwise,

we have S ·γ≥ 0 and α ·γ≤ 0, and we get again (θ+λS
nefα) ·γ≥ 0 since

θ+λS
nefα≡ θpsef + (λS

nef −λpsef)α= t [S]+ (λS
nef −λpsef)α

with λS
nef −λpsef ≤ 0. This proves (ii).

For (iii), note that N ≡ 0 on Nef(X ) ⊃Cnef (see Theorem 34). Further, N([S]) = S (see Lemma 43),
and hence N(aθnef +b[S]) ≤ bS for a,b ≥ 0. In particular, c := ordS (aθnef +b[S]) ≤ b. On the other
hand, (13) yields

N(aθnef +b[S]) ≥ N(aθnef +b[S]) ≥ cS,

and it thus remains to see c = b. By Corollary 39, ((aθnef +b[S])− c[S]) |S lies in Psef(S) = Nef(S).
By (ii), we infer aθnef+ (b−c)[S] ∈Cnef, and hence b−c = 0, since Cnef =R≥0θ+R≥0θnef intersects
R≥0θnef +R≥0[S] only along R≥0θnef. □

6. Green’s functions and Zariski decompositions

In this section we fix an ample class ω ∈ Amp(X ).

6.1. Green’s functions and equilibrium measures

A subset Σ ⊂ X an is pluripolar if Σ ⊂ {ϕ = −∞} for some ϕ ∈ PSH(ω). By [13, Theorem 4.5], Σ is
nonpluripolar iff

T(Σ) := sup
ϕ∈PSH(ω)

(supϕ− sup
Σ
ϕ) ∈ [0,+∞]

is finite. The invariant T(Σ), which plays an important role in [5, 14], is modeled on the Alexander–
Taylor capacity (which corresponds to e−T(Σ)) in complex analysis.

Definition 51. For any subset Σ⊂ X an we set

ϕΣ =ϕω,Σ := sup{ϕ ∈ PSH(ω) |ϕ|Σ ≤ 0}. (17)
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Note that ϕΣ(vtriv) = supϕΣ = T(Σ), and hence

ϕΣ ∈ PL(X ) =⇒ T(Σ) ∈Q. (18)

Theorem 52. For any compact subset Σ⊂ X an, the following holds:

(i) ϕΣ = sup{ϕ ∈ CPSH(ω) |ϕ|Σ ≤ 0}; in particular, ϕΣ is lsc;
(ii) if Σ is pluripolar then ϕ⋆Σ ≡+∞;

(iii) if Σ is nonpluripolar, then ϕ⋆Σ is ω-psh and nonnegative; further, µΣ := MA(ϕ⋆Σ) is sup-
ported in Σ,

∫
ϕ⋆Σ µΣ = 0, and µΣ is characterized as the unique minimizer of the energy

∥µ∥ over all Radon probability measures µ with support in Σ.

Since the energy of a Radon probability measure µ only appears in this statement, we simply
recall here that it is defined as

∥µ∥ = sup
ϕ∈E 1(ω)

(
E(ϕ)−

∫
ϕµ

)
∈ [0,+∞], (19)

and refer to [13, §9.1] for more details.

Definition 53. Assuming Σ is nonpluripolar, we call µΣ its equilibrium measure, and ϕ⋆Σ its
Green’s function.

The latter is characterized as the normalized potential of µΣ (in the terminology of [15, §1.6]),
i.e. the unique ϕ ∈ E 1(ω) such that MA(ϕ) =µΣ and

∫
ϕµΣ = 0.

Proof of Theorem 52. Denote byϕ′
Σ the right-hand side in (i), which obviously satisfiesϕ′

Σ ≤ϕΣ.
Pick ϕ ∈ PSH(ω) with ϕ|Σ ≤ 0, and write ϕ as the limit of a decreasing net (ϕi ) in CPSH(ω). For
any ε> 0, a Dini type argument shows that ϕi < ε on Σ for i large enough. Thus ϕi ≤ϕ′

Σ+ε, and
hence ϕ≤ϕ′

Σ+ε. This shows ϕΣ ≤ϕ′
Σ, which proves (i).

Next, (ii) and the first half of (iii) follow from [13, Lemma 13.15]. Since the negligible set
{ϕΣ <ϕ⋆Σ} is pluripolar (see [13, Theorem 13.17]), it has zero measure for any measure µ of finite
energy [13, Lemma 9.2]. If µ has support in Σ, this yields

∫
ϕ⋆Σ µ = ∫

ϕΣµ = 0. By (19) we infer
∥µ∥ ≥ E(ϕ⋆Σ) = ∥µΣ∥. This proves that µΣ minimizes the energy, while uniqueness follows from
the strict convexity of the energy [13, Proposition 10.10]. □

Further mimicking classical terminology in the complex analytic setting, we introduce:

Definition 54. We say that a compact subset Σ⊂ X an is regular if ϕΣ ∈ CPSH(ω).

In particular, Σ is then nonpluripolar (see Theorem 52).

Lemma 55. For any compact subset Σ⊂ X an, the following hold:

(i) Σ is regular iff ϕ⋆Σ ≤ 0 on Σ;
(ii) the regularity of Σ is independent of ω ∈ Amp(X );

(iii) if Σ⊂ X lin then Σ is regular.

Proof. If Σ is regular, then ϕ⋆Σ = ϕΣ vanishes on Σ. Conversely, assume ϕ⋆Σ ≤ 0 on Σ. By (ii) and
(iii) of Theorem 52, Σ is necessarily nonpluripolar, andϕ⋆Σ isω-psh. It is thus a competitor in (17),
which implies that ϕΣ =ϕ⋆Σ is ω-psh, and also continuous by Theorem 52(i).

Assume Σ is regular for ω, and pick ω′ ∈ Amp(X ). Then tω−ω′ is nef for t ≫ 1, and hence
PSH(ω′) ⊂ t PSH(ω). This implies ϕω′,Σ ≤ tϕω,Σ, and hence ϕ⋆

ω′,Σ ≤ tϕω,Σ. In particular, ϕ⋆
ω′,Σ|Σ ≤

0, which proves that Σ is regular for ω′, by (i).
Finally, assume Σ ⊂ X lin. Since {ϕΣ < ϕ⋆Σ} is pluripolar (see [13, Theorem 13.17]), it is disjoint

from X lin. As a result,ϕ⋆Σ ∈ PSH(ω) vanishes onΣ, and it again follows from (i) thatΣ is regular. □
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6.2. The Green’s function of a real divisorial set

In what follows, we consider a real divisorial set, by which we mean a finite set Σ ⊂ X div
R

of real
divisorial valuations. By Lemma 55(iii), Σ⊂ X lin is regular, i.e. ϕΣ ∈ CPSH(ω). When Σ= {v} for a
single v ∈ X div

R
, we simply write ϕv :=ϕΣ.

Example 56. Assume ω = c1(L) with L ∈ Pic(X )Q ample and v ∈ X div. Then v is dreamy (with
respect to L) in the sense of K.Fujita iff ϕv ∈H (L); see [14, §1.7, Appendix A].

If vtriv ∈ Σ, then ϕΣ ≡ 0, and we henceforth assume vtriv ∉ Σ. Pick a smooth birational model
π : Y → X which extracts each v ∈ Σ, i.e. v = tv ordEv for a prime divisor Ev ⊂ Y and tv ∈ R>0. We
then introduce the effective R-divisor on Y

D :=
∑
α

t−1
α Eα,

whose set of Rees valuations ΓD coincides with Σ (see Definition 16).

Theorem 57. With the above notation, the following holds:

(i) supϕΣ = T(Σ) coincides with the pseudoeffective threshold

λpsef := max
{
λ≥ 0 |π⋆ω−λD ∈ Psef(Y )

}
;

(ii) ϕΣ ∈ CPSH(ω) is of divisorial type, and the associated family of b-divisors (Bλ)λ≤λpsef (see
Theorem 18) is given by

−Bλ =
{

N(π⋆ω−λD)+λD for λ ∈ [0,λpsef]

0 for λ≤ 0.

Proof. Pick λ ∈R. For any ψ ∈ PSH(ω), we have ψ+λ≤ϕΣ⇔ψ|Σ ≤−λ, and hence

ϕ̂λΣ = sup{ψ ∈ PSHhom(ω) |ψ|Σ ≤−λ}.

When λ ≤ 0 this yields ϕ̂λΣ = 0. Now assume λ > 0. Using Proposition 17 and PSHhom(π⋆ω) =
π⋆PSHhom(ω), we get

π⋆ϕ̂λΣ = sup{τ ∈ PSHhom(π⋆ω−λD)}−λψD =Vπ⋆ω−λD −λψD . (20)

Now the left-hand side is not identically −∞ iff λ≤ supϕ, while for the right-hand side this holds
iff λ≤λpsef, by Proposition 27. This proves (i), and also (ii), by Theorem 31. □

Corollary 58. The center of ϕΣ satisfies

ZX (ϕΣ) =π(
B−(π⋆ω−λpsefD)

)∪ZX (Σ).

In particular, ZX (ϕΣ) is Zariski dense in X iff B−(π⋆ω−λpsefD) is Zariski dense in Y .

Proof. By Lemma 22, we have

ZX (ϕΣ) = ZX (ϕ̂max
Σ ) =π(ZY (π∗ϕ̂max

Σ )).

It follows from Theorem 57 and its proof that

π⋆ϕ̂max
Σ =Vπ⋆ω−λpsefD −λpsefψD .

Now ZY (Vπ⋆ω−λpsefD ) = B−(π⋆ω−λpsefD) by Theorem 31, whereas we see from Example 21 that
ZY (−λpsefψD ) = ZY (Σ), so we conclude using Lemma 25. □
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6.3. Dimension one and two

In this section we consider the case dim X ≤ 2.

Proposition 59. If dim X = 1, then for any real divisorial set Σ⊂ X div
R

, we have ϕΣ ∈RPL+(X ). If ω
is rational and Σ⊂ X div, then we further have ϕΣ ∈ PL+(X ).

Proof. We may assume vtriv ̸∈ Σ, or else ϕΣ ≡ 0. Thus assume Σ = {vi }i∈I , where vi = ti ordpi ,
ti ∈ R>0, and pi ∈ X is a closed point. We may assume pi ̸= p j for i ̸= j , or else ϕΣ = ϕΣ′ for
Σ′ = {vi }i∈I ′ , where I ′ ⊂ I is defined by i ∈ I ′ iff for all j ̸= i , either p j ̸= pi or t j > ti . Under these
assumptions,

ϕΣ = A max

{
1+

∑
i

t−1
i log |mpi |,0

}
,

where A > 0 satisfies A
∑

i t−1
i = degω, see [13, Example 3.19]. Thus ϕΣ ∈ RPL+(X ). Further, if

Σ⊂ X div, then ti ∈Q>0 for all i , so if ω is rational, then A ∈Q>0, and hence ϕΣ ∈ PL+(X ). □
Theorem 60. If dim X = 2, then for any real divisorial set Σ⊂ X div

R
, we have ϕΣ ∈RPL+(X ). If ω is

rational and Σ⊂ X div, then we further have

ϕΣ ∈ PL(X ) ⇐⇒ϕΣ ∈ PL+(X ) ⇐⇒ T(Σ) ∈Q. (21)

We will see in Example 63 that T(Σ) can be irrational.

Lemma 61. Assume dim X ≤ 2, and pick B ∈ Carb(X )R. Then B is relatively nef iff it is relatively
semiample.

Proof. Assume B is relative nef, and pick a determination π : Y → X of B . The relatively nef cone
of N1(Y /X ) is dual to the cone generated by the (finite) set of π-exceptional prime divisors, and
is thus a rational polyhedral cone. As a consequence, we can write BY = ∑

i ti Di with ti > 0 and
Di ∈ Div(Y )Q relatively nef. By [38, Theorem 12.1(ii)], each Di is relatively semiample, and the
result follows. □
Proof of Theorem 60. Use the notation of Theorem 57. By Proposition 49, the Zariski decompo-
sition isQ-PL on the cone

C = (R+π⋆ω+R+[−D])∩Psef(Y ) =R+π⋆ω+R+(π⋆ω−λpsef[D]).

We can thus find 0 =λ1 <λ2 < ·· · <λN =λpsef such that

λ 7−→ Bλ =−(N(π⋆ω−λ[D])+λD)

is affine linear on [λi ,λi+1] for 1 ≤ i < N . Setting Bi := Bλi , it follows that

ϕΣ = sup
λ∈[0,λpsef]

{ψBλ +λ} = max
1≤i≤N

{ψBi +λi }.

Since ω+ [Bi ] is nef, the antieffective divisor Bi is relatively nef, and hence relatively semiample
(see Lemma 61). By Proposition 7, we infer ψBi ∈ PL+

hom(X )R, and hence ϕΣ ∈RPL+(X ).
Now assumeω and T(Σ) =λpsef are both rational, and that Σ⊂ X div. Then D is rational as well,

and C is thus a rational polyhedral cone. Since the Zariski decomposition on C is the restriction
of a Q-PL map on N1(Y ), this implies that the λi above can be chosen rational. Using again that
the Zariski decomposition is Q-PL on C , we infer that Bi is a Q-divisor, hence ψBi ∈ PL+

hom(X ),
which shows ϕΣ ∈ PL+(X ). The rest follows from (18). □

7. Examples of Green’s functions

We now exhibit examples of Green’s functions with various types of behavior. These examples
serve as the underpinnings of Theorems A and B of the introduction.
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7.1. Divisors on abelian varieties

As a direct application of Theorem 57, we show:

Proposition 62. Assume Nef(X ) = Psef(X ). Consider a real divisorial set Σ = {vα} ⊂ X div
R

with
vα = tαordEα for Eα ⊂ X prime and tα > 0, and set D :=∑

α t−1
α Eα. Then

T(Σ) =λpsef = sup{λ≥ 0 |ω−λD ∈ Psef(X )}

and

ϕΣ = T(Σ)max
{
0,1−ψD

}
.

In particular, ϕΣ ∈RPL+(X ). If we further assume Σ⊂ X div, then

ϕΣ ∈ PL(X ) ⇐⇒ϕΣ ∈ PL+(X ) ⇐⇒ T(Σ) ∈Q. (22)

Proof. Using the notation of Theorem 57, we have N(ω−λD) = 0 for λ ≤ λpsef = T(Σ). Thus
ϕ̂λΣ =−λψD , and hence

ϕΣ = sup
0≤λ≤λpsef

{λ−λψD } =λpsef max
{
0,1−ψD

}
.

Since −ψD =∑
α t−1

α log |OX (−Eα)| lies in PL+(X )R, it follows that ϕΣ ∈ RPL+(X ). If Σ⊂ X div, then
D is a Q-divisor, and hence −ψD ∈ PL+

hom(X ). If we further assume T(Σ) ∈Q, we get ϕΣ ∈ PL+(X ),
and the remaining implication follows from (18). □

Example 63. Suppose X is an abelian surface, ω = c1(L) with L ∈ Pic(X )Q ample, and v = ordE

with E ⊂ X a prime divisor. Then Nef(X ) = Psef(X ), and T(v) = λpsef is the smallest root of the
quadratic equation (L − λE)2 = 0, see [34, Remark 1.5.6]. If X has Picard number ρ(X ) ≥ 2,
then λpsef is irrational for a typical choice of L and E , and hence ϕv ∉ PL(X ). (Compare [34,
Example 2.3.8]). In particular, v is not dreamy (with respect to L) in the sense of Fujita, see
Example 56.

7.2. The Cutkosky example

Building on a construction of Cutkosky [21] and Proposition 50 (itself based on [41, §6.5]), we
provide an example of a divisorial valuation on P3 for which (21) fails. This relies on the following
general result.

Proposition 64. Consider a flag of smooth subvarieties Z ⊂ S ⊂ X with codimS = 1, codim Z = 2
and ideals bS ⊂ bZ ⊂OX , and assume that

(i) S ≡ω;
(ii) Nef(S) = Psef(S);

(iii) ω|S −Z is not nef on S, i.e. λS
nef := sup{λ≥ 0 |ω|S −λ[Z ] ∈ Nef(S)} < 1.

The Green’s function of v := ordZ ∈ X div is then given by

ϕv = max
{
0,λS

nef(log |bZ |+1), log |bS |+1
}

.

In particular, T(v) = 1, ϕv ∈RPL+(X ), and

ϕv ∈ PL(X ) ⇐⇒ϕv ∈ PL+(X ) ⇐⇒λS
nef ∈Q.

Proof. Let π : Y → X be the blowup along Z , with exceptional divisor E , and denote by S′ =
π⋆S −E the strict transform of S. Since Z has codimension 1 on S, π maps S′ isomorphically
onto S, and takes S′|S′ = π⋆S|S′ − E |S′ to S|S − Z ≡ ω|S − [Z ]. By (ii) and (iii), we thus have
Nef(S′) = Psef(S′), and S′|S′ is not nef.
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Consider the cone C ⊂ N1(Y ) generated by θ :=π⋆ω ∈ Nef(Y ) and α :=−[E ] ∉ Psef(Y ). Since C
contains the class of S′, it follows from Proposition 50 that

1 =λpsef := sup{λ≥ 0 |π⋆ω−λ[E ] ∈ Psef(Y )}

andλ 7→ N(π⋆ω−λE) vanishes on [0,λS
nef], and is affine linear on [λS

nef,1], with value S′ atλ= 1. By
Theorem 57, the concave family (Bλ)λ≤1 of b-divisors associated to ϕv is affine linear on (−∞,0],
[0,λS

nef] and [λS
nef,1], with value

Bλ = 0, λS
nefE and S′+E = S

at λ = 0, λS
nef and 1, respectively. By (6), the result follows, since −ψE = log |bZ | and −ψS =

log |bS |. □
Example 65. Assume k = C, and set (X ,L) = (P3,O (4)). By [21], there exists a smooth quartic
surface S ⊂ X without (−2)-curves, and hence such that Nef(S) = Psef(S), containing a smooth
curve Z such that λS

nef is irrational and less than 1. By Proposition 64, we infer T(v) = 1 and
ϕv ∈RPL+(X ) \ PL(X ) (in contrast with (21)).

7.3. The Lesieutre example

Based on an example by Lesieutre [35], we now exhibit a Green’s function that is not R-PL. This
forms the basis for Theorem B in the introduction.

Proposition 66. Suppose that X admits a class θ ∈ Psef(X ) whose diminished base locus B−(θ) is
Zariski dense. Then there exist ω ∈ Amp(X ) and v ∈ X div such that ZX (ϕω,v ) is Zariski dense in X .
In particular, ϕω,v ∉RPL(X ).

Proof. Note first that θ cannot be big. Otherwise, there would exist an effective R-divisor D ≡ θ,
and hence B−(θ) would be contained in suppD . Pick an ample prime divisor E on X , choose
c ∈ Q>0 large enough such that ω := θ + c[E ] is ample, and set v := c−1 ordE ∈ X div. Since ω

is ample and ω− c[E ] = θ lies on the boundary of Psef(X ), the threshold λpsef = sup{λ ≥ 0 |
ω−λ[E ] ∈ Psef(X )} is equal to c. Thus B−(ω−λpsef[E ]) is Zariski dense, and hence so is ZX (ϕω,v ),
by Corollary 58. The last point follows from Lemma 26. □
Example 67. By [35, Theorem 1.1], the assumptions in Proposition 66 are satisfied when k = C
and X is the blowup of P3 at nine sufficiently general points.

If θ in Proposition 66 is rational, then the proof shows that ω can be taken rational as well, i.e.
ω = c1(L) for an ample Q-line bundle. While no such rational example appears to be known at
present, we can nevertheless exploit the structure of Lesieutre’s example to get:

Proposition 68. Set (X ,L) := (P3,O (1)). Then there exists a finite set Σ ⊂ X div
R

such that ZX (ϕL,Σ)
is Zariski dense in X , and hence ϕL,Σ ∉RPL(X ).

Proof. Let π : Y → X be the blowup at nine sufficiently general points, and denote by
∑9

i=1 Ei the
exceptional divisor. By [35, Remark 4.5, Lemma 5.2], we can pick D = ∑

i ci Ei with ci ∈ R>0 such
that the diminished base locus of π⋆L −D is Zariski dense. As above, this implies that this class
lies on the boundary of the psef cone (it even generates an extremal ray, see [35, Lemma 5.1]), and
the psef threshold

λpsef = sup{λ≥ 0 |π⋆L−λD ∈ Psef(Y )}

is thus equal to 1. The result now follows from Corollary 58, with Σ= {c−1
i ordEi }1≤i≤9. □

It is natural to ask:

Question 69. Can an example as in Proposition 68 be found with Σ⊂ X div?
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8. The non-trivially valued case

In this section, we work over the non-Archimedean field K = k((ϖ)) of formal Laurent series, with
valuation ring K ◦ := k[[ϖ]]. We use [10] as our main reference.

Thus X now denotes a smooth projective variety of dimension n over K . (In Section 9, it will be
obtained as the base change of a smooth projective k-variety). Working “additively”, we view the
elements of the analytification X an as valuations x : K (Y )× →R for subvarieties Y ⊂ X , restricting
to the given valuation on K .

8.1. Models

We define a model of X to be a normal, flat, projective K ◦-scheme X together with the data of an
isomorphism XK ≃ X . The special fiber of X is the projective k-scheme X0 := X ×SpecK Speck.
Each x ∈ X an can be viewed as a semivaluation on X , whose center is denoted by redX (x) ∈X0.
This defines a reduction map redX : X an → X0, which is surjective and anticontinuous (i.e. the
preimage of an open set is closed). For each x ∈ X an we also set

ZX (x) := {redX (x)} ⊂X0.

The preimage under redX of the set of generic points of X0 is finite. We denote it by ΓX ⊂ X an,
and call its elements the Shilov points of X . As X is normal, each irreducible component E of
X0 defines a divisorial valuation xE ∈ X an

K given by

xE := b−1
E ordE , bE := ordE (ϖ);

it is the unique preimage under redX of the generic point of E , and the Shilov points of X are
exactly these valuations xE .

One says that another model X ′ dominates X if the canonical birational map X ′ 99K X ex-
tends to a morphism (necessarily unique, by separatedness). In that case, redX is the composi-
tion of redX ′ with the induced projective morphism X ′

0 →X0. The set of models forms a filtered
poset with respect to domination. The set

X div =
⋃
X

ΓX

of all divisorial valuations is a dense subset of X an.

8.2. Piecewise linear functions

A Q-Cartier Q-divisor D on a model X of X is vertical if it is supported in X0; it then defines a
continuous function on X an called a model function. TheQ-vector space PL(X ) of such functions
is stable under max, and dense in C0(X an).

Definition 70. We define the space RPL(X ) of real piecewise linear functions on X an (R-PL
functions for short) as the smallest R-linear subspace of C0(X an) that is stable under max (and
hence also min) and contains PL(X ).

Fix a model X . An ideal a⊂OX is vertical if its zero locus V (a) is contained in X0. This defines
a nonpositive function log |a| ∈ PL(X ), determined by minus the exceptional divisor of the blowup
of X along a, and such that

log |a|(x) < 0 ⇐⇒ ZX (x) ⊂V (a). (23)

Functions of the form log |a| for a vertical ideal a ⊂ OX span the Q-vector space PL(X ) (see [10,
Proposition 2.2]). As in Section 1.3, it follows that any function in RPL(X ) can be written as a
difference of finite maxima of R+-linear combinations of functions of the form log |a|.
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8.3. Dual complexes and retractions

We use [10, 39] as references.
An snc model is a regular model X such that the Cartier divisor X0 has simple normal crossing

support. Denote by X0 =
∑

i∈I bi Ei its irreducible decomposition. A stratum of X0 is defined as a
non-empty irreducible component of E J :=⋂

j∈J E j for some J ⊂ I . By resolution of singularities,
the set of snc models is cofinal in the poset of all models.

The dual complex ∆X of an snc model X is defined as the dual intersection complex of X0.
Its faces are in 1–1 correspondence with the strata of X0, and further come with a natural integral
affine structure. In particular, the vertices of ∆X are in 1–1 correspondence with the Ei ’s, and
admit a natural realization in X an as the set ΓX of Shilov points xEi .

This extends to a canonical embedding ∆X ,→ X an onto the set of monomial points with
respect to

∑
i Ei . The reduction redX (x) ∈ X0 of a point x ∈∆X ⊂ X an is the generic point of the

stratum of X0 associated with the unique simplex of ∆X containing x in its relative interior. In
particular, ZX (x) is a stratum of X0. This embedding is further compatible with the PL structures,
in the sense that the Q-vector space PL(∆X ) of piecewise rational affine functions on ∆X is
precisely the image of PL(X ) under restriction.

If another snc model X ′ dominates X , then ∆X is contained in ∆X ′ , and PL(∆X ′ ) restricts to
PL(∆X ). Furthermore, the set

X qm :=
⋃
X

∆X ⊂ X an

of quasimonomial valuations coincides with the set of Abhyankar points of X , see [10, Re-
mark 3.8] and [29, Proposition 3.7], while the subset of rational points

⋃
X ∆X (Q) coincides with

the set X div of divisorial valuations. For later use, we also note:

Lemma 71. If X is an snc model, then the image redX ′ (∆X ) ⊂X ′
0 of the dual complex of X under

the reduction map of any other model X ′ is finite.

Proof. Pick an snc model X ′′ that dominates both X and X ′. Then∆X is contained in∆X ′′ , and
redX ′ (∆X ) is thus contained in the image of redX ′′ (∆X ′′ ) under the induced morphism X ′′

0 →X0.
After replacing both X and X ′ with X ′′, we may thus assume without loss that X =X ′. For any
x ∈ ∆X , redX (x) is then the generic point of some stratum of X0, and redX (∆X ) is thus a finite
set. □

Dually, each snc model X comes with a canonical retraction pX : X an →∆X that takes x ∈ X an

to the unique monomial valuation y = pX (x) such that

• ZX (y) is the minimal stratum containing ZX (x);
• x and y take the same values on the Ei ’s.

This induces a homeomorphism X an ∼→ lim←−−X
∆X , which is compatible with the PL structures

in the sense that

PL(X ) =
⋃
X

p⋆X PL(∆X ). (24)

This implies

RPL(X ) =
⋃
X

p⋆X RPL(∆X ), (25)

where RPL(∆X ) is the space R-PL functions on ∆X , i.e. functions that are real affine linear on a
sufficiently fine decomposition of each face into real simplices.
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8.4. Psh functions and Monge–Ampère measures

We use [10, 11, 26] as references.
A closed (1,1)-form θ ∈Z 1,1(X ) in the sense of [10, §4.2] is represented by a relative numerical

equivalence class on some model X , called a determination of θ. It induces a numerical class
[θ] ∈ N1(X ). We say that θ is semipositive, written θ ≥ 0, if θ is determined by a nef numerical
class on some model. In that case, [θ] is nef as well.

To each tuple θ1, . . . ,θn in Z 1,1(X ) is associated a signed Radon measure θ1∧·· ·∧θn on X an of
total mass [θ1] · . . . · [θn], with finite support in X div. More precisely, if all θi are determined by a
normal model X , then θ1 ∧·· ·∧θn has support in ΓX (see [11, §2.7]).

Each ϕ ∈ PL(X ) is determined by a vertical Q-Cartier divisor D on some model X , whose
numerical class defines a closed (1,1)-form ddcϕ ∈ Z 1,1(X ). We say that ϕ is θ-psh for a given
θ ∈Z 1,1(X ) if θ+ddcϕ≥ 0.

From now on, we fix a semipositive form ω ∈ Z 1,1(X ) such that [ω] is ample. A function
ϕ : X an → R∪ {−∞} is ω-plurisubharmonic (ω-psh for short) if ϕ ̸≡ −∞ and ϕ can be written as
the pointwise limit of a decreasing net of ω-psh PL functions. The space PSH(ω) is closed under
max and under decreasing limits.

By Dini’s lemma, the space CPSH(ω) of continuousω-psh functions coincides with the closure
in C0(X ) (with respect to uniform convergence) of the space of ω-psh PL functions.

Each ϕ ∈ PSH(ω) satisfies the “maximum principle”

sup
X
ϕ= max

ΓX

ϕ (26)

for any model X determining ω (see [26, Proposition 4.22]). For snc models, [10, §7.1] more
precisely yields:

Lemma 72. Pick ϕ ∈ PSH(ω) and an snc model X on which ω is determined. Then:

(i) the restriction of ϕ to any face of ∆X is continuous and convex;
(ii) the net (ϕ◦pX )X is decreasing and converges pointwise to ϕ.

Remark 73. The definition of PSH(ω) given here differs from the one in [10], but Theorem 8.7
in loc. cit. implies that the two definitions are equivalent.

To each continuousω-psh function ϕ (or, more generally, any ω-psh function of finite energy)
is associated its Monge–Ampère measure MA(ϕ) = MAω(ϕ), a Radon probability measure on X
uniquely determined by the following properties:

• if ϕ is PL, then MA(ϕ) =V −1(ω+ddcϕ)n with V := [ω]n ;
• ϕ 7→ MA(ϕ) is continuous along decreasing nets.

By the main result of [11], any Radon probability measure µwith support in the dual complex∆X

of some snc model can be written as µ= MA(ϕ) for some ϕ ∈ CPSH(ω), unique up to an additive
constant.

8.5. Green’s functions

As in the trivially valued case, we can consider the Green’s function associated to a nonpluripolar
set Σ⊂ X an. Here we will only consider the following case. Suppose x ∈ X div is a divisorial point,
and define

ϕx :=ϕω,x := sup{ϕ ∈ PSH(ω) |ϕ(x) ≤ 0}.

It follows from [11, §8.4] that ϕx ∈ CPSH(ω) satisfies MA(ϕx ) = δx and ϕx (x) = 0.

Proposition 74. If dim X = 1 and [ω] is a rational class, then ϕx ∈ PL(X ).
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Proof. This follows from Proposition 3.3.7 in [42], and can also be deduced from properties of
the intersection form on X0 for any snc model X , as in [23, Theorem 7.17]. □

This proves part (i) of Theorem A in the introduction. We will prove (ii) in Section 9.5.

8.6. Invariance under retraction

It will be convenient to introduce the following terminology:

Definition 75. We say that a function ϕ on X an is invariant under retraction if ϕ = ϕ ◦ pX for
some (and hence any sufficiently high) snc model X of X .

Example 76. By (24) and (25), a functionϕ ∈ C0(X an) lies in PL(X ) (resp.RPL(X )) iffϕ is invariant
under retraction and restricts to a Q-PL (resp. R-PL) function on the dual complex associated to
any (equivalently, any sufficiently high) snc model.

Remark 77. The condition ϕ = ϕ ◦ pX in Definition 75 is stronger than the “comparison
property” of [36, Definition 3.11], which merely requires ϕ = ϕ ◦ pX to hold on the preimage
under pX of the n-dimensional open faces of some dual complex ∆X , i.e. the preimage of the
0-dimensional strata of X0 under the reduction map.

Proposition 78. If ϕ ∈ PSH(ω) is invariant under retraction, then ϕ ∈ CPSH(ω), and MA(ϕ) is
supported in some dual complex.

The first point is a direct consequence of Lemma 72, while the second one is a special case of
the following more precise result. Recall first that the ω-psh envelope of f ∈ C0(X an) is defined as

P( f ) = Pω( f ) := sup{ϕ ∈ PSH(ω) |ϕ≤ f }.

By [10], it lies in CPSH(ω).

Theorem 79. For anyϕ ∈ CPSH(ω) and any snc model X on whichω is determined, the following
properties are equivalent:

(i) MA(ϕ) is supported in ∆X ;
(ii) ϕ= P(ϕ◦pX ).

Proof. For any ψ ∈ PSH(ω), we have ψ≤ψ◦pX (see Lemma 72(ii)), and hence

P(ϕ◦pX ) = sup
{
ψ ∈ PSH(ω) |ψ≤ϕ on ∆X

}
. (27)

Assume (i). By the domination principle (see [11, Lemma 8.4]), any ψ ∈ PSH(ω) such that ψ ≤ ϕ

on suppMA(ϕ) ⊂∆X satisfiesψ≤ϕ on X an. In view of (27) this yields (ii). Conversely, assume (ii).
For any finite set of rational points Σ⊂∆X (Q) ⊂ X div, consider the envelope

ϕΣ := sup{ψ ∈ PSH(ω) |ψ≤ϕ on Σ}.

Then ϕΣ lies in CPSH(ω), and MA(ϕΣ) is supported in Σ (see [11, Lemma 8.5]). The net (ϕΣ),
indexed by the filtered poset of finite subsets Σ ⊂ ∆X (Q), is clearly decreasing, and bounded
below byϕ. Its limitψ := limΣϕΣ is thusω-psh, and we claim that it coincides withϕ. Indeed, we
haveψ≤ϕ on

⋃
ΣΣ=∆X (Q), and hence on∆X , where bothψ andϕ are continuous. By (27), this

yieldsψ≤ P(ϕ◦pX ) =ϕ. By continuity of the Monge–Ampère operator along decreasing nets, we
infer MA(ϕΣ) → MA(ϕ) weakly on X , which yields (i) since each MA(ϕΣ) is supported in ∆X . □

In view of Proposition 78 and Example 76, it is natural to conversely ask:

Question 80. If the Monge–Ampère measure MAω(ϕ) of ϕ ∈ CPSH(ω) is supported in some dual
complex, is ϕ invariant under retraction?



36 Sébastien Boucksom and Mattias Jonsson

This question appears as [25, Question 2], and is equivalent to asking whether ϕ◦pX isω-psh
for some high enough model X , by Theorem 79. In Example 99 below (see also Theorem A) we
show that the answer is negative. In this example, the support of MAω(ϕ) is even a finite set. One
can nevertheless ask:

Question 81. Assume that ϕ ∈ CPSH(ω) is such that the support of the Monge–Ampère measure
MAω(ϕ) is a finite set contained in some dual complex.

(i) is ϕ R-PL on each dual complex?
(ii) if ω is rational, is ϕQ-PL on each dual complex?

Example 99 below provides a negative answer to (ii). Indeed the function ϕ in this example
is R-PL but not Q-PL, and by (24), (25), this implies that ϕ fails to be Q-PL on some dual
complex ∆X . The answer to (i) is also likely negative in general, as suggested by Nakayama’s
counterexample to the existence of Zariski decompositions on certain toric bundles over an
abelian suface [40, p. IV.2.10].

Question 82. Suppose X is a toric variety, and letϕ ∈ CPSH(ω) be a torus invariantω-psh function
such that MAω(ϕ) is supported on a compact subset of NR ⊂ X an. Is ϕ invariant under retraction?

Question 83. If ϕ ∈ CPSH(ω) is invariant under retraction, is the same true for ϕ|Z an , if Z ⊂ X is
a smooth subvariety?

8.7. The center of a plurisubharmonic function

We end this section by a version of Theorem 24 in our present context. In analogy with (7), for
any subset S ⊂ X an and any model X we set

ZX (S) :=
⋃
x∈S

ZX (x).

This is thus the smallest subset of X0 that is invariant under specialization and contains the
image redX (S) of S under the reduction map redX : X an → X0. For any higher model X ′, the
induced proper morphism X ′

0 →X0 maps ZX ′ (S) onto ZX (S).
We say that S ⊂ X an is invariant under retraction if p−1

X
(S) = S for some (and hence any

sufficiently high) snc model X .

Lemma 84. If S ⊂ X an is invariant under retraction, then ZX (S) is Zariski closed for any model X .

Proof. Pick an snc model X ′ dominating X such that S = p−1
X ′ (S). Since ZX (S) is the image of

ZX ′ (S) under the proper morphism X ′
0 → X0, we may replace X with X ′ and assume without

loss that X = X ′. The set ZX (S) obviously contains ZX (S ∩∆X ), which is Zariski closed since
ZX (y) is a stratum of X0 for any y ∈ ∆X . Conversely, pick x ∈ S, and set y := pX (x) ∈ ∆X . Then
y ∈ p−1

X
(S) = S, and ZX (x) ⊂ ZX (y) since it follows from the definition of pX that redX (x) is a

specialization of redX (y). This shows, as desired, that ZX (S) = ZX (S ∩∆X ) is Zariski closed. □
Definition 85. Given ϕ ∈ PSH(ω) and a model X , we define the center of ϕ on X as

ZX (ϕ) := ZX ({ϕ< supϕ}) =
⋃

{ZX (x) | x ∈ X ,ϕ(x) < supϕ}.

Example 86. If ϕ= log |a| for a vertical ideal a⊂OX , then ZX (ϕ) =V (a).

Theorem 87. For any ϕ ∈ PSH(ω) and any model X , the following holds:

(i) ZX (ϕ) is an at most countable union of subvarieties of X0;
(ii) if ϕ is invariant under retraction, then ZX (ϕ) is Zariski closed;

(iii) ZX (ϕ) = redX ({ϕ< supϕ});
(iv) ZX (ϕ) is a strict subset of X0 as soon as X determines ω.
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Question 88. Is it true that {ϕ< supϕ} = red−1
X (ZX (ϕ)) as in Theorem 24?

Proof. By [11, Proposition 4.7], ϕ can be written as the pointwise limit of a decreasing sequence
(ϕm)m∈N of ω-psh PL functions. Since each ϕm is in particular invariant under retraction (see
Example 76), Lemma 84 implies that ZX {(ϕm < supϕ}) is Zariski closed for each m. On the
other hand, since ϕm ↘ ϕ pointwise on X , we have {ϕ < supϕ} = ⋃

m{ϕm < supϕ}, and hence
ZX (ϕ) =⋃

m ZX ({ϕm < supϕ}). This proves (i), while (ii) is a direct consequence of Lemma 84.
Pick x ∈ X an such that ϕ(x) < supϕ. To prove (iii), we need to show that any ξ ∈ ZX (x) lies in

redX ({ϕ< supϕ}). By Lemma 72, we can find a high enough snc model X ′ such that x ′ := pX ′ (x)
satisfies ϕ(x ′) < supϕ. By properness of X ′

0 → X0, ZX (x) is the image of ZX ′ (x), which is itself
contained in ZX ′ (x ′). After replacing X with X ′ and x with x ′, we may thus assume without
loss that X is snc and x lies in ∆X . Pick y ∈ X an with redX (y) = ξ (which exists by surjectivity
of the reduction map, see [24, Lemma 4.12]). Set z := pX (y), and denote by σ the unique face
of ∆X that contains z in its relative interior, the corresponding stratum of X0 being the smallest
one containing ξ. Since the latter point lies on the stratum ZX (x), it follows that σ contains x
(possibly on its boundary). Since ϕ is convex and continuous on σ (see Lemma 72), it can only
achieve its supremum at the interior point z if it is constant on σ. As x ∈σ satisfies ϕ(x) < supϕ,
it follows that ϕ(z) < supϕ as well. Since z = pX (y), this implies ϕ(y) ≤ ϕ(z) < supϕ (again by
Lemma 72). Thus ξ= redX (y) ∈ redX ({ϕ< supϕ}), which proves (iii).

Finally, assume that X determines ω. By (26), we can find an irreducible component E of X0

whose corresponding Shilov point xE ∈ ΓX satisfies ϕ(xE ) = supϕ. Since xE is the only point of
X an whose reduction on X0 is the generic point of E , it follows that the latter does not belong to
ZX (ϕ), which is thus a strict subset of X0. □

9. The isotrivial case

We now consider the isotrivial case, in which the variety over K = k((ϖ)) is the base change XK of
a smooth projective variety X over the (trivially valued) field k.

9.1. Ground field extension

We have a natural projection

π : X an
K −→ X an,

while Gauss extension provides a continuous section

σ : X an ,→ X an
K

onto the set of k×-invariant points (see [12, Proposition 1.6]). By [12, Corollary 1.5], we further
have:

Lemma 89. If v ∈ X an is divisorial (resp real divisorial) then σ(v) ∈ X an
K is divisorial (resp.

quasimonomial).

The base change of X to the valuation ring K ◦ := k[[ϖ]] defines the trivial model

Xtriv := XK ◦

of XK , whose special fiber Xtriv,0 will be identified with X . More generally, each test configuration
X → A1 = Speck[ϖ] for X induces via base change under k[ϖ] → k[[ϖ]] = K ◦ a k×-invariant
model of XK , that shares the same vertical ideals and vertical divisors as X , and will simply be
denoted by X , for simplicity.



38 Sébastien Boucksom and Mattias Jonsson

9.2. Psh functions

For any θ ∈ N1(X ), we denote by π⋆θ ∈ Z 1,1(XK ) the induced closed (1,1)-form, determined
by the relative numerical class induced by θ on the trivial model. If ω ∈ Amp(X ), then [π⋆ω] ∈
N1(XK ) coincides with the base change of ω, and hence is ample.

Theorem 90. Pick ω ∈ Amp(X ) and ϕ ∈ PSH(ω). Then:

(i) π⋆ϕ ∈ PSH(π⋆ω);
(ii) if ϕ further lies in CPSH(ω), then MAπ⋆ω(π⋆ϕ) =σ⋆MAω(ϕ).

Lemma 91. For any ϕ ∈ PL(X ) and θ ∈ N1(X ), the following holds:

(i) π⋆ϕ ∈ PL(XK );
(ii) (π⋆θ+ddcπ⋆ϕ)n =σ⋆(θ+ddcϕ)n ;

(iii) ϕ is θ-psh iff π⋆ϕ is π⋆θ-psh.

Proof. The function ϕ is determined by a vertical Q-Cartier divisor D on a test configuration X ,
that may be taken to dominate the trivial one (see [13, Theorem 2.7]). The induced vertical divisor
on the induced model of XK then determinesπ⋆ϕ. This proves (i), and also (ii), by comparing [11,
(2.2)] and [13, (3.6)]. Finally, denote by θX the pullback of θ to N1(X /A1). Then ϕ is θ-psh iff
(θX + [D])|X0 is nef, which is also equivalent to π⋆ϕ being π⋆θ-psh. This proves (iii). □

Proof of Theorem 90. Write ϕ as the limit on X an of a decreasing net of ω-psh PL functions ϕi .
By Lemma 91, π⋆ϕi is PL and π⋆ω-psh. Since it decreases pointwise on X an

K to π⋆ϕ, the latter is
π⋆ω-psh, which proves (i). For each i , Lemma 91(ii) further implies MAπ⋆ω(π⋆ϕi ) =σ⋆MAω(ϕi ).
Ifϕ is continuous, then MAω(ϕ) and MAπ⋆ω(π⋆ϕ) are both defined, and are the limits of MAω(ϕi )
and MAπ⋆ω(π⋆ϕi ), respectively. This proves (ii). □

9.3. PL structures

As a direct consequence of Lemma 91, the projection π : X an
K → X an is compatible with the PL

structures:

Corollary 92. We have π⋆PL(X ) ⊂ PL(XK ) and π⋆RPL(X ) ⊂RPL(XK ).

As we next show, this is also the case for Gauss extension.

Theorem 93. We have σ⋆PL(XK ) = PL(X ) and σ⋆RPL(XK ) =RPL(X ).

Any vertical ideal a on Xtriv, being trivial outside the central fiber, can be viewed as a vertical
ideal on X ×A1, and ã :=Gm ·a is then the smallest flag ideal containing a.

Lemma 94. With the above notation we have σ⋆ log |a| =ϕã.

Proof. Pick an ample line bundle L on X , and denote by Ltriv the trivial model of LK , i.e. the
pullback of L to the trivial model Xtriv = XK ◦ . After replacing L with a large enough multiple,
we may assume Ltriv ⊗ a is generated by finitely many sections si ∈ H0(Xtriv,Ltriv). Then
log |a| = maxi log |si |, where |si | denotes the pointwise length of si in the model metric induced
by Ltriv. For each i write si =

∑
λ∈Z si ,λϖ

λ where si ,λ ∈ H0(X ,L), and denote by bλ ⊂ OX the ideal
locally generated by (si ,λ)i . Then ã = ∑

λ∈Zbλϖλ. By definition of Gauss extension, we have for
any v ∈ X an

log |si |(σ(v)) = max
λ∈Z

{log |si ,λ|+λ}.

Thus σ⋆ log |a| = maxλ∈Z{ψλ − λ} with ψλ := maxi log |si ,λ| = log |bλ|, and hence σ⋆ log |a| =
maxλ{log |bλ|−λ} =ϕã. □
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Proof of Theorem 93. By Corollary 92 we have π⋆PL(X ) ⊂ PL(XK ). Since PL(XK ) is generated by
functions of the form log |a| for a vertical ideal a ⊂ OXtriv , Lemma 94 yields σ⋆PL(XK ) ⊂ PL(X ),
and hence also σ⋆RPL(XK ) ⊂RPL(X ). This completes the proof, since σ⋆π⋆ = id. □

9.4. Centers

Next we study the relationships between the two center maps ZX : X an → X and ZXtriv : X an
K →

Xtriv,0 = X .

Lemma 95. For all x ∈ X an
K and v ∈ X an we have

ZXtriv (x) ⊂ ZX (π(x)), ZX (v) = ZXtriv (σ(v)).

Proof. Denote by b⊂OX the ideal of the subvariety ZX (π(x)). Then a := b+ (ϖ) is a vertical ideal
on Xtriv such that V (a) =V (b) = ZX (π(x)) under the identification Xtriv,0 = X . Further,

log |a|(x) = max{log |b|(π(x)),−1} < 0,

and hence ZXtriv (x) ⊂V (a) = ZX (π(x)), see (23).
Applying this to x = σ(v) yields ZXtriv (σ(v)) ⊂ ZX (v). To prove the converse inclusion, denote

by a⊂OXtriv the ideal of ZXtriv (σ(v)). Since σ(v) is k×-invariant, a=∑
λ∈Zaλϖ−λ is (induced by) a

flag ideal. Further, ϕa(v) = log |a|(σ(v)) < 0, and hence ZX (v) ⊂ ZX (ϕa). By Example 14 we have
ZX (ϕa) =V (a0). The latter is also equal to the zero locus of a0+(ϖ) on Xtriv, which is contained in
V (a) = ZXtriv (σ(v)) since a⊂ a0 + (ϖ). Thus ZX (v) ⊂ ZXtriv (σ(v)), which concludes the proof. □

As a consequence we get:

Proposition 96. If ω ∈ Amp(X ) and ϕ ∈ PSH(ω), then ZXtriv (π⋆ϕ) = ZX (ϕ).

Proof. Pick v ∈ X an such thatϕ(v) < supϕ, and set x :=σ(v). Then π⋆ϕ(x) =ϕ(v) and supπ⋆ϕ=
supϕ, so x lies in {π⋆ϕ < supπ⋆ϕ}, and hence ZX (v) = ZXtriv (x) ⊂ ZXtriv (π⋆ϕ) by Lemma 95.
This implies ZX (ϕ) ⊂ ZXtriv (π⋆ϕ). Conversely, assume x ∈ X an

K satisfies π⋆ϕ(x) < supπ⋆ϕ. Then
v := π(x) lies in {ϕ < supϕ}, and hence ZX (v) ⊂ ZX (ϕ). In view of Lemma 95, this implies
ZXtriv (x) ⊂ ZX (ϕ), and hence ZXtriv (π⋆ϕ) ⊂ ZX (ϕ). □

Combining Proposition 96 and Theorem 87, we obtain

Corollary 97. Letϕ ∈ PSH(ω), whereω ∈ Amp(X ), and suppose that π⋆ϕ ∈ PSH(π⋆ω) is invariant
under retraction. Then ZX (ϕ) ⊂ X is a Zariski closed proper subset of X .

9.5. Examples

We are now ready to prove Theorems A and B in the introduction, and also provide additional
examples. As in the previous section, X denotes a smooth projective variety over k. Pick a
class ω ∈ Amp(X ), a k×-invariant divisorial point x ∈ X div

K , and denote as in Section 8.5 by
ϕx ∈ CPSH(π⋆ω) the Green’s function associated to x; this is the unique solution to the Monge–
Ampère equation

MAπ⋆ω(ϕx ) = δx and ϕx (x) = 0.

By Lemma 89, we have x = σ(v) with v := π(x) ∈ X div. If ϕv ∈ CPSH(ω) denotes the Green’s
function of {v}, see Section 6.1, then we have

ϕx =π⋆ϕv .

Indeed, π⋆ϕv (x) =ϕv (v) = 0, and by Theorem 90, we have MAπ⋆ω(π⋆ϕv ) =σ⋆δv = δx .
Our goal is to investigate the regularity of ϕx .
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Corollary 98. If dim X = 1, then ϕx ∈ PL(XK ). If dim X = 2, then ϕx ∈RPL(XK ).

Proof. The first statement follows from Proposition 74. Now suppose dim X = 2. By Theorem 60,
ϕv ∈RPL(X ), so that ϕx ∈RPL(XK ), see Corollary 92. □

However, even when ω is rational, ϕx is in general notQ-PL:

Example 99. Example 63 gives an example of an abelian surface X , a rational class ω ∈ Amp(X ),
and a divisorial valuation v ∈ X div such that ϕv ∈ RPL(X ) \ PL(X ). If x = σ(v), then ϕx = π⋆ϕv ∈
RPL(XK ) \ PL(XK ), by Theorem 93.

Example 100. Similarly, Example 65 gives an example of a divisorial valuation v ∈ P3,div such
that if we set ω = c1(O (4)), then ϕv := ϕω,v ∈ RPL(X ) \ PL(X ). If x = σ(v), then ϕx = π⋆ϕv ∈
RPL(XK ) \ PL(XK ), by Theorem 93.

Examples 99 and 100 establish Theorem A(ii). They also provide a negative answer to Ques-
tion 81(ii). Indeed, a function ϕ ∈ C0(X an

K ) lies in RPL(XK ) (resp. PL(XK )) iff ϕ is invariant under
retraction and restricts to an R-PL (resp.Q-PL) function on each dual complex, see Example 76.

As the next example shows, if dim X = 3, then ϕx need not be R-PL. In fact, it may not even be
invariant under retraction.

Example 101. Example 67 shows that we may have dim X = 3 and ZX (ϕv ) Zariski dense in X ,
and it follows from Corollary 97 that ϕx cannot be invariant under retraction.

It could, however, a priori be the case that the restriction ϕx to any dual complex is R-PL, see
Question 81(i).

In Example 101, based on Lesieutre’s work, the class ω is irrational. We do not know of an
example for which the class ω is rational. However, the following example provides a proof of
Theorem B in the introduction.

Example 102. Set X =P3
k andω := c1(O (1)) ∈ N1(X ). By Proposition 68, there existsψ ∈ CPSH(ω)

such that MAω(ψ) is supported in a finite subset Σ ⊂ X div
R

, and ZX (ψ) is Zariski dense in X .
Theorem 90 then shows that ϕ := π⋆ψ lies in CPSH(π⋆ω), MAπ⋆ω(ϕ) = σ⋆MAω(ψ) has finite
support in some dual complex (see Lemma 89), while Corollary 97 shows that ϕ cannot be
invariant under retraction.
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1. Introduction

Let X be a compact Kähler manifold, and let u ∈ H 0(X ,Ωp
X ) be a holomorphic p-form on

X . As a consequence of the Kähler identity for the Laplacians ∆d = 2∆∂ one obtains that the
holomorphic form is d-closed, i.e. du = 0. Twenty years ago Jean-Pierre Demailly used a very
clever “integration by parts” to generalise this statement to forms with values in certain line
bundles:
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Theorem 1 ([3, Main Thm.]). Let X be a compact Kähler manifold. Let L be a pseudo-effective
holomorphic line bundle on X . Let

u ∈ H 0(X ,Ωp
X ⊗L⋆)

be a non-zero holomorphic section, and let Su ⊂ TX be the saturated subsheaf given by vector fields
ξ such that the contraction iξu vanishes. Then Su is integrable, i.e. it defines a (possibly singular)
holomorphic foliation on X .

Moreover, let h be a possibly singular metric such that iΘh(L) Ê 0 on X in the sense of currents.
Then one has D ′

h⋆u = 0 and (L,h) has flat curvature along the leaves. Here D ′
h⋆ is the (1,0)-part of

the Chern connection with respect to the dual metric h⋆ on L⋆.

Demailly’s main motivation for this result was to prove that if a compact Kähler manifold
admits a contact structure, then the canonical bundle KX is never pseudoeffective [3, Cor. 2].
Moreover Theorem 1 has turned out to be a very efficient tool for the study of foliations with
vanishing first Chern class [10, 14, 17]. In view of the increased interest in foliations on singular
spaces (cf. e.g. [2, 5]) it seems worthwhile to look at Demailly’s arguments in this setting. In
this paper we extend his result to singular spaces with klt (resp. log-canonical) singularities
(see Section 2 for the definitions), i.e. the most general classes of singularities appearing in the
minimal model program. Our main result is:

Theorem 2. Let Y be a normal compact Kähler space. Let A be a rank one reflexive sheaf such
that the reflexive power A [m] is locally free and pseudoeffective for some m ∈N. Let

u ∈ H 0(Y , (Ωp
Y ⊗A ⋆)⋆⋆)

be a non-zero holomorphic section. Let Su ⊂ TY be the saturated subsheaf given by vector fields ξ
such that the contraction iξu vanishes. Assume one of the following:

(1) Y has klt singularities; or
(2) Y has log-canonical singularities and p = 1.

Then Su is integrable, i.e. it defines a (possibly singular) foliation on Y .

For applications in foliation theory it is interesting to verify if A has flat curvature along
the leaves of Su . Since A is not locally free the precise formulation would be a bit awkward,
but flatness holds for the corresponding line bundle (L,h) on a resolution of singularities (see
Propositions 8, 10 and Remark 6).

Our basic strategy is similar to the proof of Theorem 1, except that we have to carry out the
computation on a resolution of singularities π : X → Y . If A is not locally free this leads to some
well-known difficulties, for example the saturation ofπ⋆A inΩp

X is not always pseudoeffective [9,
16]. Therefore we consider forms with logarithmic poles along the exceptional divisor E of
the resolution π, in particular we obtain that the saturation in Ω

p
X (logE) is pseudoeffective, cf.

Corollary 13.
This leads us to the following problem:

Question 3. Let (X ,ωX ) be a compact Kähler manifold, and let E =∑
Ei be a snc divisor. Let (L,h)

be a holomorphic line bundle on X where h is a possibly singular metric such that iΘh(L) Ê 0 on X
in the sense of currents. Let (L⋆,h⋆) be the dual metric.

Let u ∈ H 0(X ,Ωp
X (logE)⊗L⋆). Can we prove that Su is a holomorphic foliation and D ′

h⋆u = 0
on X \ E ?

If p = 1, the problem is totally solved in [19, Thm. 5]1. It is still open when p Ê 2. We give a
positive answer to this question when the metric h is smooth (Proposition 5). Our main technical
result (Proposition 8) gives a positive answer making an assumption on the singularity of h along

1We thank Stéphane Druel and Daniel Greb for bringing this reference to our attention.
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certain irreducible components Ei . This integrability condition can be verified for a resolution of
singularities X → Y of a klt space, thereby establishing the first part of Theorem 2. When p = 1,
by using the techniques in our article, we can also give an alternative proof of [19, Thm. 5], cf.
Proposition 10. This implies the second part of Theorem 2.

Patrick Graf indicated an alternative path of proof for the second part of Theorem 2: by [7,
Thm. 1.4]2 a holomorphic 1-form on the smooth locus of a log-canonical space extends to
a resolution, even without admitting logarithmic poles. Therefore we can copy the proof of
Theorem 2 and verify the technical condition of Proposition 8. Note that [7, Thm. 1.6] gives an
example of a 2-form on a log-canonical 3-fold that does not extend to a resolution unless we
admit logarithmic poles. Therefore this approach does not allow to generalise the second part of
Theorem 2 to forms in (Ωp

Y ⊗A ⋆)⋆⋆ with p Ê 2.
As a first application, we can consider singular contact spaces, cp. [1, 18]: a normal compact

Kähler space of dimension 2n +1 with log-canonical singularities has a contact structure if there
exists a reflexive subsheaf F ⊂ TX of rank 2n such that on the smooth locus Xnons ⊂ X ,

• the inclusion F ⊂ TX is an injective morphism of vector bundles; and
• the map

∧2F −→ TX /F

induced by the Lie bracket is surjective. In particular F ⊂ TX is not integrable.

If we set L := (TX /F )∗∗, we obtain as in the smooth case that ωX ≃ L[−(n+1)]. In particular some
reflexive power of L is locally free.

Corollary 4. Let X be a normal compact Kähler space with log-canonical singularities which
admits a contact structure. Then the canonical sheaf ωX is not pseudoeffective.

Indeed ωX is pseudoeffective if and only if L∗ is pseudoeffective. Yet then we can apply
Theorem 2 to the section of (ΩX ⊗ L)∗∗ defined by the inclusion L∗ → ΩX and obtain that its
kernel F ⊂ TX is integrable, a contradiction.

Since it is not clear if a singular contact space admits a resolution by a contact manifold, the
corollary does not reduce to Demailly’s theorem [3, Cor. 2].
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2. Notation and terminology

For general definitions in complex and algebraic geometry we refer to [4, 11], for the terminology
of singularities of the MMP we refer to [13]. Manifolds and normal complex spaces will always be
supposed to be irreducible.

For the convenience of the reader, let us recall the definition of klt (resp. log-canonical)
singularities (cf. [13, Def. 2.34] for more details): let Y be a normal complex space such that some
reflexive power ω[m]

Y of the canonical sheaf ωY is locally free. Let µ : X → Y be a resolution of

2The statement is formulated for algebraic varieties, but in view of [12] should hold for analytic spaces.
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singularities such that the exceptional locus is a simple normal crossings divisor. Then we can
write

ωm
X ≃µ∗ω[m]

Y ⊗OY

(∑
bi Ei

)

where the Ei ⊂ Y are µ-exceptional prime divisors. The space Y has klt (resp. log-canonical)
singularities if bi

m >−1 (resp. bi
m Ê−1) for all i .

Given a normal complex space Y , we denote by Ω
[p]
Y := (Ωp

Y )⋆⋆ the sheaf of holomorphic
reflexive p-forms. If Y has klt singularities we know by [12, Thm. 1.1] that this coincides with
the sheaf of holomorphic p-forms that extend to a resolution of singularities f : X → Y , i.e. we
have f∗Ω

p
X ≃Ω[p]

Y .
For a reflexive sheaf F on Y , we denote by F [m] := (F⊗m)⋆⋆ the m-th reflexive power. Given

a surjective morphism ϕ : X → Y we denote by ϕ[⋆]F the reflexive pull-back (ϕ⋆F )⋆⋆.

3. Twisted logarithmic forms

Proposition 5. Let X be a compact Kähler manifold, and let E = ∑
Ei be a snc divisor. Let

(L,h) be a holomorphic line bundle on X where h is a smooth metric such that iΘh(L) Ê 0. Let
u ∈ H 0(X ,Ωp

X (logE)⊗ L⋆) and (L⋆,h⋆) be the dual metric on (L,h). Then D ′
h⋆u = 0 on X and

iΘh(L)∧u ∧u = 0.

Proof. If L is a trivial line bundle, it is done by [15]. We generalize it to the twisted setting by the
following argument.

Step 1. Since h is a smooth metric, we know that D ′
h⋆u ∈ C∞(X ,Ωp+1

X (logE)⊗L⋆). We show in

this step that D ′
h⋆u ∈C∞(X ,Ωp+1

X ⊗L⋆).
We consider the residue of u and D ′

h⋆u on Ei . First of all, by a direct calculation, we have

ResEi (D ′
h⋆u) =−D ′

h⋆ ResEi (u) on Ei . (1)

In fact, let Ω be a neighborhood of a generic point of Ei . We suppose that Ei is defined by z1 = 0
and h = e−ϕ on Ω. Then we can write

u = dz1

z1
∧ f + g

for two smooth forms f , g on Ω.
For the RHS of (1), since ResEi (u) = f and we obtain

−D ′
h⋆ ResEi (u) =−(∂ f +∂ϕ∧ f )|Ei .

For the LHS of (1), we have

ResEi (D ′
h⋆u) = ResEi

(
D ′

h⋆

(
dz1

z1
∧ f

))
= ResEi

(
−dz1

z1
∧∂ f +∂ϕ∧ dz1

z1
∧ f

)
=−(∂ f +∂ϕ∧ f )|Ei .

Then we obtain (1).
Note that ResEi (u) ∈ H 0(Ei ,Ωp−1

Ei
(log(E −Ei ))⊗L⋆). By induction on dimension, we know that

ResEi (u) is D ′
h⋆-closed on Ei . Then (1) implies that ResEi (D ′

h⋆u) = 0. Therefore the form D ′
h⋆u is

a smooth form on the total space X .

Step 2. Let N ∈N⋆ and letΞN (x) be a smooth function which equals to 1 on [0, N ], equals to 0 on
[N +1,∞] and 0 ÉΞ′

N (x) É 1. Let sE be the canonical section of E . We consider the integration
∫

X
ΞN (log(− log |sE |)){D ′

h⋆u,D ′
h⋆u}∧ωn−p−1

X . (2)

Here |sE | denotes the norm of sE with respect to a fixed smooth metric on E such that |sE | < 1
everywhere.
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By integration by parts, (2) equals to

=
∫

X
{D ′

h⋆ (ΞN (log(− log |sE |))u),D ′
h⋆u}∧ωn−p−1

X −
∫

X
{∂(ΞN (log(− log |sE |)))∧u,D ′

h⋆u}∧ωn−p−1
X

=−
∫

X
(−1)pΞN (log(− log |sE |)){u,∂(D ′

h⋆u)}∧ωn−p−1
X −

∫

X
{∂(ΞN (log(− log |sE |)))∧u,D ′

h⋆u}∧ωn−p−1
X

=−
∫

X
iΘh(L)ΞN · {u,u}∧ωn−p−1

X −
∫

X

{
Ξ′

N ·∂ log |sE |∧u

log |sE |
,D ′

h⋆u

}
∧ωn−p−1

X . (3)

Since iΘh(L) Ê 0, the first term of (3) is semi-negative. For the second term of (3), by Step 1,

we know that D ′
h⋆u is smooth on X . Together with

dsEi
sEi log |sEi |

∧ dsEi
sEi

= 0, we know that the second

term of (3) is controlled by ∫

NÉlog(− log |sE |)ÉN+1

1∏
i |sEi |

ωn
X ,

which converges to zero when N → 0.
As a consequence, when N →+∞, the upper limit of (3) will not be strictly positive. Since (2)

is always positive, we obtain

lim
N→+∞

∫

X
ΞN (log(− log |sE |)){D ′

h⋆u,D ′
h⋆u}∧ωn−p

X = 0. (4)

Therefore D ′
h⋆u = 0 on X . □

Remark 6. For the convenience of the reader let us recall why D ′
h⋆u = 0 implies that (L,h) has

flat curvature along the generic leaf, following [3, Main thm]. Let x ∈ X be a general point and fix
a holomorphic base eL of L near x. Then the metric h is written locally as h = e−ϕ. In these local
coordinates, D ′

h⋆u = 0 means that ∂ϕ∧u =−∂u. By taking the ∂, we obtain ddcϕ∧u = 0. Now we
suppose that the leaves of the foliation near the generic point x is given by

z1 = c1, z2 = c2, . . . , zr = cr

where the ci are constants. Then u depends only on dz1, . . . ,dzr near x. Therefore the condition

ddcϕ∧u = 0 implies that ∂2ϕ

∂z j ∂zk
= 0 for j ,k > r . In other words, (L,h) is flat along the generic leaf.

Remark 7. By a standard argument, it is easy to generalize the above proposition to the case
when the metric (L,h) is of analytic singularity. However, it is unclear whether we can generalize
it to the case of arbitrary singularity cf. Question 3.

In the rest of the section, we will confirm Question 3 in two special cases.

Proposition 8. Let (X ,ωX ) be a compact Kähler manifold, and let E =∑r
i=1 Ei be a snc divisor. Let

(L,h) be a holomorphic line bundle on X where h is a possibly singular metric such that iΘh(L) Ê 0
on X in the sense of currents. Let (L⋆,h⋆) be the dual metric. Let u ∈ H 0(X ,Ωp

X (logE)⊗L⋆). We
assume that ResEi (u) ̸= 0 for every 1 É i É k and ResEi (u) = 0 for every k < i É r .

We write h = e−ϕ ·h0, where ϕ is a quasi-psh function on X and h0 is a smooth metric on L. If
the weight function ϕ satisfies:

ϕÉ−2
k∑

i=1
ln(− ln |sEi |)+C , (5)

where sEi is the canonical section of Ei , then D ′
h⋆u = 0 and iΘh(L)∧u ∧u = 0 on X \ E, where D ′

h⋆

is the connection with respect to h⋆.

Remark 9. Note that if the Lelong number of ϕ along Ei is strictly positive for every i É k, then
ϕ satisfies the condition (5).

Proof. The proof is divided into two steps.
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Step 1. Let N ∈N⋆ and letΞN (x) be a smooth function which equals to 1 on [0, N ], equals to 0 on
[N +1,∞] and 0 ÉΞ′

N (x) É 1. We consider the integration
∫

X
Ξ2

N (log(log(− log |sE |))){D ′
h⋆u,D ′

h⋆u}∧ωn−2
X . (6)

Since D ′
h⋆u is L2 in the support of ΞN (log(log(− log |sE |))), we can still do the integration by parts

as in [3]. In particular, (6) equals to

=
∫

X
{D ′

h⋆ (Ξ2
N (log(log(− log |sE |)))u),D ′

h⋆u}∧ωn−2
X −

∫

X
{∂(Ξ2

N (log(log(− log |sE |)))∧u,D ′
h⋆u}∧ωn−2

X

=−
∫

X
iΘh(L)Ξ2

N (log(− log |sE |)){u,u}∧ωn−2
X −

∫

X

{
2 ·Ξ′

N ·∂ log |sE |∧u

log(− log |sE |) log |sE |
,ΞN ·D ′

h⋆u

}
∧ωn−2

X . (7)

Since iΘh(L) Ê 0, the first term of (7) is semi-negative. For the second term of (7), by using
Cauchy inequality, we get

∣∣∣∣
∫

X

{
Ξ′

N ·∂ log |sE |∧u

log(− log |sE |) log |sE |
,ΞN ·D ′

h⋆u

}
∧ωn−2

X

∣∣∣∣
2

É
∫

X
Ξ2

N {D ′
h⋆u,D ′

h⋆u}∧ωn−2
X ·

∫

X

{
Ξ′

N ·∂ log |sE |∧u

log(− log |sE |) log |sE |
,

Ξ′
N ·∂ log |sE |∧u

log(− log |sE |) log |sE |

}
∧ωn−2

X .

As a consequence, we obtain
∫

X
Ξ2

N · {D ′
h⋆u,D ′

h⋆u}∧ωn−2
X É

∫

X

{
Ξ′

N ·∂ log |sE |∧u

log(− log |sE |) log |sE |
,

Ξ′
N ·∂ log |sE |∧u

log(− log |sE |) log |sE |

}
∧ωn−2

X (8)

Step 2. In this step, we would like to show the RHS of (8) tends to zero when N →+∞.

Since
dsEi
sEi

∧ dsEi
sEi

= 0, the assumption (5) implies that {∂ log |sE |∧u,∂ log |sE |∧u}∧ωn−2
X is upper

bounded by

C ′ ωn
X∏k

i=1 |sEi |2 log2 |sEi |
·
( r∑

i=k+1

1

|sEi |2
)

for some constant C ′. Then the RHS of (8) is controlled by

C ′
r∑

i=k+1

∫

X

(Ξ′
N )2ωn

X∏k
i=1 |sEi |2 log2 |sEi |

· 1

|sEi |2 log2 |sEi |
. (9)

which converges to zero when N → 0. As a consequence, the RHS of (8) tends to zero when
N →+∞. Therefore D ′

h⋆u = 0 on X \ E . □

By using the argument in Proposition 8, we can give an alternative proof of [19, Thm. 5]:

Proposition 10. Let X be a compact Kähler manifold, and let E =∑
Ei be a snc divisor. Let (L,h)

be a holomorphic line bundle on X where h is a possible singular metric such that iΘh(L) Ê 0.
Let u ∈ H 0(X ,Ω1

X (logE) ⊗ L⋆) and (L⋆,h⋆) be the dual metric on (L,h). Then D ′
h⋆u = 0 and

iΘh(L)∧u ∧u = 0 on X \ E.

Proof. We follow the notations in Proposition 8. By the step 1 of Proposition (8), we know that
∫

X
Ξ2

N · {D ′
h⋆u,D ′

h⋆u}∧ωn−2
X É

∫

X

{
Ξ′

N ·∂ log |sE |∧u

log(− log |sE |) log |sE |
,

Ξ′
N ·∂ log |sE |∧u

log(− log |sE |) log |sE |

}
∧ωn−2

X (10)

In order to prove the proposition, it is sufficient to show the RHS of (10) tends to zero when
N →+∞.

Since
dsEi
sEi

∧ dsEi
sEi

= 0 and u is a 1-form, {∂ log |sE |∧u,∂ log |sE |∧u}∧ωn−2
X is upper bounded by

C ·
∑
i ̸= j

ωn
X

|sEi sE j |2
.
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Then the RHS (10) is controlled by

C
∑
i ̸= j

∫

X

(Ξ′
N )2ωn

X

log2(− log |sE |) log2 |sE | · |sEi sE j |2
. (11)

Note that the integral
∫

0Ér1,r2É1

dr1 ∧dr2

log2(− log |r1r2|) log2 |r1r2| · r1r2
<+∞.

Therefore (11) converges to zero when N → 0. As a consequence, the RHS of (10) tends to zero
when N →+∞. Therefore D ′

h⋆u = 0 on X \ E . □

4. Lifting subsheaves to the resolution

Let Y be a normal complex space with klt singularities, and let ν : Y ′ → Y be a proper surjective
morphism from a normal complex space Y ′. Since klt singularities are rational [13, Thm. 5.22],
by [12, Thm. 1.10] there exists for every p ∈N a cotangent map

dν : ν⋆Ω[p]
Y −→Ω

[p]
Y ′ (12)

If Y has log-canonical singularities we can still combine the proof of [8, Thm. 4.3] with [12,
Thm. 1.5] to obtain3 that there exists for every p ∈N a cotangent map

dν : ν⋆Ω[p]
Y −→Ω

[p]
Y ′ (log∆) (13)

where ∆⊂ Y ′ is the largest reduced Weil divisor contained in ν−1(non-klt locus).
The following statement is well-known to experts and essentially a rewriting of the proof of [8,

Thm. 7.2]. We include it for the convenience of the reader:

Lemma 11. Let Y be a normal complex space with log-canonical singularities, and let A ⊂Ω[p]
Y be

a reflexive subsheaf of rank one that is Q-Cartier, i.e. there exists a m ∈N such that A [m] is locally
free.

Let π : X → Y be a log resolution, and let E be the exceptional divisor. Let C ⊂Ωp
X (logE) be the

saturation of the image of the morphism

π⋆A −→π⋆Ω
[p]
Y

dπ−→Ω
p
X (logE).

Then there exists a non-zero morphism π⋆A [m] →C ⊗m .

Remark. The morphism π⋆A [m] → C ⊗m is an isomorphism in the complement of the excep-
tional divisor E . Thus, up to multiplication by a holomorphic function that is a pull-back from Y ,
the morphism is unique.

If Y has klt singularities, we could use (12) and consider C ′ ⊂Ωp
X , the saturation of the image

of the morphism

π⋆A −→π⋆Ω
[p]
Y

dπ−→Ω
p
X ,

but in general there will be no morphism π⋆A [m] → (C ′)⊗m . However, in the course of the proof
of Lemma 11 we will prove the following remark that will be useful for the proof of Proposition 14:

Remark 12. If Y is klt, let γ̃ : Z̃ → X be the cover induced by a (local) index-one cover γ : Z → Y
of A (cf. Diagram (14)). Then π⋆Zγ

⋆A [m] is a subsheaf of S[m]Ω
[p]

Z̃
.

3Note that [12, Thm. 1.10] holds for any morphism, while we only need the simpler case where the morphism is
surjective.
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For the proof let us recall the notion of index one covers [13, Def. 5.19]: given a normal complex
space Y and a reflexive sheaf A such that some reflexive power A [m] is trivial, there exists a quasi-
étale morphism γ : Z → Y from a normal complex space Z such that the reflexive pull-back γ[⋆]A

is isomorphic to OZ .

Proof of Lemma 11. The locally free sheaves coincide in the complement of the exceptional
locus E = ⋃

i Ei , so we can write C ⊗m ≃ π⋆A [m] ⊗OX (
∑

ai Ei ) with uniquely determined ai ∈ Z.
We are done if we show that ai Ê 0 for all i . This property can be checked locally on the base Y .

Therefore we can replace Y by a Stein neighborhood such that there exists an index-one cover
γ : Z → Y , and let γ̃ : Z̃ → X be the induced finite map from the normalisation Z̃ of X ×Y Z .
We denote by πZ : Z̃ → Z the bimeromorphic morphism induced by π and summarize the
construction in a commutative diagram:

Z̃
γ̃
//

πZ

��

X

π

��

Z
γ
// Y

(14)

The morphism γ : Z → Y is an index-one cover for A , so γ is étale in codimension one and
γ[⋆]A =: B is locally free. In particular Z still has log-canonical singularities [13, Prop. 5.20(4)].
Denote the exceptional locus of πZ by EZ and observe that EZ is equal to the support of γ̃⋆E . In
particular EZ contains the preimage of the non-klt locus of Z , so (13) gives a natural map

dπZ :π⋆ZΩ
[p]
Z −→Ω

[p]

Z̃
(logEZ )

Since A ⊂ Ω
[p]
Y and γ is étale in codimension one we have an inclusion B ⊂ Ω

[p]
Z ≃ γ[⋆]Ω

[p]
Y

and hence an induced map

π⋆Z B −→π⋆ZΩ
[p]
Z −→Ω

[p]

Z̃
(logEZ ).

Since B is locally free, this induces an inclusion

π⋆Z B⊗m ≃ (π⋆Z B)⊗m −→ S[m]Ω
[p]

Z̃
(logEZ ). (15)

By assumption A[m] is locally free, so its (non-reflexive !) pull-back γ⋆A [m] is still locally free.
Thus B⊗m ≃ γ⋆A[m] since they are both reflexive and coincide in codimension one. Thus we have
constructed a morphism

π⋆Zγ
⋆A[m] −→ S[m]Ω

[p]

Z̃
(logEZ ).

We interrupt the proof of the lemma for the Proof of Remark 12.
If Y is klt, the index one cover Z also has klt singularities [13, Prop. 5.20(4)]. Thus we can

replace the pull-back with logarithmic poles (13) by the usual pull-back (12) to obtain

dπZ :π⋆ZΩ
[p]
Z −→Ω

[p]

Z̃

As above the inclusion γ[⋆]A ≃B ⊂Ω[p]
Z ≃ γ[⋆]Ω

[p]
Y then gives the inclusion

π⋆Zγ
⋆A [m] ≃π⋆Z B⊗m ≃ (π⋆Z B)⊗m −→ S[m]Ω

[p]

Z̃
.

This proves Remark 12, we now proceed with the proof of Lemma 11.
Since X is smooth, the saturated subsheaf C ⊂ Ω

p
X (logE) is locally free and a subbundle in

codimension one. Thus
C ⊗m ⊂ SmΩ

p
X (logE) (16)

is locally free and a subbundle in codimension one, hence a saturated subsheaf. The finite
morphism γ̃ is étale in the complement of E and Ω

p
X (logE) is locally free, so the tangent map

gives an isomorphism
γ̃⋆Ω

p
X (logE) ≃Ω[p]

Z̃
(logEZ ). (17)
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and hence an isomorphism

γ̃⋆SmΩ
p
X (logE) ≃ S[m]Ω

[p]

Z̃
(logEZ ).

Composing the inclusion (16) with this isomorphism we obtain that

γ̃⋆C ⊗m −→ S[m]Ω
[p]

Z̃
(logEZ )

is a saturated subsheaf.
Since Y is Stein and A [m] is invertible we can choose for every point y ∈ Y a section σ ∈

H 0(Y ,A [m]) that does not vanish in y . In particular σ generates A [m] as an OY -module near
the point y . Thus it induces a section

π⋆Zγ
⋆σ ∈ H 0(Z̃ ,S[m]Ω

[p]

Z̃
(logEZ ))

that generates the image of π⋆Zγ
⋆A [m]. The pull-back π⋆σ defines a meromorphic section of

C ⊗m that has poles at most along E , thus γ̃⋆π⋆σ defines a meromorphic section of γ̃⋆C ⊗m that
has poles at most along EZ . Since γ̃⋆C ⊗m is saturated in S[m]Ω

[p]

Z̃
(logEZ ) and

π⋆Zγ
⋆σ= γ̃⋆π⋆σ ∈ H 0(Z̃ ,S[m]Ω

[p]

Z̃
(logEZ ))

has no poles, we see that

γ̃⋆π⋆σ ∈ H 0(Z̃ , γ̃⋆C ⊗m).

Thus the local generator of the subsheaf π⋆Zγ
⋆A [m] lies in γ̃⋆C ⊗m and we have an inclusion

γ̃⋆π⋆A [m] ≃π⋆Zγ⋆A [m] ,→ γ̃⋆C ⊗m .

Thus we see that

γ̃⋆OX (
∑

ai Ei ) ≃ γ̃⋆(C ⊗m ⊗π⋆A [−m])

is represented by an effective divisor with support in the exceptional locus ofπZ . Since γ̃⋆(
∑

ai Ei )
is linearly equivalent to an effective, exceptional divisor and has also support in the exceptional
locus of πZ , it is effective. Thus we have shown that ai Ê 0 for all i . □

As in immediate application we obtain a variant of [8, Thm. 7.2], [6, Cor. 1.3] for pseudoeffec-
tive line bundles.

Corollary 13. Let Y be a normal compact complex space with log-canonical singularities, and let
A ⊂ Ω

[p]
Y be a reflexive subsheaf of rank one that is Q-Cartier, i.e. there exists a m ∈ N such that

A [m] is locally free. Let C ⊂Ωp
X (logE) be the saturation of π⋆A . If A [m] is pseudoeffective, then C

is pseudoeffective.

Proof. Since pseudoeffectivity of a line bundle is invariant under taking tensor powers, it is
sufficient to show that C ⊗m is pseudoeffective. Yet this follows from the non-zero morphism
π∗A [m] →C ⊗m constructed in Lemma 11. □

We need the following proposition.

Proposition 14. In the situation of Lemma 11, write

C ⊗m =π⋆A [m] ⊗OX

(∑
ai Ei

)
, (18)

where ai Ê 0 and E =∑
Ei is the exceptional locus.

Assume that Y has klt singularities, and let Ei be an irreducible component of the exceptional
locus. Let ResEi (C ) be the residue of the image of C in Ωp

X (logE). If ResEi (C ) ̸= 0, then ai > 0.
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Proof. The claim is local on Y , so we will use the construction from the proof of Lemma 11
summarized in the commutative diagram (14).

Fix a prime divisor Ẽ i ⊂ Z̃ that maps onto Ei ⊂ X , and choose a general point x̃ ∈ Ẽ i ∩ Z̃ nons

such that Ẽ i (resp. Ei ) is smooth in x̃ (resp. smooth in x := γ̃(x̃)). Since x̃ is general, the
finite morphism γ̃ has constant rank in an analytic neighborhood of γ̃, hence we can find local
coordinates on Z̃ and X such that

Ei = {z1 = 0}

and γ̃ is given locally by
γ̃ : (t , z2, ..zn) −→ (t d , z2, .., zn).

The exterior powerΩp
X (logE)x is generated by

{ dz1
z1

∧dz J ,dzI
}

where J ⊂ {2, . . . ,n} has length p−1
and I ⊂ {2, . . . ,n} has length p. Thus we obtain a basis {e1, . . . ,ek } of SmΩX (logE)x by taking
products of length m, where each ei is of type:

ei =
(

dz1

z1
∧dz J1

)
⊗

(
dz1

z1
∧dz J2

)
⊗·· ·⊗

(
dz1

z1
∧dz Jq

)
⊗dzI1 ⊗·· ·⊗dzIm−q .

In our local coordinates the pull-back becomes

γ̃⋆(ei ) =
(

dt

t
∧dz J1

)
⊗

(
dt

t
∧dz J2

)
⊗·· ·⊗

(
dt

t
∧dz Jq

)
⊗dzI1 ⊗·· ·⊗dzIm−q .

In particular, the pull back {γ̃⋆(ei )}k
i=1 is a basis of SmΩZ̃ (logEZ ) at x̃.

Let σ be a generator of A [m] at π(x) ∈ Y . Then π⋆σ ∈ π⋆A [m] ⊂ SmΩX (logE) is a local
generator near x. We can write

π⋆σ=
∑

fi ei ,

where fi are holomorphic functions near x. Now recall that by Remark 12

π⋆Z B⊗m ≃π⋆Zγ⋆A [m] ≃ γ̃⋆π⋆A [m]

is a subsheaf of S[m]Ω
[p]

Z̃
. In particular, since Z̃ is smooth in x̃, we have

(γ̃◦π)⋆σ ∈ (SmΩ
p

Z̃
)x̃ .

As a consequence, fi (x) = 0 when ei is of type

ei =
(

dz1

z1
∧dz J1

)
⊗

(
dz1

z1
∧dz J2

)
⊗·· ·⊗

(
dz1

z1
∧dz Jm

)
,

since this generator of (SmΩ
p

Z̃
(logEZ ))x̃ is not contained in (SmΩ

p

Z̃
)x̃ .

Now we can prove the proposition. Near a general point x ∈ Ei , we suppose that Cx ⊂ (Ωp

Z̃
)x̃ is

generated by
∑

gi ·
(

dz1

z1
∧dz Ji

)
+

∑
hi ·dzIi ,

where gi ,hi are holomorphic functions. Thanks to Lemma 11, we have

F ·
(∑

gi

(
dz1

z1
∧dz Ji

)
+

∑
hi dzIi

)⊗m

=
(∑

fi ei

)
,

where F is a holomorphic function near x. If ResEi (C ) ̸= 0, we know that there is one i0 such that
gi0 (x) ̸= 0. Set

ei0 :=
(

dz1

z1
∧dz Ji0

)⊗m

.

Then F ·g m
i0

= fi0 . By the above paragraph, we know that fi0 (x) = 0. Then F (x) = 0. The proposition
is thus proved. □

We are now in the position to verify the technical condition in Proposition 8:
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Theorem 15. In the setting of Theorem 2, let π : X → Y be a log-resolution and denote by E the
exceptional locus. Let L ⊂Ω

p
X (logE) be the saturation of π⋆A , and let ũ ∈ H 0(X ,Ωp

X (logE)⊗L⋆)
the corresponding section. Then there exists a metric h1 on L such that we have D ′

h⋆1
ũ = 0 on X \ E

Proof. By Lemma 11, we know that

c1(L) = 1

m
π⋆c1(A [m])+

∑
i∈I

ai Ei +
∑
i∈I ′

ai Ei , (19)

such that all the coefficients ai Ê 0 and the i ∈ I correspond to the exceptional divisors Ei such
that ResEi (C ) ̸= 0 and i ∈ I ′ corresponds to ResEi (C ) = 0. By Proposition 14 we have ai > 0 when
i ∈ I . Let h0 be a possibly singular metric on π⋆A [m] such that iΘh0 (π⋆A [m]) Ê 0. By (19) this
induces a metric h1 on L. Thanks to Proposition 8, the theorem is proved. □

5. Proof of the main result

The setup for the proof of Theorem 2 is as follows: the non-zero section u determines an injective
morphism of sheaves

A ,→Ω
[p]
Y .

Let π : X → Y be a log-resolution of Y , and denote by E the exceptional locus. Since Y is log-
canonical, we have the tangent map (13)

dπ :π⋆Ω[p]
Y −→Ω

p
X (logE),

and we denote by L ⊂ Ω
p
X (logE) the saturation of π⋆A . By Lemma 11 there exists a morphism

π⋆A [m] → L⊗m , so L is a pseudoeffective line bundle on X . The inclusion L ⊂ Ω
p
X (logE)

corresponds to a non-zero holomorphic section

ũ ∈ H 0(X ,Ωp
X (logE)⊗L⋆)

which coincides with u on X \E ≃ Ynons. In particular the subsheaf Sũ ⊂ TX defined by contraction
with ũ coincides with Su ⊂ TY on a Zariski open set. Thus we are left to show the integrability
of Sũ ⊂ TX on X \ E . By the formula for the exterior derivative of p-forms (cf. [3, p. 97]) the
integrability of Sũ follows if we find a metric h on L such that D ′

h⋆ ũ = 0 on X \ E .
Assume that we are in the first case of Theorem 2: Since Y is klt, the existence of the metric h is

guaranteed by Theorem 15.
Assume that we are in the second case of Theorem 2: Since p = 1 we know by Proposition 10 that

any singular metric with positive curvature current will suffice. Since L is pseudoeffective, such a
metric exists. □
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1. Introduction

Let X be an n-dimensional compact Kähler manifold and let us assume that either

(I) KX is ample (and X is thus projective), or
(II) KX is numerically trivial (equivalently, c1(X ) = 0 in H2(X ,R)).

As a consequence of the existence of a Kähler–Einstein metricωKE on X (proved by Aubin [4] and
Yau [43]), the Chern classes of X satisfy the Miyaoka–Yau inequality

(
2(n +1)c2(X )−n c2

1(X )
) ·αn−2 ≥ 0. (MY)

where in case (I), we set α = [KX ], while in case (II), α can be an arbitrary Kähler class.
Furthermore, in case of equality, the universal cover π : X̃ → X is (biholomorphic to)

(I) the n-dimensional unit ball Bn = {
(z1, . . . , zn) ∈Cn

∣∣ |z1|2 +·· ·+ |zn |2 < 1
}
,

(II) the n-dimensional affine space Cn .

We can reformulate the above conclusion by saying that

(I) X = Bn/
Γ with Γ⊂ PU(1,n) = Aut(Bn),

(II) X = Cn/
Γ with Γ⊂Cn ⋊U(n) = Aut(Cn ,π∗ωKE),

where in both cases, the action of Γ on X̃ is fixed point-free. Not surprisingly, there is a beautiful
exposition of this circle of ideas by Jean-Pierre Demailly [18].

It seems natural to investigate the general case of quotients by cocompact lattices Γ⊂ Aut(X̃ )
(with X̃ =Bn or Cn endowed with the Bergman metric or the flat metric, respectively), the action
being of course assumed to be properly discontinuous. The corresponding quotients are then
naturally endowed with an orbifold structure that can be encoded in the datum of a Q-divisor
with standard coefficients (see Setup 1 below). To sum up, it is natural to consider pairs (X ,∆)
when dealing with these quotients.

The question of uniformizing spaces (as opposed to pairs) in the cases (I) and (II) has been
considered in the framework of klt singularities. To quote a few relevant papers: [15, 24, 27, 28,
29, 30, 38]. This article grew out of an attempt to understand the general situation with an orbifold
structure in codimension one.

Unfortunately, the parallels between cases (I) and (II) cannot be pursued throughout this
introductory section since the difficulties (when dealing with the inequality (MY) in the singular
setting) are not of the same nature. The following three facts illustrate this point:

• In case (I), the variety X is necessarily projective, but the codimension one part of
the orbifold structure cannot be easily eliminated. Therefore we have to use orbifold
techniques in the proof.

• In case (II), we also need to consider (non-algebraic) compact Kähler spaces, but we
can get rid of the codimension one part of the orbifold structure via a cyclic covering
(see Proposition 12). This enables us to assume that ∆= 0 for most of the argument.

• In case (I), the Bergman metric is invariant under the full automorphism group of Bn ,
but this is not true of the flat metric in case (II). Therefore (2) below does not have
an analog in Corollary 7, although a conjecture due to Iitaka [32] (or rather an orbifold
version thereof) predicts that this should in fact be true.

Due to this break in symmetry, we split the discussion according to the sign of the canonical
bundle.

The canonically polarized case

Let us recall the singular version of the inequality (MY) as proven by the third-named author
together with B. Taji [31]. When dealing with case (I), we work in the following setting:
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Setup 1. Let (X ,∆) be an n-dimensional klt pair, where X is a projective variety and ∆ has
standard coefficients, i.e. ∆ = ∑

i∈I
(
1− 1

mi

)
∆i with integers mi ≥ 2 and the ∆i irreducible and

pairwise distinct.

Theorem 2 (⊂ [31, Thm. B]). Let (X ,∆) be as in Setup 1, and assume that KX +∆ is big and nef.
Assume additionally that every irreducible component ∆i of ∆ is Q-Cartier. Then the following
inequality holds: (

2(n +1) c̃2(X ,∆)−n c̃2
1(X ,∆)

) · [KX +∆]n−2 ≥ 0. (2)

Here, c̃2(X ,∆) and c̃2
1(X ,∆) denote the appropriate orbifold Chern classes of the pair (X ,∆), as

defined e.g. in [31, Notation 3.7]. □
Remark. In the above theorem, the assumption that the ∆i be Q-Cartier is not necessary, and
establishing this is one of the (minor) contributions of this paper, cf. Theorem 36. While this may
seem like an innocuous technical issue at first sight, eliminating the Q-Cartier assumption will
become crucial below when deducing Corollary 4 from Theorem A, see Remark 38.

As in the smooth case, it is interesting to characterize geometrically those pairs that achieve
equality in (2). In the case where∆= 0, this has been achieved in [29, Thm. 1.2] and [30, Thm. 1.5]:
equality holds if and only if there is a finite quasi-étale Galois cover Y → X such that the universal
cover of Y is the unit ball. An expectation concerning the general case was formulated in [29,
§10.2]. Our first main result confirms this expectation.

Theorem A (Uniformization of canonical models). Let (X ,∆) be as in Setup 1. Assume that
KX +∆ is ample and that equality holds in (2). Then the orbifold universal cover π : X̃∆ → X of
(X ,∆) is the unit ball (cf. Definition 24). More precisely, (X̃∆,∆̃) ∼= (Bn ,;).

In fact, a suitable converse of the above theorem also holds, and we obtain the following
corollary.

Corollary 3 (Characterization of ball quotients). Let (X ,∆) be as in Setup 1. The following are
equivalent:

(1) KX +∆ is ample, and equality holds in (2).
(2) The orbifold universal cover of (X ,∆) is the unit ball Bn .
(3) (X ,∆) admits a finite orbi-étale Galois cover f : Y → X (cf. Definition 8), where Y is a

projective manifold whose universal cover is the unit ball.

In the spirit of [30, Thm. 1.5], we can also prove the following uniformization statement for
minimal pairs of log general type.

Corollary 4 (Uniformization of minimal models). Let (X ,∆) be as in Setup 1. Assume that KX +∆
is big and nef and that equality holds in (2). Then the canonical model (X ,∆)can =: (Xcan,∆can) of
the pair (X ,∆) is a ball quotient in the sense of Theorem A.

The flat case

As mentioned earlier, Kähler quotients of Cn by cocompact groups of isometries are in general
not projective, so we have to consider the following framework.

Setup 5. Let (X ,∆) be an n-dimensional klt pair, where X is a compact Kähler space and ∆ has
standard coefficients, i.e. ∆ = ∑

i∈I
(
1− 1

mi

)
∆i with integers mi ≥ 2 and the ∆i irreducible and

pairwise distinct.

In this more general Kähler setting, the methods of [31] cannot be used to prove a singular
analogue of the Miyaoka–Yau inequality. Instead, we rely on the Decomposition Theorem
from [5] to deduce the following singular version of the inequality (MY) in case (II).



58 Benoît Claudon, Patrick Graf and Henri Guenancia

Theorem 6 (Singular Miyaoka–Yau inequality). Let (X ,∆) be as in Setup 5 and assume that
c1(KX +∆) = 0 ∈ H2(X ,R). Let α ∈ H2(X ,R) be any Kähler class. We then have:

c̃2(X ,∆) ·αn−2 ≥ 0. (3)

As before, we are particularly interested in what happens if equality is achieved.

Theorem B (Uniformization in the flat case). Let (X ,∆) be as in Setup 5. Assume that c1(KX +∆) =
0 ∈ H2(X ,R) and that equality holds in (3) for some Kähler class α. Then the orbifold universal
cover π : X̃∆→ X of (X ,∆) is the affine space (cf. Definition 24). More precisely, (X̃∆,∆̃) ∼= (Cn ,;).

As above, we can formulate a converse and get the following corollary.

Corollary 7 (Characterization of torus quotients). Let (X ,∆) be as in Setup 5. The following are
equivalent:

(1) c1(KX +∆) = 0 ∈ H2(X ,R), and equality holds in (3) for some Kähler class α.
(2) (X ,∆) admits a finite orbi-étale Galois cover f : T → X (cf. Definition 8), where T is a

complex torus.

The previous statements are thus generalizations of [38, Thm. 1.2] (itself elaborating on [27,
Thm. 1.17]). The generalization is threefold:

• Here X is a compact Kähler space, not necessarily projective.
• The class α is transcendental, a priori not an ample class.
• Ramification is allowed in codimension one; i.e. we work with klt pairs rather than klt

spaces.
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2. Generalities on orbifolds

In this section, we consider Kawamata log terminal (klt) pairs (X ,∆) consisting of a normal
algebraic variety or complex space X of dimension n and a Q-divisor ∆ = ∑

i∈I
(
1− 1

mi

)
∆i on X ,

with mi ≥ 2.

2.1. Orbi-structures and orbi-sheaves

Most of the definitions and basic properties given below can be found in e.g. [31, §2] in the slightly
more general setting of dlt pairs with standard coefficients, at least if X is algebraic. Working
exclusively with klt pairs will simplify the exposition.

Definition 8 (Adapted morphisms). Let f : Y → X be a finite surjective Galois morphism from a
normal variety or complex space Y . One says that f is:

• adapted to (X ,∆) if for all i ∈ I , there exists ai ∈ Z≥1 and a reduced divisor ∆′
i on Y such

that f ∗∆i = ai mi∆
′
i ,

• strictly adapted to (X ,∆) if it is adapted and if ai = 1 for all i ∈ I ,
• orbi-étale if it is strictly adapted and the divisorial component of the branch locus of f is

contained in supp(∆). Equivalently, if f is étale over Xreg \ supp(∆).
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Remark. If X is compact, then a map f : Y → X as above is orbi-étale if and only if KY =
f ∗(KX +∆).

Definition 9 (Orbi-structures). An orbi-structure for the pair (X ,∆) consists of a compatible
collection of triples C = {

(Uα, fα, Xα)
}
α∈J , where (Uα)α∈J is a covering of X by étale-open subsets,

and for each α ∈ J , fα : Xα →Uα is an adapted morphism from a normal complex space Xα with
respect to the pair structure on Uα induced by (X ,∆). The compatibility condition means that for
all α,β ∈ J , the projection map gαβ : Xαβ → Xα is quasi-étale, where Xαβ is the normalization of
Xα×X Xβ.

An orbi-structure C = {
(Uα, fα, Xα)

}
α∈J is called strict (resp. orbi-étale) if for each α ∈ J , the

morphism fα is strictly adapted (resp. orbi-étale). It is called smooth if for each α ∈ J , the variety
Xα is smooth. In this case, the maps gαβ are étale by purity of branch locus.

Definition 10 (Quotient singularities). A pair (X ,∆) is said to have quotient singularities if
locally analytically on X , there exists an orbi-étale morphism f : Y → X , where Y is smooth. The
maximal open subset of X where this condition is satisfied will also be referred to as the orbifold
locus of (X ,∆) and will be denoted by X ◦ ⊂ X or X orb ⊂ X .

Remark. With the above terminology, a pair (X ,∆) admits a smooth orbi-étale orbi-structure if
and only if it has quotient singularities. This is because the compatibility condition is automati-
cally satisfied.

The following technical result will be useful in the sequel: a pair with quotient singularities
whose underlying space is compact Kähler is a Kähler orbifold. The log smooth case had been
already observed in [14, Prop. 2.1]. Slightly more generally, we have the following.

Lemma 11 (Existence of orbifold Kähler metrics). Let (Z ,∆) be a pair with quotient singularities
and such that Z is a Kähler space. Then for any relatively compact open subset X ⋐ Z , there
exists an orbifold Kähler metric ω adapted to (X ,∆|X ) in the sense that ω is a Kähler metric on
Xreg \ supp∆ which pulls back to a smooth Kähler metric on the smooth local covers.

Proof. One can find an open neighborhood X ′ of X ⊂ Z admitting a finite covering X ′ =⋃
α∈I X ′

α

such that there exist smooth orbi-étale covers pα : Y ′
α → X ′

α. We set Xα := X ′
α ∩ X and Yα :=

p−1
α (Xα). We pick a Kähler metric ωZ on Z , as well as potentials φα on X ′

α such that ddc p∗
αφα

is a Kähler metric on Y ′
α; the functionsφα are solely continuous on Xα but p∗

αφα is smooth on Y ′
α.

We can assume that |φα| ≤ 1 on Xα. Finally, let (χα)α∈I be some partition of unity subordinate to
the covering (Xα)α∈I and set φ :=∑

χαφα. We set N := |I | and pick a constant C > 0 such that

∥ddcχα∥2
ωZ

+∥dχα∥2
ωZ

≤C , (4)

holds for any α ∈ I and we claim that the current

ω := MωZ +ddcφ

is an orbifold Kähler metric on X for M ≫ 1. Clearly, ω is smooth as an orbifold differential
form, as one can see directly by using the compatibility of the covers. Let x ∈ X and let J :=
{α ∈ I , x ∈ Xα} = {α1, . . . ,αs }. We set X J := ⋂

α∈J Xα and choose a connected component YJ of the
normalization of p−1

α1
(X J )×X J · · · ×X J p−1

αs
(X J ). The space YJ is a smooth manifold endowed with

an orbi-étale map p J : YJ → X J induced by the pαi , i = 1, . . . , s.
We have 1 = ∑

α∈I χα(x) = ∑
α∈J χα(x), hence there exists β ∈ J such that χβ(x) ≥ 1

N . Since
p∗

J (ddcφβ|X J ) is a Kähler metric on YJ (which extends slightly beyond), we infer that there exists
δ> 0 such that

∀α ∈ J , ddcφβ ≥ δdφα∧dcφα on X J .

Next, we have the following inequality for any ε> 0:

±(dφα∧dcχα+dχα∧dcφα) ≤ εdφα∧dcφα+ε−1dχα∧dcχα.



60 Benoît Claudon, Patrick Graf and Henri Guenancia

Combining the above inequality with (4), we get for any ε> 0:

ω= MωZ +
∑
α∈I

χαddcφα+
∑
α∈I

φαddcχα+
∑
α∈I

(dφα∧dcχα+dχα∧dcφα)

≥ (M −NC (1+ε−1))ωZ +χβddcφβ−ε
∑
α∈I

dφα∧dcφα

which yields, at the point x:

ω≥ (M −NC (1+ε−1))ωZ +
(

1

N
− Nε

δ

)
ddcφβ.

Therefore, if we choose ε := δ
2N 2 and M = 2NC (1+ε−1), then ω is an orbifold Kähler metric near

x. Since x is arbitrary and the constants N ,C ,δ are uniform, the lemma is now proved. □

2.2. Covering constructions

In what follows, we present some variations on the well-known cyclic covering theme. The first
one, Proposition 12, is a consequence of [42, Ex. 2.4.1] when X is quasi-projective so that KX is
well-defined as a (class of) Weil divisor, but one needs to argue slightly differently in the complex
analytic case. The second one, Proposition 13, improves upon previous results such as [33,
Prop. 2.9], [31, Ex. 2.11] and [17, Prop. 2.38]. The main observation is that given a pair (X ,∆),
it is (for our purposes) unnecessary to assume that the components of ∆ are Q-Cartier as long as
KX +∆ is. As explained in Remark 38, this is crucial for proving Corollary 4.

Proposition 12 (Existence of orbi-étale covers). Let (X ,∆) be a (not necessarily klt) pair with
standard coefficients, where X is a normal complex space. Assume that there is a reflexive rank 1
sheaf L and an integer N ≥ 1 such that N∆ is a Z-divisor and

OX (N∆) ∼=L [N ].

Then there exists an orbi-étale morphism f : Y → X . In particular:
If (X ,∆) is klt and there is an integer N ≥ 1 such that N∆ is a Z-divisor and ω[N ]

X (N∆) ∼= OX ,
then we can find an orbi-étale morphism f : Y → X such that ωY

∼= OY and Y has canonical
singularities.

Proof. Let σ ∈ H0
(
X ,L [N ]

)
be such that div(σ) = N∆, and let us consider the cyclic covering

g : Z → X induced by σ, cf. e.g. [36, Def. 2.52]. In the analytic setting, we can construct f in
the following way. On Xreg \ supp(∆), L |Xreg\supp(∆) is torsion and it gives rise to an étale cover
g ◦ : Z ◦ → Xreg \ supp(∆) (the N th-root of σ|Xreg\supp(∆)) that is moreover a Galois cover with cyclic
Galois group. According to [19, Thm. 3.4], the map g ◦ can be extended to a finite cover f : Z → X
with the same Galois group.

We claim that g ramifies exactly at order mi along ∆i . It is enough to check the claim at a
general point of ∆i . Therefore, there is no loss of generality assuming that (X ,∆) = (U , (1− 1

m )D)

where U ⊂ Cn (n = dim(X )) is a ball, D = (z1 = 0)∩U , and that σ|U = z
N (1− 1

m )
1 σ⊗N

L ,U
with σL ,U a

trivializing section of L over U .
Write N = km, and let V := {(t , z) ∈ C×Cn

∣∣ t N = zk(m−1)
1 } ⊂ C×Cn and let ν : V ν → V be its

normalization. One can actually write down exactly what V ν is. Indeed, let ζ be a primitive
k-th root of unity, and set Vp := {(t , z)

∣∣ t m = ζp zm−1
1 } ⊂ C×Cn for p = 0, . . . ,k − 1. We have a

decomposition V = ⋃
p Vp into irreducible components, and the normalization νp : V ν

p → Vp is
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the affine space V ν
p
∼=C×Cn−1 with map νp (u, w) = (ξum−1,um , w) where ξ is an m-th root of ζp .

Now, set V ν :=⊔
p V ν

p and define ν : V ν→V by ν|V ν
p

:= νp . We have a diagram

V ν V Z

U X

j

ν

prCn g

where j is obtained by the universal property of normalization. In particular, j is finite and
generically 1-to-1 between normal varieties, hence it is an open embedding. Moreover, if (u, w) ∈
V ν

p , we have prCn ◦ν(u, w) = (um , w), hence the latter map ramifies at order m along D . It follows
that g ramifies at order m along D .

Finally, one picks one irreducible component Y of Z and sets f := g |Y . It yields the expected
cover, which is Galois with group G <Z/nZ∼= Gal(Z → X ) defined as the stabilizer of Y .

As for the last part of the proposition, we can apply the above construction to L = ω[−1]
X :=

ω ‹

X . This provides us with an orbi-étale morphism f : Y → X . In particular, Y is klt and the
computations made above show that f ∗(KX +∆) is trivial over Xreg \∆sg. So we get that ωY is
trivial as well and finally that Y has only canonical singularities. □

Proposition 13 (Existence of strictly adapted covers). Let (X ,∆) be a projective pair with stan-
dard coefficients such that KX +∆ is Q-Cartier (but not necessarily klt). Then there exists a very
ample divisor L on X such that for general H ∈ |L|, there exists a cyclic Galois cover f : Y → X with
the following properties:

(1) The morphism f is orbi-étale for
(
X ,∆+ (1− 1

N )H
)
, where N := deg( f ).

(2) The morphism f is strictly adapted for (X ,∆).
(3) If (X ,∆) is klt, then so are the pairs

(
X ,∆+ (1− 1

N )H
)

and (Y , ;).

Proof. Pick, once and for all, a representative K of KX , that is, an integral (but not necessarily
effective) Weil divisor K on X such that KX ∼ K . Choose a very ample divisor A on X and a
positive integer N such that

L := N · (A− (K +∆)
)

is integral and very ample, and pick a general element H ∈ |L|. Consider the principal divisor

D := H −L = H +N · (K +∆− A) ∼ 0.

Let f : Y → X be the degree N cyclic cover associated to D , as in [42, §2.3]. (To be more precise,
Y is an arbitrary irreducible component of the normalization of that cover.) We need to check
properties (1)–(3).

By construction, the branch locus of f is contained in supp(D). Recall from [42] that writ-
ing D = ∑

i di Di , the ramification order of f along each component of f −1(Di ) is given by
N /hcf(di , N ). Since K , A and H are Z-divisors, where H is even reduced, this implies (1). Prop-
erty (2) is an immediate consequence.

For (3), it is enough to show the first claim thanks to (1) and [36, Prop. 5.20]. To check the
claim, we take a log resolution π : X̃ → X of (X ,∆) and write

K X̃ +∆′ =π∗(KX +∆)+
∑

ai Ei

as usual, where ∆′ is the strict transform of ∆. Since H is a general element of |L|, and π∗|L| is
basepoint-free, one can assume that π∗H = π−1

∗ H is smooth and intersects each stratum of the
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exceptional divisor of π and of ∆′ smoothly. In particular, π is also a log resolution for the pair(
X ,∆+ (1− 1

N )H
)
. Now, the identity

K X̃ +∆′+
(
1− 1

N

)
π−1
∗ H =π∗

(
KX +∆+

(
1− 1

N

)
H

)
+

∑
ai Ei

shows that
(
X ,∆+ (1− 1

N )H
)

is klt. □

Remark. More generally, it can be observed that a pair (X ,∆) (with X a normal analytic space)
admits strictly adapted covers if there exists a Cartier divisor D on X having no component in
common with ∆ and such that m(KX +∆) ∼ D for some (sufficiently divisibe) integer m ≥ 1. We
can indeed apply Proposition 12 to the pair (X \D,∆|X \D ) and get an orbi-étale cover Y ◦ → X \D .
Its completion over X is then adapted with respect to ∆ and the extra-ramification is supported
over the components of D .

The following result seems to have been known to experts for a long time. A proof of it was
written down in [26] in the case where ∆ = 0, and the general case follows almost immediately
from Proposition 12 as we will explain.

Lemma 14 (Klt pairs have quotient singularities in codimension two). Let (X ,∆) be a klt pair
with standard coefficients. Then there is a Zariski closed subset Z ⊂ Xsg∪supp∆with codimX (Z ) ≥
3 such that for X ◦ := X \ Z , the pair (X ◦,∆|X ◦ ) admits a smooth orbi-étale orbi-structure C ◦.

Proof. Since KX +∆ is aQ-Cartier divisor, we can cover X by (affine or Stein) open subsets Uβ ⊂ X ,
β ∈ I , such that (KX +∆)|Uβ

∼Q 0. By Proposition 12, we can find a finite cyclic cover gβ : U ′
β
→Uβ

that branches exactly over the∆i |Uβ
with multiplicity mi . Moreover, U ′

β
has klt singularities, since

KU ′
β
= g∗

β
(KUβ

+∆|Uβ
). We can now use [26, Prop. 9.3] or [24, Lem. 5.8] to find a smooth orbi-étale

orbi-structure {U ′
βγ

, fβγ, X ′
βγ

}γ∈J on U ′
β

\ Zβ, for some closed subset Zβ ⊂ U ′
β

of codimension at
least three. Set Uβγ = gβ(U ′

βγ
), so that

⋃
βUβγ ⊂ Uβ is an open subset whose complement is of

codimension at least three. In summary, we get the following diagram:

X ′
βγ

U ′
βγ

Uβγ

U ′
β

Uβ X

fβγ

hβγ

gβ

gβ

(5)

Now
{

Uβγ,hβγ, X ′
βγ

}
(β,γ)∈I×J

is the sought-after smooth orbi-étale orbi-structure on (X ◦,∆|X ◦ ),

where the open subset X ◦ :=⋃
(β,γ)∈I×J Uβγ has complement of codimension at least three. □

Remark 15. In particular, a klt surface pair with standard coefficients admits a smooth orbi-étale
orbi-structure, hence it has quotient singularities in the sense of Definition 10. This is of course
well-known and follows from the cyclic cover construction recalled above and [36, Prop. 4.18].

Definition 16 (Orbi-sheaves). An orbi-sheaf with respect to an orbi-structure C ={
(Uα, fα, Xα)

}
α∈J on (X ,∆) is the datum of a collection (Eα)α∈J of coherent sheaves on each Xα,

together with isomorphisms g∗
αβ

Eα ∼= g∗
βα

Eβ of OXαβ
-modules satisfying the natural compatibility

conditions on triple overlaps.

All the usual notions for sheaves (locally free, reflexive, subsheaves, morphisms etc.) can be
carried over to this setting in the obvious way, cf. [31, §2.7]. Ditto for Higgs fields and Higgs
sheaves, cf. [31, Def. 2.24].

Recall the following definition from [17, §3]:
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Definition 17 (Adapted differentials). Let γ : Y → X be a strictly adapted morphism for (X ,∆).
Let X ◦ ⊂ X and ι : Y ◦ ,→ Y be the maximal open subsets where γ is good in the sense of [17, Def. 3.5].
The sheaf of adapted reflexive differentials is defined as

Ω[1]
(X ,∆,γ) := ι∗

[(
im

(
γ∗Ω1

X ◦ →Ω1
Y ◦

)⊗OY ◦ (γ∗∆)
)
∩Ω1

Y ◦
]

.

Lemma 18. The following properties hold:

(1) The sheaf Ω[1]
(X ,∆,γ) is a coherent reflexive subsheaf of Ω[1]

Y .

(2) If γ is orbi-étale for (X ,∆), then Ω[1]
(X ,∆,γ) =Ω

[1]
Y .

(3) Letγ2 : Z → Y be quasi-étale, where Z is normal. Thenδ := γ◦γ2 : Z → X is strictly adapted
for (X ,∆), and Ω[1]

(X ,∆,δ) = γ
[∗]
2 Ω[1]

(X ,∆,γ). □

Definition 19 (Orbifold cotangent sheaf, cf. [31, Def. 2.23]). Consider on (X ,∆) any strictly
adapted orbi-structure C = {

(Uα, fα, Xα)
}
α∈J . Then the sheaves
(
Ω[1]

(X ,∆, fα)

)
α∈J

induce a reflexive orbi-sheaf called the orbifold cotangent sheaf, or sheaf of reflexive differential
forms, which we denote byΩ[1]

C
. If the orbi-structure C is smooth and orbi-étale, thenΩ[1]

C
is locally

free. Changing the (strictly adapted) orbifold structure yields compatible sheaves in the sense of [31,
Def. 3.2], hence we will often denote this sheaf by Ω[1]

(X ,∆).

The same construction can be carried out for any integer p ≥ 0, yielding orbi-sheavesΩ[p]
(X ,∆). For

p = 0, we obtain the structure sheaf O(X ,∆), which is nothing but OXα in each chart fα.

Lemma 20. Let (X ,∆) be a projective klt pair with standard coefficients, and let X ◦ be endowed
with a smooth orbi-étale orbi-structure C as in Lemma 14. Let H be an ample line bundle on X
and pick a complete intersection surface

S = D1 ∩·· ·∩Dn−2

of n − 2 general hypersurfaces Di ∈ |mH | for m ≫ 1. Then S ⊂ X ◦ and the restriction of C to
(S,∆|S ) induces a smooth orbi-étale orbi-structure on (S,∆|S ). In particular, (S,∆|S ) has quotient
singularities.

Proof. We have S ⊂ X ◦ for dimensional and genericity reasons. Next, if we express the struc-
ture C as C = {

(Xα, fα,Uα)
}
, set Sα := S ∩Uα, Tα := f −1

α (Sα), gα := fα|Tα , and define C |S :={
(Tα, gα,Sα)

}
. We claim that Tα is smooth, which would prove the lemma. Indeed, since fα is

quasi-finite (as the composition of an étale map with a finite map), one can find an open immer-
sion Xα ,→ Xα and a finite extension fα : Xα→ X of fα as follows:

Tα Xα Xα

Sα Uα X

gα fα fα

Since fα
∗|mH | is basepoint-free, Bertini’s theorem guarantees that if Tα is a general intersection

of (n−2) hypersurfaces in fα
∗|mH |, then Tα∩Xα

reg
is smooth. Since Xα ⊂ Xα

reg
, this shows that

Tα is smooth, hence the lemma. □

2.3. The orbifold fundamental group

Let (X ,∆) be a klt pair with standard coefficients as before, and set X ∗ := Xreg \ supp∆.
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Definition 21 (Fundamental group). The (orbifold) fundamental group of (X ,∆) is defined as

πorb
1 (X ,∆) := π1(X ∗)

/
〈〈γmi

i , i ∈ I 〉〉.
Here, for each i ∈ I , the element γi is a “loop around ∆i ”, i.e. a loop in the normal circle bundle of
(∆i )reg ∩Xreg ⊂ Xreg, and 〈〈· · ·〉〉 denotes the normal subgroup generated by a given subset.

Note that if D =;, then πorb
1 (X ,;) =π1(Xreg) is in general different from π1(X ).

Definition 22 (Covers branched at ∆, cf. [14, Def. 1.3]). A cover of X branched at most at ∆ is a
holomorphic map π : Y → X , where:

(1) Y is a normal connected complex space (not necessarily quasi-projective),
(2) π has discrete fibres and π−1(X ∗) → X ∗ is étale,
(3) at each irreducible component ∆̃ j ,k ⊂π−1(∆ j ), the ramification index r j ,k of π divides m j ,
(4) every x ∈ X has a connected neighborhood V ⊂ X such that every connected component U

of π−1(V ) meets the fibre π−1(x) in only one point, and π|U : U →V is finite.

We say that π is branched exactly at ∆ if in (3), we have r j ,k = m j for all j ,k.

Note that if Y is quasi-projective and π is Galois, then saying that π is branched exactly at ∆ is
the same as saying that π is orbi-étale.

Theorem 23 (Covers and the fundamental group). There exists a natural one-to-one correspon-
dence between subgroups G ⊂ πorb

1 (X ,∆) and covers π : Y → X branched at most at ∆. Further-
more:

(1) G is of finite index if and only if π is finite.
(2) G is a normal subgroup if and only if π is Galois.
(3) Let Y1,2 → X be two covers branched at most at ∆, with corresponding subgroups G1,2 ⊂

πorb
1 (X ,∆). Then there is a factorization

Y2

Y1 X

∃

if and only if G1 ⊂G2.

Proof. The proof is the same as in the snc case, cf. [14, Thm. 1.1], with one important difference:
in order to extend (possibly non-finite) étale covers of X ∗ to branched covers of X , we would
like to apply [19, Thm. 3.4]. In order to do this, we must invoke the finiteness of local orbifold
fundamental groups of klt pairs, as proved in [11, Thm. 1]. (Note that [11] works in the algebraic
category, but in view of [22, Thm. 1.7] and [16, Rem. 6.10] his result extends to complex spaces as
well.) □

Definition 24 (Universal cover). The (orbifold) universal cover of (X ,∆) is the cover π : X̃∆ → X
corresponding to the trivial subgroup {1} ⊂πorb

1 (X ,∆) under the correspondence from Theorem 23.

Let ∆̃ be the divisor on X̃∆ which is supported on π−1(supp∆) and satisfies

K X̃∆
+ ∆̃=π∗(KX +∆).

It is easy to see that the pair (X̃∆,∆̃) is again klt with standard coefficients. Also, ∆̃= 0 if and only
if π is branched exactly at ∆.

Definition 25 (Developable pairs). We say that (X ,∆) is developable if in the above notation, X̃∆

is smooth and ∆̃= 0.

Intuitively, being developable means that the universal cover is a manifold.
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Example 26. Consider the klt pair (X ,∆), where X =P1 and

∆=
(
1− 1

n

)
· [0]+

(
1− 1

m

)
· [∞]

with n,m ≥ 2. Set d = gcd(n,m). Then πorb
1 (X ,∆) = Z

/
dZ, and the universal cover π : X̃∆ = P1 →

P1 is given by [z0 : z1] 7→ [zd
0 : zd

1 ]. We have

∆̃=
(
1− 1

n/d

)
· [0]+

(
1− 1

m/d

)
· [∞].

In particular, (X ,∆) is developable if and only if n = m.

Corollary 27 (Galois closure). Let Y → X be a finite cover branched at most at ∆. Then there is
a finite cover Y ′ → Y such that the composition Y ′ → X is finite, Galois, and branched at most at
∆. If additionally Y → X is branched exactly at ∆, then the same is true of Y ′ → X , and Y ′ → Y is
quasi-étale.

We call Y ′ → X the Galois closure of Y → X .

Proof. Using the correspondence from Theorem 23, the statement boils down to the following:
for a group G and a subgroup H ⊂ G of finite index, there is a normal subgroup N ⊴ G of finite
index such that N ⊂ H . But this is easy (and well-known): simply set

N :=
⋂

g∈G/H
g H g−1.

The last statement is easily seen to be true by comparing the ramification indices of Y → X and
Y ′ → X over the components ∆i . □

3. Orbifold Chern classes of klt pairs

In this section, we recall the definition of the first and second orbifold Chern classes for klt
pairs, in the spirit of [24]. We then explain how to compute them concretely in two cases: in
the projective setting by a cutting-down argument (Section 3.3), and when we have an “orbi-
resolution” at our disposal (Section 3.4).

3.1. The general Kähler case

Let us begin by recalling how to define Chern numbers associated with the first and second Chern
classes. This is nothing but a slight generalization of [24, Def. 5.2] that takes into account the
presence of a boundary. The construction relies on the Chern–Weil formalism in the orbifold
setting. We will not recall the basic definitions and properties for the differential geometry of
orbifolds (e.g. Hermitian metrics on orbifold bundles, orbifold Chern classes, orbifold de Rham
cohomology, and so on). A good reference is [8, §2].

Let (X ,∆) as in Setup 5 and let X ◦ ⊂ X be the largest open subset of X such that (X ,∆)
admits a smooth orbi-étale orbi-structure C ◦, and set Z := X \ X ◦. As proved in Lemma 14,
dim Z ≤ n − 3. Next, let α ∈ H2n−4(X ,R) where that cohomology space is understood as the
cohomology of the locally constant sheaf RX . For dimensional reasons, we have an isomorphism
H2n−4

c (X ◦,R) ∼−→ H2n−4(X ,R). Next, the de Rham complex of orbifold differential forms on X ◦

yields a de Rham–Weil isomorphism H•
dR,c(X ◦,R) → H•

c(X ◦,R), so that in the end we get a natural
isomorphism

ψ : H2n−4
dR,c

(
X ◦,R

) ∼−→ H2n−4(X ,R) . (6)

Now, let E → X ◦ be an orbifold bundle for the pair (X ◦,∆◦). We can equip it with an orbifold
Hermitian metric h and form the Chern classes corb

i (E ,h) which are orbifold differential forms
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of bidegree (i , i ). We can use the isomorphism (6) to define real numbers when i = 2. If
α ∈ H2n−4(X ,R), the class ψ−1(α) can be represented by a compactly supported orbifold (2n−4)-
form Ω on X ◦, so that corb

2 (E ,h)∧Ω is a compactly supported orbifold (n,n)-form on X ◦.

Definition 28. The orbifold second Chern class c̃2(E) is the unique element in the dual space
H2n−4(X ,R) ‹ which under ψ ‹ corresponds to the Poincaré dual of the class corb

2 (E) ∈ H4
dR(X ◦,R),

where the latter is taken with respect to (but independent of) the orbi-structure C ◦. The quantity

c̃2(E) ·α :=
∫

X ◦
corb

2 (E ,h)∧Ω

is thus a well defined real number for any class α ∈ H2n−4(X ,R).

Let us apply the above construction to Ω1
(X ◦,∆◦) the orbifold bundle of differential forms.

For the first Chern class, one can avoid the use of orbistructures and define it directly as a
cohomology class as follows.

Definition 29. For a klt pair (X ,∆), we set

c̃1(X ,∆) := 1

m
c1(

(
ωX

[m] ⊗OX (m∆)
) ‹ ‹

) ∈ H2(X ,R)

where m ≥ 1 is an integer such that the reflexive rank 1 sheaf
(
ωX

[m] ⊗OX (m∆)
) ‹ ‹

is a line bundle.

Now let us consider the case of the second Chern class.

Definition 30. The orbifold second Chern class c̃2(X ,∆) ∈ H2n−4(X ,R) ‹ of the pair (X ,∆) is the
second Chern class of the orbi-bundle Ω1

(X ◦,∆◦) on X ◦ defined in Definition 19.

Remark 31. As already observed in [24, p. 893], the object constructed in Definition 30 is
naturally a homology class:

c̃2(X ,∆) ∈ H2n−4(X ,R) .

3.2. The projective case — Mumford’s construction

Let (X ,∆) be a projective dlt pair with standard coefficients such that each component ∆i of ∆
is Q-Cartier. In [31, §3.1, p. 1458], the orbifold Chern classes c̃2(X ,∆) and c̃2

1(X ,∆) were defined
as multilinear forms on N1(X )Q. Here we would like to observe that this procedure can also be
carried out without the assumption that the ∆i be Q-Cartier. Our argument follows the proof
of [29, Thm. 3.13] closely. We will restrict attention to the case of klt pairs, as we are only
concerned with those in this paper.

So let (X ,∆) be an n-dimensional projective klt pair with standard coefficients. Applying
Lemma 14, we obtain an open subset X ◦ ⊂ X whose complement has codimension ≥ 3 and
such that (X ◦,∆|X ◦ ) admits a smooth orbi-étale orbi-structure C . Consider the “big global cover”
γ : X̂ ◦ → X ◦ associated to C , cf. [41, §§2–3], which up to shrinking X ◦ may be assumed to be
Cohen–Macaulay. The locally free orbi-sheaf Ω[1]

C
from Definition 19 induces a genuine locally

free sheaf F on X̂ ◦. The Chern classes of F induce classes ci
(
Ω[1]

C

) ∈ An−i (X ◦). Since A∗(X ◦)

is equipped with a ring structure, we also have c2
1

(
Ω[1]

C

) ∈ An−2(X ◦). For dimensional reasons,

An−i (X ) ∼−→ An−i (X ◦) is an isomorphism for i ≤ 2. We obtain classes c2
(
Ω[1]

C

)
and c2

1

(
Ω[1]

C

) ∈
An−2(X ), which are independent of the choice of C by [31, Prop. 3.5]. The orbifold Chern classes
c̃2(X ,∆) and c̃2

1(X ,∆) are then given by cap product with Chern classes of line bundles on X :

c̃2(X ,∆) ·L1 · · ·Ln−2 := deg
(
c2

(
Ω[1]

C

)∩c1
(
L1

)∩·· ·∩c1
(
Ln−2

))
,

c̃2
1(X ,∆) ·L1 · · ·Ln−2 := deg

(
c2

1

(
Ω[1]

C

)∩c1
(
L1

)∩·· ·∩c1
(
Ln−2

))
,

and these maps factors via N1(X )Q.
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3.3. The projective case — cutting down

If (X ,∆) is a projective klt pair with standard coefficients, then Lemma 14 allows one to generalize
Mumford’s construction of Q-Chern classes [41] to this setting as explained above. The fact that
the Chern–Weil construction from Definition 30 and Mumford’s definition ofQ-Chern classes are
equivalent is given in [24, Claim 6.5] in the case where∆= 0. It extends readily to the more general
setting of klt pairs with standard coefficients.

Since ψ is an abstract isomorphism, it is in practice difficult to actually compute these
numbers. There is, however, an important situation where things get much more explicit and that
is when α = c1(L)n−2 where L is an ample line bundle on X (we could also have (n −2) different
ample line bundles, but let us stick to the former case for simplicity). By homogeneity of the
intersection product, we can assume that L is very ample and induces an embedding i : X ,→PN

such that L ∼= i∗OPN (1). We pick (n−2) hyperplanes H1, . . . , Hn−2 in general position. In particular,
one has that

∑
Hi has simple normal crossings and S := H1 ∩·· ·∩Hn−2 ∩X ⊂ X ◦.

Lemma 32. With the notation as above, the Chern number from Definition 28 can be computed
with the following formula:

c̃2(E) ·c1(L)n−2 =
∫

S
corb

2 (E ,h)
∣∣
S . (7)

Proof. To begin with, let us choose sections si ∈ H0
(
PN ,OPN (1)

)
such that Hi = {si = 0}, and we

equip OPN (1) with the Fubini–Study metric. Next, we choose cut-off functions χi : PN → [0,1]
such that

χi =
{

0 on {|si | ≤ δ}

1 on {|si | ≥ 2δ}

for some δ> 0 small enough so that

n−2⋂
i=1

{|si | ≤ 2δ}∩X ⊂ X ◦.

For any ε ∈ (0,1], one definesϕi ,ε :=χi log |si |2+(1−χi ) log(|si |2+ε2) and setωi ,ε :=ωFS+ddcϕi ,ε.
Clearly, ωi ,ε is supported on {|si | ≤ 2δ} and ωi ,ε → [Hi ] as ε→ 0, both weakly as currents on PN

and locally smoothly away from Hi . We setΩε :=∧n−2
i=1 ωi ,ε, which is supported on

⋂n−2
i=1 {|si | ≤ 2δ}.

The immersion i : X ◦ ,→PN induces a commutative diagram

H2n−4
dR

(
PN ,R

)
H2n−4

(
PN ,R

)

H2n−4
dR (X ◦,R) H2n−4(X ◦,R) .

∼

i∗ i∗

∼

and by our choices the image i∗[Ωε] lands in the image of the natural map

H2n−4
dR,c

(
X ◦,R

)→ H2n−4
dR

(
X ◦,R

)

and satisfiesψ(i∗[Ωε]) = c1(OPN (1))n−2|X = c1(L)n−2. Therefore, we have for any ε> 0 the identity

c̃2(E) ·c1(L)n−2 =
∫

X ◦
corb

2 (E ,h)∧Ωε. (8)

Now, since
∑

Hi has simple normal crossings, an easy local computation shows thatΩε converges
to the current of integration along the submanifold W :=⋂n−2

i=1 Hi , both weakly on PN and locally
smoothly away from W . Since the support of Ωε|X is contained in a fixed compact subset of X ◦,
ones sees that Ωε|X ◦ converges weakly to [S] = [W ∩ X ◦] in the sense of currents on the orbifold
X ◦. Letting ε tend to 0 in (8), we finally get the formula (7). □
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3.4. Orbi-resolutions and Chern numbers

When X is smooth in codimension two, one can compute Chern numbers on a resolution of
singularities, cf. e.g. [15]. In the presence of singularities in codimension two, it is explained in
loc. cit. that a resolution does not compute Chern numbers anymore in general. The substitute
of a resolution in that setting is an orbi-resolution as defined below.

Definition 33 (Orbi-resolutions). Let (X ,∆) be a pair, where X is a normal complex space, ∆ has
standard coefficients and let X ◦ ⊂ X be the orbifold locus of (X ,∆). An orbi-resolution of (X ,∆) is a
surjective, proper bimeromorphic map π : X̂ → X from a normal complex space X̂ such that:

(1)
(
X̂ ,∆̂ :=π−1

∗ (∆)
)

has only quotient singularities, and
(2) π is isomorphic over X ◦.

The existence of orbi-resolutions can be established1 for quasi-projective varieties (with ∆ =
0), using deep results about stacks as Chenyang Xu has showed in [37, §3]. However, the con-
struction proposed there is highly non-canonical (or non-functorial) and this makes it difficult to
generalize it to the complex analytic setting, even assuming algebraic singularities.

One important application of the existence of orbi-resolutions is highlighted by the following
lemma, which shows that we can use such partial resolutions to compute the orbifold second
Chern class of (X ,∆) against a class in H2n−4(X ,R).

Lemma 34. Let (X ,∆) be a pair as in Setup 5. Assume that (X ,∆) admits an orbi-resolution
π : (X̂ ,∆̂) → (X ,∆) as in Definition 33. Given any a ∈ H2n−4(X ,R), one has the formula

c̃2(X ,∆) ·a = corb
2

(
X̂ ,∆̂

) ·ψ(π∗a),

where on the right-hand side, corb
2

(
X̂ ,∆̂

) ∈ H4
dR

(
X̂ ,R

)
is the usual orbifold second Chern class of

(X̂ ,∆̂) and ψ : H•(X̂ ,R
)→ H•

dR

(
X̂ ,R

)
is the orbifold de Rham–Weil isomorphism.

Proof. With the notation from Definition 33, let us denote X̂ \ E :=π−1(X ◦) and j : X̂ \ E → X̂ the
natural inclusion; for simplicity we set k := 2n −4 and skip the reference to R in the cohomology
spaces below. Finally, we set π0 :=π|X̂ \E : X̂ \ E → X ◦.

We then have the following diagram

Hk
dR

(
X̂

)

Hk
dR,c

(
X̂ \ E

)
Hk

c

(
X̂ \ E

)
Hk

(
X̂

)

Hk
dR,c(X ◦) Hk

c (X ◦) Hk (X )

φ

j dR∗

j∗

ψ

φ

(πdR
0 )∗

i∗

π∗0 π∗

where all arrows except for j∗, j dR
∗ and π∗ are isomorphisms. Now, one can pick an orbifold

Hermitian metric ĥ on TX̂ ,∆̂ and descend it to an orbifold Hermitian metric h on TX ◦ since π

1The proof of [37, Thm. 3] applies verbatim when ∆ ̸= 0, but we will only use the existence of orbi-resolutions when
∆= 0.
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is an isomorphism X̂ \ E → X ◦. Then, if as before α is an orbifold representative of φ−1(i−1
∗ (a))

with compact support in X ◦, we have

c̃2(X ,∆) ·a =
∫

X ◦
corb

2

(
X ◦,h

)∧α

=
∫

X̂ \E
corb

2

(
X̂ , ĥ

)∧π∗α

= corb
2

(
X̂ ,∆̂

) · [π∗α]dR

= corb
2

(
X̂ ,∆̂

) ·ψ(π∗a)

since we have ψ(π∗a) = ( j∗)dR([π∗α]dR) from the commutativity of the diagram above. □
We conclude this paragraph with a remark on the non-orbifold locus. For the sake of clarity

(and also since we will use only this case), we stick to the case ∆= 0.
If X is a normal complex space that admits an orbi-resolution π : X̂ → X in the sense of Defini-

tion 33, it is immediate that its non-orbifold locus X \X orb coincides withπ(E), where E ⊂ X̂ is the
exceptional locus of π. In particular, the non-orbifold locus is an analytic subset of X . This latter
statement is very natural and should be true regardless of the existence of orbi-resolutions. Un-
fortunately, we are neither able to prove it in the general analytic setting nor able to locate a suit-
able reference. We can, however, prove it under the additional assumption that the singularities
of X are algebraic. This is sufficient for the application in Section 7.

Lemma 35 (Analyticity of the non-orbifold locus). Let X be a normal complex space having only
algebraic singularities (in the sense of [16, Def. 2.4]). Then its non-orbifold locus Z := X \ X orb is a
closed analytic subset.

In particular, this applies if X is a compact klt Kähler space with c1(X ) = 0.

Proof. When X is algebraic, this is a straightforward consequence of [3, Cor. 2.6]. If U ⊂ X is a
euclidean open subset of X being isomorphic through a mapϕ : U ∼−→V to an open subset V ⊂ Y
of an algebraic variety, then we have ϕ(Z ∩U ) = V \ V orb, and this is an analytic subset of V by
the algebraic case. The subset Z ∩U is then given by the vanishing of a family of holomorphic
functions, i.e. it is analytic in U .

The last statement is a consequence of [5, Thm. B]: X can be realized as a member of a locally
trivial family which also has projective fibers. The family being locally trivial (over a smooth
connected base), all the fibers are locally isomorphic and such an X then has locally algebraic
singularities (cf. [16, Ex. 2.5]). □

4. Uniformization of canonical models

In this section, we prove Theorem A. Let us first introduce notation. We set A := KX +∆ and pick a
complete intersection surface S = D1∩·· ·∩Dn−2 of n−2 general hypersurfaces Di ∈ |m A|, where
m is sufficiently large and divisible. The proof is divided into four steps.

Step 1: The orbi Higgs-sheaf (EX ,ϑX )

Using the notation introduced in the proof of Lemma 14, we can find a (a priori non-smooth)
orbi-étale structure C = {Uα, gα,U ′

α} with respect to (X ,∆) on the whole X . Then, one can define
the reflexive orbi-Higgs sheaf (EX ,ϑX ) with respect to C as follows:

ϑX : EX :=Ω[1]
(X ,∆) ⊕O(X ,∆) −→ EX ⊗Ω[1]

(X ,∆), (9)

where on each chart U ′
α, we define ϑU ′

α
(a, f ) := (0, a) where (a, f ) is a section of EU ′

α
:=Ω[1]

U ′
α
⊕OU ′

α
.

Cf. also Definition 19 and [31, §5.1, Step 2].
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In order to compute Chern numbers involving EX , one needs to introduce a global cover
f : Y → X and an actual reflexive sheaf EY on Y as we now explain. Thanks to Proposition 13,
there exists a finite morphism f : Y → X that is strictly adapted for (X ,∆) and whose extra
ramification in codimension one (i.e. away from supp(∆)) is supported over a general element
H of a very ample linear system on X . Let N be the ramification order along H ; we have

KY = f ∗
(
KX +∆+

(
1− 1

N

)
H

)
. (10)

We set D :=∆+(
1− 1

N

)
H and define (X ,D)orb to be the largest open subset of X where the pair

(X ,D) admits a smooth orbi-étale orbi-structure C ◦; we know that codimX (X \ (X ,D)orb) ≥ 3 by
Lemma 14. One can be a bit more precise about the shape of C ◦, which will be useful later. Recall
from the proof of Lemma 14 that if we set K := I × J and α := (β,γ) ∈ K , then we have a diagram

X ′
α U ′

α Uα X

U ′
β

Uβ X

fα

hα

gα

id
gβ

where X ′
α is smooth and fα is quasi-étale. Note that one can “restrict” EX to the orbifold locus⋃

αUα ⊂ X of (X ,∆) to get a locally free orbi-Higgs sheaf with respect to the smooth orbi-étale
structure {Uα,hα, X ′

α}α∈K for the pair (X ,∆) in codimension two, given by EX ′
α

:= f [∗]
α (EU ′

β
|U ′

α
) ≃

Ω1
X ′
α
⊕ OX ′

α
. In particular, one can define the Chern number c̃2(EX ) · An−2 as explained in

Section 3.1.
By choosing H general, one can arrange that h∗

αH is smooth for all indices α ∈ K thanks
to Bertini’s theorem, so that a further Kawamata cover κα : Xα → X ′

α orbi-étale with respect
to (X ′

a ,h∗
α(1− 1

N )H) yields the expected smooth orbi-étale orbi-structure C ◦ := {Uα, pα, Xα}α∈K

for the pair (X ,D) in codimension two where pα = ha ◦ κα. We end up with the following
factorization:

Xα Uα X

X ′
α

κα

pα étale

hα

Next, set

Y ◦ := f −1((X ,D)orb
)∩ (Y ,;)orb ⊂ Y .

Since f is finite, and by Lemma 14 applied to (Y ,;), we have codimY (Y \ Y ◦) ≥ 3. The map f
restricts to f ◦ : Y ◦ → X ◦ := (X ,D)orb.

Finally, we set T := f −1(S). Since the linear system |m A| (resp. f ∗|m A|) is basepoint-free and
S is general, we have S ⊂ X ◦ (resp. T ⊂ Y ◦). Also, recall from Lemma 20 that (S,D|S ) has quotient
singularities. The following diagram summarizes the situation:

T Y ◦ Y

S X ◦ X

f |T f ◦ f

Moreover, the ramification formula KT = f ∗(KS +D|S ) shows that T is klt as well, i.e. it is a surface
with quotient singularities.
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Step 2: Computing Chern numbers for EX .

Set ∆◦ := ∆|X ◦ and D◦ := D|X ◦ . Consider the locally free orbi-sheaf for the pair (X ◦,D◦) with
respect to the orbi-structure C ◦ constructed in Step 1 above, defined by

EXα =Ω[1]
(X ◦,∆◦,pα) ⊕OXα . (11)

Since
(
Xα, p−1

α (H)
)

is log smooth, the subsheaf Ω[1]
(X ◦,∆◦,pα) ⊂Ω1

Xα
has a very explicit expression in

terms of local coordinates. More precisely, if (z1, . . . , zn) is a local chart such that p−1
α (H) = {z1 = 0}

on that chart, then the bundle at play is the subbundle ofΩ1
Xα

generated by zN−1
1 dz1, dz2, . . . ,dzn .

In particular, it agrees with Ω1
Xα

outside of p−1
α (H).

Now set EY :=Ω[1]
(X ,∆, f ) ⊕OY ⊂Ω[1]

Y ⊕OY , which we should think of as the reflexive pull back of
EX by f . We equip this sheaf with the usual Higgs field ϑY , and denote by EY ◦ its restriction to Y ◦.
Note that by (2), EY =Ω[1]

Y ⊕OY holds on Y \ f −1(H). Let
{
(Vβ, qβ,Yβ)

}
β∈K be a smooth orbi-étale

(i.e. quasi-étale, in this case) orbi-structure for (Y ◦,;), which exists by (3) and Lemma 14 again,
at least after shrinking Y ◦. Set EYβ := q [∗]

β
EY and consider the diagram

Wαβ Yβ

Y ◦

Xα X ◦

rαβ

gαβ

qβ

f

pα

(12)

where Wαβ is the normalization of Xα×X ◦ Yβ. Since pα is orbi-étale with respect to D◦, the map
rαβ is étale over X ◦

reg \ supp(D◦). Moreover, since qβ is quasi-étale, it follows that f ◦ qβ and pα
ramify to the same order along each component of D . In other words, the smooth orbi-étale orbi-
structures C ◦ and

{(
f (Vβ), f ◦qβ,Yβ

)}
are compatible. In particular, gαβ and rαβ are étale so that

Wαβ is smooth, and we have additionally g∗
αβ

EXα
∼= r∗

αβ
EYβ by (3). Since EXα is locally free, so is

EYβ , so that the reflexive sheaf EY ◦ is a genuine orbifold bundle on the orbifold Y ◦.
Let ω be an orbifold Kähler metric adapted to (X ◦,∆◦), as given by Lemma 11. It is defined

on an arbitrarily large relatively compact open subset of X ◦. In particular, it is defined in a
neighborhood of S and this will be enough for our purposes. Set S∗ := Sreg \suppD . By definition,
one has

c̃2

(
Ω[1]

(X ,∆)

∣∣
S

)
=

∫

Sreg\supp(∆)
c2(Ω1

Xreg
,ω) =

∫

S∗
c2(Ω1

Xreg
,ω)

and the last two integrals on the right are well-defined since ω pulls back to a smooth Kähler
metric across points in Ssing ∪ supp(∆) via the finite maps hα. The smooth form p∗

αω = f ∗
α h∗

αω

is semipositive, degenerate along p−1
α (H). More precisely, if p−1

α (H) ∩U = {z1 = 0} for some
coordinate chart U ⊂ Xα, then

p∗
αω|U = a11|z1|2(N−1)i dz1 ∧dz1 +

n∑
k=2

a1k zN−1
1 dz1 ∧ i dzk

+
n∑

k=2
ak1zN−1

1 dzk ∧ i dz1 +
n∑

j ,k=2
a j k dz j ∧dzk

where (a j k ) is smooth and definite positive. In particular, p∗
αω defines a smooth Hermit-

ian metric on Ω[1]
(X ◦,∆◦,pα). Said otherwise, g∗

αβ
p∗
αω induces a smooth Hermitian metric on

g∗
αβ
Ω[1]

(X ◦,∆◦,pα)
∼= r∗

αβ
Ω[1]

(X ◦,∆◦, f ◦qβ). Hence, q∗
β

f ∗ω is a smooth Hermitian metric on the vector
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bundle Ω[1]
(X ◦,∆◦, f ◦qβ) = q [∗]

β
Ω[1]

(X ◦,∆◦, f ), so that f ∗ω induces an orbifold metric on the orbi-bundle

Ω[1]
(X ◦,∆◦, f ). By the definition of the Chern classes of orbifold vector bundles, we have

c̃2

(
Ω[1]

(X ◦,∆◦, f )

∣∣
T

)
=

∫

f −1(S∗)
c2(Ω1

Yreg
, f ∗ω)

= deg( f |T ) ·
∫

S∗
c2(Ω1

Xreg
,ω)

= deg( f ) · c̃2

(
Ω[1]

(X ,∆)

∣∣
S

)

where the last identity follows from deg( f |T ) = deg( f ) since S is general. All in all, we find
by Lemma 32

c̃2(EY ) · ( f ∗A)n−2 = deg( f ) c̃2(EX ) · An−2. (13)

The same arguments show the similar identity

c̃2
1(EY ) · ( f ∗A)n−2 = deg( f ) c̃2

1(EX ) · An−2. (14)

Step 3: (X ,∆) has quotient singularities

Consider on X the orbi-Higgs sheaf (FX ,ΘX ) := End(EX ,ϑX ). It satisfies:

c̃2
1(FX ) · An−2 = c̃2(FX ) · An−2 = 0,

as follows from the assumption on the Chern classes of (X ,∆), i.e. the assumption that equality
holds in (2). Combined with (13)–(14), the latter identity implies that the (genuine) Higgs sheaf
(FY ,ΘY ) := End(EY ,ϑY ) on Y satisfies

c̃2
1(FY ) · ( f ∗A)n−2 = c̃2(FY ) · ( f ∗A)n−2 = 0.

Moreover, by [31, §4.4, proof of Thm. C], the sheaf Ω[1]
(X ,∆, f ) is ( f ∗A)-semistable. Recall that

c1(Ω[1]
(X ,∆, f )) = f ∗A by [17, (3.11.5)]. It follows that (EY ,ϑY ) is ( f ∗A)-Higgs-stable, cf. the calcu-

lations in [29, proof of Cor. 7.2]. This in turn implies that the endomorphism sheaf (FY ,ΘY ) is
( f ∗A)-Higgs-polystable. Indeed, the last assertion can be deduced from the usual smooth case by
restricting to a general complete intersection curve and using the Mehta–Ramanathan theorem
for Higgs sheaves [29, Thm. 5.22]. Cf. also [30, Lem. 4.7].

By the Simpson correspondence for klt spaces [30, Thm. 5.1], the Higgs sheaf (FY ,ΘY )
∣∣
Yreg

is
locally free and is induced by a tame, purely imaginary harmonic bundle. By [30, Prop. 3.17], the
reflexive pull-back g [∗]FY of FY to a maximally quasi-étale cover g : Z → Y (whose existence is
guaranteed by [27, Thm. 1.5]) is locally free.

Now, set W := X \ H ⊂ X and h := f ◦ g : Z → X . On h−1(W ), we have that

g [∗]EY
∼= g [∗](Ω[1]

Y ⊕OY
)∼=Ω[1]

Z ⊕OZ .

It follows that g [∗]FY
∼= End

(
Ω[1]

Z ⊕OZ
)
, which contains the tangent sheaf TZ as a direct sum-

mand (again, only on h−1(W )). Since direct summands of locally free sheaves are locally free by
Nakayama’s lemma, the resolution of the Lipman–Zariski Conjecture for klt spaces [20, 25, 26]
implies that h−1(W ) is smooth.

By construction, the map h−1(W ) → W is branched exactly at ∆|W . By Corollary 27, its Galois
closure W̃ → W also has this property, and W̃ is smooth, being a quasi-étale (hence étale) cover
of the smooth space h−1(W ). This shows that (W,∆|W ) has quotient singularities. So far, we have
only imposed that H is general in its (basepoint-free) linear system. We can therefore repeat the
argument by choosing general elements H1, . . . , Hn+1 ∈ |H | and conclude that (X ,∆) has quotient
singularities. This means that (X ,∆) is a “complex orbifold” in the sense of [10, p. 109].
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Step 4: (X ,∆) is a ball quotient

Since (X ,∆) is a complex orbifold with KX +∆ ample, there is an orbifold Kähler–Einstein metric
ω such that Ricω=−ω, cf. [10, Thm. 5.2.2]. Set X ∗ := Xreg \ supp(∆), so that ω is a genuine Kähler
metric on X ∗. One can compute the orbifold Chern classes using ω, and, in particular, one has
from the usual Chern form computations

0 = (
2(n +1) c̃2(X ,∆)−n c̃2

1(X ,∆)
) · [KX +∆]n−2

=
∫

X ∗

(
2(n +1)c2(X ,ω)−nc2

1(X ,ω)
)∧ωn−2

=Cn

∫

X ∗
|Θ◦(TX ,ω)|2ωωn ,

where Cn > 0 is a dimensional constant, while

Θ◦(TX ,ω) :=Θ(TX ,ω)− 1

n
trEnd(Θ(TX ,ω)) · idTX

is the trace-free Chern curvature tensor of (TX ,ω).
As a result, ω has constant negative bisectional curvature. This implies that ω has negative

Riemannian sectional curvature on X ∗ by e.g. [23, §2.4.2]. (Note that one could also have said
that (X ∗,ω) is locally isometric to the complex hyperbolic space (Bn ,ωhyp) by [9, Thm. 6] and
conclude by the usual curvature properties of the complex hyperbolic metric.)

Let π : X̃∆ → X be the orbifold universal cover of (X ,∆), cf. Definition 24. By the previous
paragraph, (X ,∆,ω) is an orbifold of nonpositive Riemannian sectional curvature. It then follows
from [12, Cor. 2.16 on p. 603] that (X ,∆) is developable. Now, (X̃∆,π∗ω) is a simply connected
Kähler manifold with constant negative bisectional curvature, so it is holomorphically isometric
to (Bn ,ωhyp) by [34, Thm. 7.9]. In particular, X̃∆

∼=Bn , proving Theorem A. □

5. Characterization of ball quotients

In this section, we prove Corollary 3. We prove the implications (1) ⇒ (2) ⇒ (3) ⇒ (1) separately.

(1)⇒(2). This is Theorem A.

(2)⇒(3). Let π : Bn → X be the orbifold universal cover of (X ,∆). (In particular, (X ,∆) is
developable.) By (2), the map π is Galois, with Galois group Γ ∼= πorb

1 (X ,∆). Note that Γ ⊂
Aut(Bn) = PU(1,n) is a finitely generated linear group. Furthermore, the stabilizers of the action
Γ

⟲

Bn are finite by (4). By Selberg’s lemma [2], there is a finite index normal subgroup Γ′ ⊂ Γ

which is torsion-free. This implies that Γ′ acts freely on Bn . We obtain the following factorization
of π:

Bn −−−−→ Bn/
Γ′

f−−−−→ Bn/
Γ= X ,

where f is the quotient by the action of the finite group G := Γ
/
Γ′ on the projective manifold

Y := Bn/
Γ′. Since the first map is étale, it exhibits Bn as the universal cover of Y . Combining this

with the fact that π is branched exactly at ∆, we infer that f is orbi-étale.

(3)⇒(1). Recall that KY is ample and that Y satisfies equality in the Miyaoka–Yau inequality,
cf. e.g. [35, (8.8.3)]. As f : Y → X is orbi-étale, it follows that also KX +∆ is ample and equality
likewise holds in the Miyaoka–Yau inequality for (X ,∆). □

6. Uniformization of minimal models

This section has two (related) purposes: first, to remove the assumption about the irreducible
components of ∆ beingQ-Cartier from Theorem 2. And second, to prove Corollary 4.
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6.1. Orbifold Miyaoka–Yau inequality

In Theorem 2, or more generally in [31, Thm. B], the assumption that the ∆i be Q-Cartier can be
dropped without replacement. We give two proofs of this result, the first one relying on [7] and
the second one on Proposition 13.

Theorem 36 (Miyaoka–Yau inequality). Let (X ,∆) be an n-dimensional projective klt pair with
standard coefficients, and assume that KX +∆ is big and nef. Then the following inequality holds:

(
2(n +1) c̃2(X ,∆)−n c̃2

1(X ,∆)
) · [KX +∆]n−2 ≥ 0. (15)

First proof. Consider a Q-factorialization f : X ′ → X , cf. [7, Cor. 1.4.3] applied with E = ;. Set
∆′ := f −1

∗ ∆. The map f is small, meaning that Exc( f ) ⊂ X ′ has codimension at least two. Therefore
(X ′,∆′) reproduces all the assumptions made on (X ,∆), and in addition X ′ is Q-factorial. In
particular, KX ′+∆′ = f ∗(KX +∆) is big and nef. Furthermore, f (Exc( f )) ⊂ X has codimension ≥ 3,
therefore f∗

(
c̃2

(
X ′,∆′))= c̃2(X ,∆) as homology classes, and likewise for c̃2

1

(
X ′,∆′) (cf. Remark 31).

By the projection formula, we obtain
(
2(n +1) c̃2(X ,∆)−n c̃2

1(X ,∆)
) · [KX +∆]n−2 = (

2(n +1) c̃2
(
X ′,∆′)−n c̃2

1

(
X ′,∆′)) · [KX ′ +∆′]n−2.

The right-hand side is non-negative by [31, Thm. B]. □
Second proof. Observe that in [31], the assumption that the∆i beQ-Cartier is only used in order
to construct a strictly adapted morphism whose extra ramification is supported on a general very
ample divisor (cf. Ex. 2.11 of that paper). However, using Proposition 13 we can construct such a
cover even without that assumption. After that, the proof of [31, Thm. B] applies verbatim. □

6.2. Uniformization of minimal models

In order to prove Corollary 4, we use the strategy explained in [30, Step 1, p. 1086]. This means we
first have to prove the following lemma.

Lemma 37. In the setting of Corollary 4, the canonical model (Xcan,∆can) also satisfies equality
in (2).

Assuming Lemma 37 for the moment, we then apply Theorem A on (Xcan,∆can) to conclude.
This finishes the proof of Corollary 4.

Remark 38. If we had proved Theorem A only in the setting of [31] (that is, assuming that the
∆i are Q-Cartier), then the above argument would break down. This is because the irreducible
components of ∆can may not beQ-Cartier (even if the same is true of ∆).

Proof of Lemma 37. As in the statement of Corollary 4, let (Xcan,∆can) denote the canonical
model of the pair (X ,∆) and π : (X ,∆) → (Xcan,∆can) the canonical morphism (KX +∆ being big
and nef, some multiple is basepoint-free and so π is a morphism). By construction, KXcan +∆can

is ample and π is crepant:
KX +∆=π∗(

KXcan +∆can
)
. (16)

The pair (Xcan,∆can) still has klt singularities. From Theorem 2, we know that the inequality (2)
holds for (Xcan,∆can) and we are led to checking that:

(
2(n +1) c̃2(X ,∆)−n c̃2

1(X ,∆)
) · [KX +∆]n−2

≥ (
2(n +1) c̃2(Xcan,∆can)−n c̃2

1(Xcan,∆can)
) · [KXcan +∆can]n−2. (17)

In view of (16), this amounts to showing

c̃2(X ,∆) · [KX +∆]n−2 ≥ c̃2(Xcan,∆can) · [KXcan +∆can]n−2. (18)
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At this point, let us consider a general surface Σ ⊂ Xcan cut out by the linear system |m(KXcan +
∆can)| (for m ≫ 1 sufficiently divisible) and let us look at its preimage S := π−1(Σ) ⊂ X in X .
The pairs2 (S,∆) and (Σ,∆can) are orbifold surfaces and contained in the orbifold loci of (X ,∆)
and (Xcan,∆can) respectively. Obviously, (Σ,∆can) is nothing but (S,∆)can and we can apply [40,
Thm. 4.2]. This yields

4c̃2(Σ,∆can)− c̃2
1(Σ,∆can) ≤ 4c̃2(S,∆)− c̃2

1(S,∆) .

The morphism π|S : (S,∆) → (Σ,∆can) being crepant, the above inequality reads as

c̃2(Σ,∆can) ≤ c̃2(S,∆) . (19)

With the notation introduced, the inequality (18) boils down to the following:

c̃2
(
T(X ,∆)

∣∣
S

)≥ c̃2
(
T(Xcan,∆can)

∣∣
Σ

)
.

This last inequality can be checked as in [30, pp. 1086–1087] by considering the (orbifold) normal
sequences

0 −→T(S,∆) −→T(X ,∆)
∣∣
S −→N(S,∆)|(X ,∆) −→ 0, (20)

0 −→T(Σ,∆can) −→T(Xcan,∆can)
∣∣
Σ −→N(Σ,∆can)|(Xcan,∆can) −→ 0. (21)

It is worth noting that both sequences (20) and (21) are exact sequences of orbifold vector
bundles, since the surface S (resp.Σ) is contained in the orbifold locus of (X ,∆) (resp. (Xcan,∆can))
and the terms in the middle are thus genuine orbifold bundles. Now it is enough to remark that
the normal bundles N(S,∆)|(X ,∆) and N(Σ,∆can)|(Xcan,∆can) satisfy

N(S,∆)|(X ,∆)
∼=π∗(

N(Σ,∆can)|(Xcan,∆can)
)

. (22)

Together with (16) and (19), this finally proves that the inequality (18) holds true. This concludes
the proof of Lemma 37. □

Remark. In general, the canonical morphismπ|S : (S,∆) → (Σ,∆can) is not an orbifold morphism,
but the normal bundles are actual locally free sheaves defined on S (resp. on Σ) and not only on
the orbifold (S,∆) (resp. (Σ,∆can)). The Chern classes of N(Σ,∆can)|(Xcan,∆can) thus come from Σ and
can be pulled back to S in the usual way.

7. Characterization of torus quotients

In this final section, we first establish the positivity of the orbifold second Chern class for Calabi–
Yau and for irreducible holomorphic symplectic varieties. Using the Decomposition Theorem [5],
we can then easily deduce Theorem 6 and Theorem B. Finally, we prove Corollary 7.

7.1. Positivity of the second Chern class — the projective case

If X is projective, then we know that it has an orbi-resolution in the sense of Definition 33, and
we can use this to understand the orbifold second Chern class of X .

Proposition 39. Let X be a projective irreducible Calabi–Yau (resp. irreducible holomorphic
symplectic) variety of dimension n with klt singularities and let β ∈ H2(X ,R) be a Kähler class.
Then we have

c̃2(X ) ·βn−2 > 0.

2To avoid cumbersome notation, the restriction of the divisors ∆ and ∆can to S and Σ is not written out.
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Proof. Let π : X̂ → X be an orbi-resolution, whose existence is garanteed by [37] since X is
projective. Let β̂ be a Kähler class on X̂ and let ω ∈ β (resp. ω̂ ∈ β̂) be a Kähler form. Recall
that it follows easily from the Bochner principle [16, Thm. A] that TX is stable with respect to β.
This implies that TX̂ is stable with respect to π∗β, hence TX̂ is stable with respect to π∗β+εβ̂ for
ε> 0 small enough, cf e.g. [15, Prop. 3.4]. In particular, as explained in [21, Thm. 4.2], there exists
an orbifold Hermite–Einstein metrics hε on TX̂ with respect to ωε := π∗ω+εω̂. From Lemma 34,
we have

c̃2(X ) ·βn−2 = lim
ε→0

∫

X̂
corb

2 (TX̂ ,hε)∧ωn−2
ε .

The exact same arguments as in [15, Prop. 3.11] using orbifold forms instead of usual forms shows
that the latter quantity is non-negative, and if it is zero, then we have c̃2(X ) ·γn−2 = 0 for any
Kähler class γ on X . We claim that this cannot happen. Indeed, since X is projective, this applies
to classes of the form c1(H) for an ample divisor H on X . Then [38] would imply that X is the
quotient of an Abelian variety, clearly a contradiction. □

7.2. Positivity of the second Chern class — the IHS case

We will derive the general Kähler case from the projective one using a deformation argument, as
in [15, Prop. 4.4].

Proposition 40. Let X be an irreducible holomorphic symplectic variety of dimension n with klt
singularities and let β ∈ H2(X ,R) be a Kähler class. Then we have

c̃2(X ) ·βn−2 > 0.

Proof. We will first prove that there exists a constant CX ∈R such that

c̃2(X ) ·a =CX qX (a)
n
2 −1 (23)

for any a ∈ H2(X ,R), where qX : H2(X ,R) →C is the Beauville–Bogomolov–Fujiki quadratic form.
Moreover, we will see that CX is constant when X moves in a locally trivial family.

The result follows from standard arguments (see e.g. [15, Prop. 4.4] and references therein)
once one has proved that the formation of c̃2(X ) · a is invariant under parallel transport along a
locally trivial deformation, which we now prove.

Let π : X→ D be a proper surjective map which is a locally trivial deformation of X = π−1(0).
We denote by Xorb (resp. X orb

t ) the orbifold locus of X (resp. X t ), which is a Zariski open subset of
X (resp. X t ) according to Lemma 35. Next, we set Z :=X\Xorb and Zt = Z ∩X t . The family being
locally trivial, we infer that Xorb ∩X t = X orb

t and thus that Zt = X t \ X orb
t .

Claim 41. Up to shrinking D, there exists a C ∞ diffeomorphism F : X→ X0 ×D commuting with
the projection to D such that

(i) F preserves the orbifold locus, i.e. F (X orb
t ) = X orb

0 × {t }.
(ii) F |X orb

t
: X orb

t → X orb
0 is smooth in the orbifold sense.

In this singular context, we mean that F is the restriction of a smooth map under local
embeddings in CN which induces an homeomorphism between X and X0 ×D.

Proof of Claim 41. Let us start with the existence of the diffeomorphism F . To do so, one can
find a proper C ∞ embedding ι : X ,→CN thanks to [1]. Next, extend π smoothly to a smooth map
f with support in a neighborhood of ι(X ). Since π :X→D is locally trivial, one can stratify X such
that the restriction of π to each stratum is proper and smooth (in the analytic sense, i.e. it is a
submersion). The existence of F then follows from Thom’s first isotopy lemma, cf [39, Prop. 11.1].

In order to prove the two items in the claim, let us briefly recall the construction of F in loc. cit.
while emphasizing on the important points for our purposes. Start with local holomorphic
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trivializations gα : Uα → (Uα∩ X0)×D for a covering of analytic open sets (Uα)α∈A of X, and let
Z = ⊔

Z (k) be the standard stratification of the analytic set Z ⊂ X. The maps gα induces a local
biholomorphism between Z (k) and Z (k)

0 ×D for all k; in particular the holomorphic vector fields
vα := g∗

α
∂
∂t satisfy

vα
∣∣

Z (k) ∈ H0
(

Z (k),TZ (k)

)

Next, let (χα) be a partition of unity subordinate to the open cover (Uα)α∈A . The C ∞ vector
field v :=∑

χαvα still satisfies
v |Z (k) ∈C ∞(Z (k),TZ (k) ).

As showed in [39], its flow (Ft ) is well-defined over π−1(D1/2) for |t | < 1/2, and it preserves Z (k) for
all k, hence it preserves Z as well. Equivalently, the flow of v preserves Xorb, which proves (i).

Moreover, v |Xorb is smooth in the orbifold sense (i.e. when pulled back to the local smooth
covers), a property which need not be true for arbitrary vector fields. This is straightforward
since the vα satisfy this property (they lift to holomorphic vector fields on the quasi-étale local
covers), and multiplying by smooth functions is harmless. In order to prove (ii), let x0 ∈ X orb

0 be
an arbitrary point and let U ⊂ Xorb be a small connected open neighborhood of x0 admitting a
smooth quasi-étale cover p : Û → U . We can find U ′ ⋐ U such that for |t | ≤ s (with s > 0 small
enough) the flow Ft is defined on U and satisfies Ft (U ′) ⊂U . Remember that v̂ := p∗v |Ureg extends
to a smooth vector field on Û which we still denote by v̂ , and whose flow we denote by F̂t . Since
p is étale over Ureg, uniqueness of flow ensures that we have a commutative diagram

p−1(U ′) p−1(Ft (U ′))

U ′ Ft (U ′).

p

F̂t

p

Ft

Indeed, since p is a local diffeomorphism over Ureg, we get

Ft ◦p = p ◦ F̂t on p−1(Ureg),

hence everywhere by continuity of the above maps. In summary, Ft : U ′ → Ft (U ′) is an home-
omorphism which therefore lifts to the diffeomorphism F̂t between the manifolds p−1(U ′) and
its image p−1(Ft (U ′)). That is, Ft induces an orbifold diffeomorphism between U ′ and Ft (U ′).
Item (ii) is now proved. □

Let us now consider the orbifold diffeomorphisms F orb
t : X orb

t → X orb
0 , and let h0 be an orbifold

Hermitian metric on TX orb
0

. Finally, letα0 be a closed orbifold form with compact support on X orb
0

representing a class a0 ∈ H2n−4(X0,R). We have

c̃2(X0) ·a0 =
∫

X orb
0

corb
2 (X orb

0 ,h0)∧α0

=
∫

X orb
t

(F orb
t )∗

(
corb

2 (X orb
0 ,h0)∧α0

)

=
∫

X orb
t

corb
2 (X orb

t , (F orb
t )∗ht )∧ (F orb

t )∗α0

= c̃2(X t ) ·F∗
t a0

where the last line comes from the fact that we have a commutative diagram

H2n−4
dR,c

(
X orb

t ,C
)

H2n−4(X t ,C)

H2n−4
dR,c

(
X orb

0 ,C
)

H2n−4(X0,C)

∼

(F orb
t )∗

∼

F∗
t
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so that (23) is proved.
Finally, we must show that CX > 0. Since CX is invariant under locally trivial deformation, one

can use [6, Cor. 1.3] and [5, Cor. 3.10] to deform X locally trivially to a projective IHS variety Y .
Proposition 39 shows that CY > 0, which concludes the proof of the proposition. □

7.3. Simultaneous proof of Theorem 6 and Theorem B

Here we closely follow the arguments from [15, proof of Thm. 5.2].
Let (X ,∆) be as in Setup 5 and such that c̃1(X ,∆) = 0. We denote by X ◦ := (X ,∆)orb the open

locus where the pair has quotient singularities, and set ∆◦ := ∆|X ◦ . It has been proved in [13,
Cor. 1.18] that abundance holds for such a pair and in particular KX +∆ is torsion. We can then
apply Proposition 12 and infer the existence of an orbi-étale map f : Y → X such that

OY
∼= KY

∼= f ∗(KX +∆).

Arguing as in the proof of formula (13), one has:

Lemma 42. We have the identity

c̃2(Y ) · f ∗(α)n−2 = deg( f ) c̃2(X ,∆) ·αn−2. (24)

Proof. Let a be an orbifold differential form of degree 2n − 4 with compact support in X ◦

representing αn−2 and let h be an orbifold Hermitian metric on Ω1
(X ◦,∆◦). Consider the space

Y ◦ = f −1(X ◦); by taking a fiber product with local smooth charts of X ◦, it follows easily from
purity of branch locus that Y ◦ admits a smooth orbistructure and that f ∗h induces an smooth
Hermitian metric on ΩY ◦ . In particular, we have

c̃2(Y ) · f ∗(α)n−2 =
∫

Y ◦
c2(ΩY ◦ , f ∗h)∧ f ∗a

=
∫

Y ◦\ f −1(supp∆)
c2(ΩY ◦ , f ∗h)∧ f ∗a

= deg( f )
∫

X ◦\supp∆
c2(Ω(X ◦,∆◦),h)∧a

= deg( f )
∫

X ◦
c2(Ω(X ◦,∆◦),h)∧a

= deg( f ) c̃2(X ,∆) ·αn−2,

which proves the lemma. □

Both members of the equation (24) being simultaneously non-negative or zero (and f ∗(α) still
being a Kähler class on Y ), we shall replace X with Y and assume from now on that there is no
orbifold structure in codimension one, i.e. that ∆= 0.

By [5, Thm. A], there exists a finite, Galois quasi-étale cover f : X ′ → X such that X ′ ∼=
T ×∏

i∈I Yi ×
∏

j∈J Z j where T is a torus, Yi are CY varieties and Z j are IHS varieties. By [24,
Prop. 5.6], we have

c̃2
(
X ′) · f ∗βn−2 = deg( f ) c̃2(X ) ·βn−2,

while f ∗β is still a Kähler class by [24, Prop. 3.5]. All in all, there is no loss in generality assuming
that X = X ′ is split, which we do from now on.

Since H1(Yi ,R) = H1
(
Z j ,R

)= 0, the Künneth decomposition on the space H2(X ,R) enables us
to write

β= p∗
TβT +

∑
i∈I

p∗
Yi
βYi +

∑
j∈J

p∗
Z j
βZ j
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where βT , βYi and βZ j are Kähler classes on T, Yi and Z j respectively. In particular, we get

c̃2(X ) ·βn−2 =
∑
i∈I
λi c̃2(Yi ) ·βdim(Yi )−2

Yi
+

∑
j∈J

µ j c̃2
(
Z j

) ·βdim(Z j )−2
Z j

,

where λi , µ j > 0 are positive combinatorial coefficients. Proposition 39 and Proposition 40 imply
that the above quantity is non-negative, and strictly positive unless I = J =;; i.e. unless X = T is
a torus. Theorem 6 and Theorem B are now proved. □

7.4. Proof of Corollary 7

To finish, we prove Corollary 7 by proving both implications separately, similar to Corollary 3.

(1)⇒(2). This is what we have just proved in the above lines.

(2)⇒(1). If f : T → X is a Galois orbi-étale map (for the pair (X ,∆)) from a complex torus, the
section (dz1 ∧ ·· · ∧ dzn)⊗m is G-invariant, where G := Gal( f ) and m := |G|. This proves that
m(KX +∆) ∼ 0 and thus that c1(KX +∆) = 0. LetωT be any Kähler metric on T and let us consider

ω f :=
∑

g∈G
g∗ωT .

It descends to an orbifold Kähler metric ωX on (X ,∆) and, the map f being orbi-étale, we have:

c̃2(X ,∆) · [ωX ]n−2 = 1

deg( f )
c̃2(T ) · [ω f ]n−2 = 0.

Since [ωX ] is a Kähler class, this ends the proof. □
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This generalizes the main result of [6] from the projective case to the Kähler case. The main
idea is to observe that replacing X by an appropriate resolution, then the Albanese morphism
X → A is projective and so by [5] and [7] we may run the relative MMP over A. Thus we may
assume that KX +B is nef over A. If X is projective and KX +B is not nef, then by the cone theorem,
X must contain a KX +B negative rational curve C . Since A contains no rational curves, then C is
vertical over A, contradicting the fact that KX +B is nef over A [6]. Unluckily the cone theorem is
not known for Kähler varieties and so we pursue a different argument. It would be interesting to
find an alternative proof based on the approach of [3].

2. Preliminaries

An analytic variety or simply a variety is a reduced irreducible complex space. Let X be a compact
Kähler manifold and Alb(X ) is the Albanese torus (not necessarily an Abelian variety). Then by
a : X → Alb(X ) we will denote the Albanese morphism. This morphism can also be characterized
via the following universal property: a : X → Alb(X ) is the Albanese morphism if for every
morphism b : X → T to a complex torus T there is a unique morphism φ : Alb(X ) → T such
that b =φ◦a.

The Albanese dimension of X is defined as dim a(X ). We say that X has maximal Albanese
dimension if dim a(X ) = dim X or equivalently, the Albanese morphism a : X → Alb(X ) is
generically finite onto its image. For the definition of singular Kähler space see [4] or [11].

A compact analytic variety X is said to be in Fujiki’s class C if X is bimeromorphic to a compact
Kähler manifold Y . In particular, there is a resolution of singularities f : Y → X such that Y is a
compact Kähler manifold.

Definition 2. Let X be a compact analytic variety in Fujiki’s class C . Assume that X has rational
singularities. Choose a resolution of singularities µ : Y → X such that Y is a Kähler manifold and
let aY : Y → Alb(Y ) be the Albanese morphism of Y . Then from the proof of [12, Lemma 8.1] it
follows that aY ◦µ−1 : X 99K Alb(Y ) extends to a unique morphism a : X → Alb(X ) := Alb(Y ). We
call this morphism the Albanese morphism of X . Observe that a : X → Alb(X ) satisfies the universal
property stated above. The Albanese dimension of X is defined as above. Note that if X is a compact
analytic variety with rational singularities, bimeromorphic to a complex torus A, then A ∼= Alb(X )
and X → A is a bimeromorphic morphism.

The following result is well known, however, for a lack of an appropriate reference and for the
convenience of the reader we give a complete proof here.

Lemma 3. Let A be a complex torus and X ⊂ A is an analytic subvariety. Then for any resolution
of singularities µ : Y → X , H 0(Y ,ωY ) ̸= {0}.

Proof. Let µ : Y → X be a resolution of singularities of X . If d = dim X , then the map µ∗Ωd
A →Ωd

Y
is generically surjective. Since Ωd

A is a trivial vector bundle, it is globally generated and hence
there is a non-zero section in the image of µ∗ : H 0(Ωd

A) → H 0(Ωd
Y ). □

Corollary 4. Let X be a compact analytic variety in Fujiki’s class C with canonical singularities.
If X has maximal Albanese dimension, then κ(X ) ≥ 0.

Proof. First note that if f : W → X is a proper bimeromorphic morphism, then κ(X ) ≥ 0 if and
only if κ(W ) ≥ 0, since X has canonical singularities. Now let a : X → Alb(X ) be the Albanese
morphism, Y := a(X ), and π : Z → Y is a resolution of singularities of Y . Then κ(Z ) ≥ 0 by
Lemma 3. Note that there is a generically finite meromorphic map φ : X 99K Z ; resolving the
graph of φ we may assume that X is smooth and φ : X → Z is a morphism. Then KX =φ∗KZ +E ,
where E ≥ 0 is an effective divisor. Therefore κ(X ) ≥ 0, since κ(Z ) ≥ 0. □
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2.1. Fourier-Mukai transform

Let T be a complex torus of dimension g and T̂ = Pic0(T ) its dual torus. Let pT : T × T̂ → T
and pT̂ : T × T̂ → T̂ be the projections, and P the normalized Poincaré line bundle on T × T̂ so
that P |T×{0}

∼=OT and P |{0}×T̂
∼=OT̂ . Let Ŝ be the functor from the category of OT -sheaves to the

category of OT̂ -sheaves, defined by

Ŝ(F ) := pT̂ ,∗(p∗
T F ⊗P ),

where F is a sheaf of OT -modules. Similarly, S is a functor from the category of OT̂ -sheaves to
the category of OT -sheaves, defined as

S(G ) := pT,∗(p∗
T̂
G ⊗P ),

where G is a sheaf of OT̂ -modules.
The corresponding derived functors are

RŜ( · ) := RpT̂ ,∗(p∗
T ( · )⊗P ) and RS( · ) := RpT,∗(p∗

T̂
( · )⊗P ).

Recall the following fundamental result of Mukai [13, Theorem 2.2, and (3.8)], [14, Theorem 13.1]

Theorem 5. With notations and hypothesis as above, there are isomorphisms of functors (on the
bounded derived category of coherent sheaves)

RŜ ◦RS ∼= (−1)∗
T̂

[−g ], RS ◦RŜ ∼= (−1)∗T [−g ],

∆T ◦RS = ((−1T )∗ ◦RS ◦∆T̂ )[−g ].

Recall that∆T ( · ) := RH om( · ,OT )[g ] is the dualizing functor.

Definition 6. Let A be a complex torus. For a ∈ A, let ta : A → A be the usual translation morphism
defined by a. A vector bundle E on A is called homogeneous, if t∗a E ∼= E for all a ∈ A.

Remark 7. Let A be a complex torus, Â the dual torus and dim A = dim Â = g . Then from the
proof of [13, Example 3.2] it follows that Rg Ŝ gives an equivalence of categories

HA := {Homogeneous vector bundles on A},

and C f

Â
:= {Coherent sheaves on Â supported at finitely many points}.

Note that in [13] the results are all stated for abelian varieties, however, we observe that in the
proof of [13, Example 3.2] the main arguments follow from Theorem 5 and the isomorphisms
in [13, (3.1), p. 158], both of which hold for complex tori. In particular, [13, Example 3.2] holds for
complex tori.

We will need the following result on the rational singularity of (log) canonical models of klt
pairs.

Proposition 8. Let (X ,B) be a klt pair, where X is a compact analytic variety in Fujiki’s class C .
Assume that the Kodaira dimension κ(X ,KX +B) ≥ 0. Then R(X ,KX +B) :=⊕m≥0H 0(X ,m(KX +B))
is a finitely generated C-algebra and

Z = ProjR(X ,KX +B)

has rational singularities.

Proof. The finite generation of R(X ,KX +B) follows from [5, Theorem 1.3] and [6, Theorem 5.1].
Let f : X 99K Z be the Iitaka fibration of KX +B . Resolving Z , f and X , we may assume that X
is a compact Kähler manifold, B has SNC support, Z is a smooth projective variety and f is a
morphism. Then from the proof of [6, Theorem 5.1] it follows that there is a smooth projective
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variety Z ′ which is birational to Z and an effective Q-divisor BZ ′ ≥ 0 such that (Z ′,BZ ′ ) is klt,
KZ ′ +BZ ′ is big and the following holds

R(X ,KX +B)(d) ∼= R(Z ′,KZ ′ +BZ ′ )(d ′),

where the superscripts d and d ′ represent the corresponding d and d ′-Veronese subrings.
Thus Z = ProjR(X ,KX +B) ∼= ProjR(Z ′,KZ ′ +BZ ′ ) is the log-canonical model of (Z ′,BZ ′ ). If

(Z ′′,BZ ′′ ) is a minimal model of (Z ′,BZ ′ ) as in [2, Theorem 1.2(2)], then by the base-point free
theorem, there is a birational morphism φ : Z ′′ → Z such that KZ ′′ +BZ ′′ = φ∗(KZ +BZ ), where
BZ :=φ∗BZ ′′ ≥ 0. Thus (Z ,BZ ) is a klt pair, and hence Z has rational singularities. □

3. Main Theorem

In this section we will prove our main theorem. We begin with some preparation.

Definition 9. Let X be a smooth compact analytic variety. Then the m-th plurigenera of X is
defined as

Pm(X ) := dimC H 0(X ,ωm
X ).

The next result is one of our main tools in the proof of the main theorem, it is also of
independent interest. It follows immediately from the main results of [14].

Theorem 10. Let X be a compact Kähler variety with terminal singularities. Assume that X has
maximal Albanese dimension and κ(X ) = 0. Then X is bimeromorphic to a torus. Additionally, if
KX is also nef, then X is isomorphic to a torus.

Remark 11. Note that the above result holds if we simply assume that X is in Fujiki’s class C .
Indeed, if X ′ → X is a resolution of singularities such that X ′ is Kähler, then κ(X ′) = 0 and so
X ′ → Alb(X ′) is bimeromorphic, and hence so is X → Alb(X ′). Note also that if X is a complex
manifold of maximal Albanese dimension, then X is automatically in Fujiki’s class C . To see this,
consider the Stein factorization X → Y → A. Then Y → A is finite and so Y is also Kähler (see [15,
Proposition 1.3.1(v) and (vi), p. 24]). Let X ′ → X be a resolution of sungularities such that X ′ → Y
is projective, then X ′ is Kähler and so X is in Fujiki’s class C .

Proof of Theorem 10. Since X is terminal, it has rational singularities, and thus by Definition 2
the Albanese morphism a : X → Alb(X ) exists. Let π : X̃ → X be a resolution of singularities of
X . Then a ◦π : X̃ → Alb(X ) is the Albanese morphism of X̃ . Moreover, since X has terminal
singularities, κ(X̃ ) = κ(X ) = 0. Thus replacing X by X̃ , we may assume that X is a compact
Kähler manifold. Let d = dim X and pick a general element Θ ∈ H 0(Ωd

A), where A = Alb(X ). Then
0 ̸= a∗Θ ∈ H 0(Ωd

X ) and so P1(X ) > 0. It follows that Pk (X ) = h0(X ,ωk
X ) > 0 for all k > 0. Since

κ(X ) = 0, we have P1(X ) = P2(X ) = 1. Thus by [14, Theorem 19.1], X → A is surjective, and hence
dim X = dim A = h1,0(X ). Thus by [14, Theorem B], X is bimeromorphic to a complex torus and
so a : X → A is (surjective and) bimeromorphic.

Assume now that X has terminal singularities and KX is nef. Let a : X → A be the Albanese
morphism. By what we have seen above, this morphism is bimeromorphic. Thus KX ≡ a∗K A+E ≡
E , where E ≥ 0 is an effective Cartier divisor such that Supp(E) = Ex(a) (since A is smooth). By
the negativity lemma (see [16, Lemma 1.3]) we have E = 0, and hence a is an isomorphism. □

Corollary 12. Let (X ,B) be a compact Kähler klt pair. Assume that X has maximal Albanese
dimension and κ(X ,KX +B) = 0. Then X is bimeromorphic to a torus. Additionally, if KX +B ∼Q 0,
then X is isomorphic to a torus.
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Proof. Passing to a terminalization by running an appropriate MMP over X (using [5, Theo-
rem 1.4]) we may assume that (X ,B) hasQ-factorial terminal singularities. Now since κ(X ) ≥ 0 by
Corollary 4, κ(X ,KX +B) = 0 implies that κ(X ,KX ) = 0. Thus by Theorem 10, a : X → A := Alb(X )
is a surjective bimeromorphic morphism. Now assume that KX + B ∼Q 0. Then KX + B =
a∗K A + E +B ∼Q B + E , where E ≥ 0 is an effective Cartier divisor such that Supp(E) = Ex(a),
since A is smooth. Thus (B +E) ∼Q 0, as KX +B ∼Q 0, and hence B = E = 0 (as X is Kähler). In
particular, a : X → A is an isomorphism. □

Now we are ready to prove our main theorem.

Proof of Theorem 1. Let a : X → A be the Albanese morphism. Since X has maximal Albanese
dimension, a is generically finite over its image a(X ). By the relative Chow lemma (see [10,
Corollary 2] and [4, Theorem 2.16]) there is a log resolution µ : X ′ → X of (X ,B) such that the
Albanese morphism a′ = a◦µ : X ′ → A is projective. Let KX ′+B ′ =µ∗(KX +B)+F , where F ≥ 0 such
that Supp(F ) = Ex(µ), and (X ′,B ′) has klt singularities. Note that if (X ′,B ′) has a good minimal
model ψ : X ′ 99K X m , then ψ contracts every component of F and the induced bimeromorphic
map X 99K X m is a good minimal model of (X ,B) (see [9, Lemmas 2.5 and 2.4] and their proofs).
Thus, we may replace (X ,B) by (X ′,B ′) and assume that (X ,B) is a log smooth pair and X → A is
a projective morphism. From Corollary 4 it follows that κ(X ) ≥ 0. In particular, κ(X ,KX +B) ≥ 0.
Now we split the proof into two parts. In Step 1 we deal with the κ(X ,KX +B) = 0 case, and the
remaining cases are dealt with in Step 2.

Step 1. Suppose that κ(X ,KX +B) = 0. Then by Theorem 10, the Albanese morphism a : X →
A := Alb(X ) is bimeromorphic. Let D be an irreducible component of the unique effective divisor
G ∈ |m(KX +B)| for m > 0 sufficiently divisible. We make the following claim.

Claim 13. D is a-exceptional; in particular, G is a-exceptional.

Proof. First passing to a higher model of X we may assume that D has SNC support. Consider
the short exact sequence

0 −→ωX −→ωX (D) −→ωD −→ 0.

Let V 0(ωD ) := {P ∈ Pic0(A) | h0(D,ωD ⊗a∗P ) ̸= 0}. If dimV 0(ωD ) > 0, then it contains a subvariety
K + P , where P is torsion in Pic0(A) and K is a subtorus of Pic0(A) with dimK > 0 (see [14,
Corollary 17.1]). Since a : X → A is surjective and bimeromorphic, we have H i (X , a∗Q) =
H i (A,Q) = 0 for any OA ̸= Q ∈ Pic0(A); in particular, H 1(X ,ωX ⊗ a∗Q) = H n−1(X , a∗Q−1)∨ = 0,
where n = dim X . Thus H 0(X ,ωX (D)⊗ a∗Q) → H 0(D,ωD ⊗ a∗Q) is surjective for all OA ̸= Q ∈
Pic0(A), and so h0(X ,ωX (D)⊗a∗Q) > 0 for all OA ̸=Q ∈ P +K . Since P is torsion, ℓP = 0 for some
ℓ> 0. Consider the morphism

|KX +D +P +Q1|× · · ·× |KX +D +P +Qℓ| −→ |ℓ(KX +D)|, (1)

where Qi ∈ K such that
∑ℓ

i=1 Qi = 0.
Since dimK > 0, for ℓ ≥ 2, the Q1, . . . ,Qℓ vary in the subvariety K ⊂ K ×ℓ defined by the

equation
∑ℓ

i=1 Qi = 0. Thus dimK ≥ ℓ · (dimK )− 1 ≥ ℓ− 1 ≥ 1. Therefore dim |ℓ(KX +D)| > 0,
i.e. h0(X ,ℓ(KX +D)) > 1. Since D is contained in the support of G , we have (r −ℓ)G ≥ ℓD for
some r > 0. Then h0(X ,r m(KX +B)) ≥ h0(X ,ℓ(KX +D)) > 1, which is a contradiction. Therefore,
dimV 0(ωD ) ≤ 0. By [14, Theorem A], a∗ωD is a GV sheaf so that RŜ∆A(a∗ωD ) = R0Ŝ∆A(a∗ωD ).
If dimV 0(ωD ) = 0, then R0Ŝ(∆A(a∗ωD )) is an Artinian sheaf of modules on A, and hence by
Theorem 5 and Remark 7

∆A(a∗ωD ) = (−1A)∗RS(RŜ∆A(a∗ωD ))[g ] = (−1A)∗RS(R0Ŝ∆A(a∗ωD ))[g ]

is a shift of a homogeneous vector bundle which we denote by E (see Remark 7). But then

a∗ωD =∆A(∆A(a∗ωD )) = E∨
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is also a homogeneous vector bundle and hence its support is either empty or entire A. The lat-
ter is clearly impossible, since Supp(a∗ωD ) ̸= A, and hence V 0(ωD ) = ;. Thus by [14, Proposi-
tion 13.6(b)], a∗ωD = 0; in particular D is a-exceptional. □

Now by [5, Theorem 1.4] and [7, Theorem 1.1] we can run the relative minimal model program
over A and hence may assume that KX +B is nef over A. From our claim above we know that
KX +B ∼Q E ≥ 0 for some effective a-exceptional divisor E ≥ 0. Then by the negativity lemma we
have E = 0; thus OX (m(KX +B)) ∼= OX for sufficiently divisible m > 0, and hence we have a good
minimal model.

Step 2. Suppose now that κ(X ,KX +B) ≥ 1 and let f : X 99K Z be the Iitaka fibration. Note that
the ring R(X ,KX + B) := ⊕m≥0H 0(X ,OX (⌊m(KX + B)⌋)) is a finitely generated C-algebra by [5,
Theorem 1.3]. Define Z := ProjR(X ,KX + B). Then Z 99K Z is a birational map of projective
varieties. Resolving the graph of Z 99K Z we may assume that Z is a smooth projective variety
and ν : Z → Z is a birational morphism. Then passing to a resolution of X we may assume that
f is a morphism and (X ,B) is a log smooth pair. Write KF +BF = (KX +B)|F , where F is a very
general fiber of f , so that κ(F,KF +BF ) = 0. Note that a|F is also generically finite (as F is a very
general fiber of f ) and thus F has maximal Albanese dimension. In particular, (F,BF ) has a good
minimal model by Step 1. Let ψ : F 99K F ′ be this minimal model; then KF ′ +BF ′ ∼Q 0. Thus by
Corollary 12, F ′ is a torus and BF ′ = 0; in particular, ψ : F → F ′ is the Albanese morphism. Thus
a|F : F → A factors through ψ : F → F ′; let α : F ′ → A be the induced morphism. Let K := α(F ′);
then K is a torus, and α is étale over K , as F ′ and K are both homogeneous varieties. Now
since A contains at most countably many subtori and F is a very general fiber, K is independent
of the very general points z ∈ Z , and hence so is F ′. Define A′ := A/K , then A′ is again a
torus. Since the composite morphism X → A′ contracts F and dimF = dimK , from the rigidity
lemma (see [1, Lemma 4.1.13]) and dimension count it follows that there is a meromorphic map
Z 99K A′ generically finite onto its image. Since Z is smooth, we may assume that Z → A′ is a
morphism (see [12, Lemma 8.1]). Similarly, since Z has rational singularities by Proposition 8,
again from [12, Lemma 8.1] it follows that Z → A′ is a morphism.

Since Z = ProjR(X ,KX +B), we may choose an ample Q-divisor H on Z such that if HX is its
pull-back to X , then KX +B ∼Q HX +E and |k(KX +B)| = |kHX |+kE for any sufficiently large and
divisible integer k > 0, where E ≥ 0 is effective (it suffices to pick k so that k(KX +B) and kHX are
Cartier and R(X ,KX +B) is generated in degree k).

Now let A := Z ×A′ A. Observe that there is a unique morphism a : X → A determined by the
universal property of fiber products. We claim that E is exceptional over A. If not, then let D be
a component of E which is not exceptional over A. Let h : X → Z be the composite morphism
X → Z → Z and W := h(D). Choose a sufficiently divisible and large positive integer s > 0 such
that sH is very ample, r (KX +B) is Cartier, r E ≥ D and |r (KX +B)| = |r HX |+r E , where r = (n+1)s
and n = dim X .

X

f

��

a %%

a

��
A := Z ×A′ A

��

// A

��
Z // Z // A′ := A/K

(2)

Claim 14. |KD + (n +1)sHD | ̸= ;, where HD = HX |D .
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Proof. Let Di = G1 ∩ . . . ∩Gi be the intersection of general divisors G1, . . . ,Gm ∈ |sHD |, where
0 ≤ i ≤ m := dimW and D0 := D . Let M := KD+(n+1)sHD , then we have the short exact sequences

0 −→ODi (M −Gi+1) −→ODi (M) −→ODi+1 (M) −→ 0.

Recall that h : X → Z is the given morphism; let hi := h|Di . Then

(M −Gi+1)|Di ∼ (KD +nsHD )|Di

∼
(
KD +

i∑
j=1

G j + (n − i )sHD

)∣∣∣
Di

∼ KDi + (n − i )sHDi

∼ KDi +h∗
i (n − i )sH ,

where HDi := HX |Di . By [8, Theorem 3.1(i)] the only associated subvarieties of

R1hi ,∗ODi (M −Gi+1) = R1hi ,∗ODi (KDi )⊗OZ ((n − i )sH)

are Wi := h(Di ) ⊂ Z , i.e. R1hi ,∗ODi (M−Gi+1) is a torsion free sheaf on Wi . Therefore, the induced
homomorphism hi ,∗ODi+1 (M) → R1hi ,∗ODi (M −Gi+1) is zero and we have the following exact
sequence

0 −→ hi ,∗ODi (M −Gi+1) −→ hi ,∗ODi (M) −→ hi ,∗ODi+1 (M) −→ 0.

By [8, Theorem 3.1(ii)] we have

H 1(Z ,hi ,∗ODi (M −Gi+1)) = H 1(Z ,hi ,∗ODi (KDi )⊗OZ ((n − i )sH)) = 0,

and thus we have the following surjections

H 0(D,OD (M)) −→ H 0(D1,OD1 (MD1 )) −→ ·· · −→ H 0(Dm ,ODm (MDm )) −→ H 0(G ,OG (M |G )), (3)

where G is a connected (and hence irreducible, as Dm is smooth) component of Dm . Note that G
is a general fiber of D →W , since HD is a pullback from W and m = dimW .

Let w := h(G) ∈ W ⊂ Z . Then G → G := a(G) is generically finite (as so is D → a(D) by
our assumption), and G → a(G) is an isomorphism, since Aw → K ⊂ A is an isomorphism, as
Aw = (A ×A′ Z )w = A ×A′ {w} ∼= K . In particular, G has maximal Albanese dimension, and hence
h0(G ,KG ) > 0 by Lemma 3. Now since M |G ∼ KG , from the surjections in (3) it follows that
|M | = |KD + (n +1)sHD | ̸= ;, and hence the claim follows. □

Now consider the short exact sequence

0 −→ωX (L) −→ωX (L+D) −→ωD (L) −→ 0,

where L = r HX . Then by [8, Theorem 3.1(i)], R1h∗ωX (L) = R1h∗ωX ⊗OZ (r H) is torsion free, and
hence h∗ωX (L +D) → h∗ωD (L) is surjective. Again by [8, Theorem 3.1(ii)], H 1(Z ,h∗ωX (L)) =
H 1(Z ,h∗ωX ⊗OZ (r H)) = 0, and so H 0(X ,ωX (L +D)) → H 0(D,ωD (L)) is surjective. Since |KD +
L|D | ̸= 0 by Claim 14, D is not contained in the base locus of |KX +L+D|. Let 0 ≤ b := multD (B) < 1
and e := multD (E) > 0. Then σE +B −D ≥ 0 and multD (σE +B −D) = 0 for σ= 1−b

e > 0. We may
assume that σ≤ r (as r is sufficiently large and divisible). Adding r E +B −D to a general divisor
G ∈ |KX +L+D| we get

Γ := r E +B −D +G ∼Q (r +1)(KX +B) ∼Q (r +1)(HX +E).

Then for any sufficiently divisible m > 0 we have

multD (mΓ) = m(r −σ)multD (E) < m(r +1)multD (E),

which is a contradiction to the fact that |k(KX +B)| = |kHX | + kE for sufficiently divisible k =
m(r +1) > 0. Thus D is exceptional over A.

Let n = dim X . We will run a relative (KX +B+(2n+3)sHX )-MMP over A. Note that since |(2n+
3)sHX | is a base-point free linear system on a smooth compact variety X , by Sard’s theorem there
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is an effective Q-divisor H ′ ≥ 0 such that (2n +3)sHX ∼Q H ′ and (X ,B +H ′) has klt singularities.
Thus KX +B + (2n +3)sHX ∼Q KX +B +H ′ and we can run a (KX +B + (2n +3)sHX )-MMP over A
by [5, Theorem 1.4], and obtain X 99K X ′ so that KX ′ +B ′+ (2n+3)sHX ′ ∼Q ((2n+3)s+1)HX ′ +E ′

is nef over A. Note that if R is a (KX +B + (2n + 3)sHX )-negative extremal ray over A, then it is
also (KX +B)-negative and so it is spanned by a rational curve C such that 0 > (KX +B) ·C ≥−2n
(see [5, Theorem 2.46]). But then C is vertical over Z , otherwise (KX +B + (2n + 3)sHX ) ·C > 0,
as HX is the pullback of an ample divisor H on Z , this is a contradiction. Thus it follows that
every step of this MMP is also a step of an MMP over Z , and hence there is an induced morphism
µ : X ′ → A := Z ×A′ A. It follows that

KX ′ +B ′ ∼Q µ∗HA +E ′ ∼
Q,A E ′ ≥ 0,

where HA is the pullback of the ample divisor H by the projection A → Z .
Then E ′ is nef and exceptional over A, and hence by the negativity lemma, E ′ = 0. But then

KX ′ +B ′ ∼Q µ∗HA and since HA is semi-ample, so is KX ′ +B ′. □
Corollary 15. Let (X ,B) be a compact Kähler klt pair of maximal Albanese dimension such that
a : X → A := Alb(X ) is a projective morphism. Then we can run a (KX +B)-Minimal Model Program
which ends with a good minimal model.

Proof. Note that since a : X → A is generically finite over image, KX +B is relatively big over a(X ).
Thus by [5, Theorem 1.4] and [7, Theorem 1.8], we can run a (KX +B)-Minimal Model Program
over A. Notice that each step of this MMP is also a step of the (KX +B)-MMP. Therefore, we may
assume that KX +B is nef over A and we must check that it is indeed nef on X . Let (X ,B) be a
good minimal model of (X ,B), which exists by Theorem 1. By what we have seen, (X ,B) is also
a minimal model over A. But then φ : (X ,B) 99K (X ,B) is an isomorphism in codimension 1. If
p : Y → X and q : Y → X is a common resolution, then p∗(KX +B)− q∗(KX +B) is exceptional
over X (resp. X ) and nef over X (resp. anti-nef over X ). From the negativity lemma, it follows that
p∗(KX +B) = q∗(KX +B). In particular, p∗(KX +B) is semi-ample, and hence so is KX +B . Thus
(X ,B) is a good minimal model. □
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1. Introduction

Let (X ,ω) be a Fano Kähler–Einstein manifold, i.e. X is a projective manifold with −KX ample
and admitting a Kähler metric ω solving Ricω = ω. It follows from the (easy direction of the)
Kobayashi–Hitchin correspondence that the tangent bundle of X splits as a direct sum of parallel
subbundles

TX =
⊕
i∈I

Fi (1)

such that Fi is stable with respect to −KX . Since X is simply connected, de Rham’s splitting
theorem asserts that one can integrate the foliations arising in decomposition (1) and obtain an
isometric splitting

(X ,ω) ≃
∏
i∈I

(Xi ,ωi )

into Kähler–Einstein Fano manifolds which is compatible with (1).
Over the last few decades, a lot of attention has been drawn to projective varieties with mild

singularities, in relation to the progress of the Minimal Model Program (MMP). In that context,
the notion ofQ-Fano variety (cf. Definition 1) has emerged and played a central role in birational
geometry.

On the analytic side, singular Kähler–Einstein metrics have been introduced and constructed
in various settings (see e.g. [2, 4, 18] and Definition 2). They induce genuine Kähler–Einstein
metrics on the regular part of the variety but are in general incomplete, preventing the use of most
useful results in differential geometry (like the de Rham splitting theorem mentionned above) to
analyze their behavior. However, these objects are well-suited to study (poly)-stability properties
of the tangent sheaf as it was observed by [25], relying on earlier results by [17].

In the Ricci-flat case, the holonomy of the singular metrics was computed in [20]. Moreover,
[15] provided an algebraic integrability result for foliations as well as a splitting result in that
setting. Building upon those results, Höring and Peternell [26] could eventually prove the singular
version of the Beauville–Bogomolov decomposition theorem.

In the positive curvature case, some simplifications appear (for instance, the algebraic integra-
bility of foliations can be related to stability properties by [5]) but new difficulties also arise: the
singularities are klt rather than canonical and Gorenstein, and one cannot regularize the singular
Kähler–Einstein metrics with an equally good control on the Ricci curvature. In this paper, our
main contribution is to single out and overcome those difficulties in order to prove the following
structure theorem forQ-Fano varieties that admit a Kähler–Einstein metric.

Theorem A. Let X be a Q-Fano variety admitting a Kähler–Einstein metric ω. Then TX is
polystable with respect to c1(X ). Moreover, there exists a quasi-étale cover f : Y → X such that
(Y , f ∗ω) decomposes isometrically as a product

(Y , f ∗ω) ≃
∏
i∈I

(Yi ,ωi ),

where Yi is a Q-Fano variety with stable tangent sheaf with respect to c1(Yi ) and ωi is a Kähler–
Einstein metric on Yi .

Below are a few remarks about the result above.

• Theorem A shows that for all “practical aspects” the tangent sheaf of a Q-Fano variety
admitting a Kähler–Einstein metric can always be assumed to be stable. Moreover, it can
be expressed in a purely algebraic way using the notion of K -stability, cf. Remark 4 (this
is the case for Theorem B below as well).

• The quasi-étale cover above is needed to split X even when TX is already split, as we see
by taking e.g. X = (P1 ×P1)/〈ι× ι〉 where ι :P1 →P1 is the involution ι([u : v]) = [u : −v].
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• It was proved very recently by Braun [6, Thm. 2] that the fundamental group of the regular
locus of a Q-Fano variety is finite. Relying on that result, one can refine Theorem A and
obtain that the varieties Yi satisfy the additional property: π1(Y reg

i ) = {1}.
• Semistability of TX for a Kähler–Einstein Q-Fano variety X was proved by Chi Li in [35,

Prop. 3.7] in the case where X admits a resolution where all exceptional divisors have
non-positive discrepancy, e.g. a crepant resolution.

Our second main result is the following generalisation of a theorem of Tian [37, Thm. 0.1],
which is a way to express some “strong” polystability of TX .

Theorem B. Let X be a Q-Fano variety admitting a Kähler–Einstein metric. Then the canonical
extension of TX by OX is polystable with respect to c1(X ).

We refer to Section 3.1 for the construction of the canonical extension. As we explain further
below, at the end of the introduction (see paragraph on the strategy of proof of Theorem B), the
generalization from the smooth to the singular case requires some non-trivial new input on top
of the analytic techniques already developed for the proof of the semistability/polystability of the
tangent sheaf TX , i.e. Theorem 6.

In another direction, the semistability of the canonical extension has been proved in [35,
Thm. 1.4] for K -semistable log smooth log Fano pairs. It is very likely that the proof of the above
theorem will carry over mutatis mutandis to the more general setting of log Fano pairs, but we
will not pursue this direction in this paper.

Our last main result is a very general splitting theorem for algebraicallly integrable foliations,
which plays a key role in the proof of Theorem A, but is certainly of independent interest.

Theorem C. Let X be a normal projective variety, and let

TX =
⊕
i∈I

Fi

be a decomposition of TX into involutive subsheaves with algebraic leaves. Suppose that there
exists aQ-divisor∆ such that (X ,∆) is klt. Then there exists a quasi-étale cover f : Y → X as well as
a decomposition

Y ≃
∏
i∈I

Yi

of Y into a product of normal projective varieties such that the decomposition TX = ⊕
i∈I Fi lifts

to the canonical decomposition
T∏

i∈I Yi =
⊕
i∈I

pr∗i TYi .

Theorem C can be seen as the generalization of the splitting result in [15] where additional
assumptions are made, both on the singularities of X and the positivity of KFi . More precisely,
in [15] X is assumed to have canonical singularities, and the KFi are assumed to be Q-linearly
trivial. We also refer to [16, Thm. 1.5] for a somewhat related result. In comparison to [15,
Prop. 4.10], the range of applications of Theorem C is significantly broader.

Strategy of proof of the main results

Theorem A. The first step is the object of Theorem 6 where one proves that TX is the direct sum
of stable subsheaves that are parallel with respect to the Kähler–Einstein metric ω on Xreg. This
is achieved by computing slopes of subsheaves using the metric induced by the Kähler–Einstein
metric and using Griffiths’ well-known formula for the curvature of a subbundle. However, the
presence of singularities (for X and ω) makes it hard to carry out the analysis directly on X .
One has to work on a resolution using approximate Kähler–Einstein metrics as in [25]. Yet an
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additional error term appears in the Fano case, requiring to introduce some new ideas to deal
with it as explained on page 99, cf “term (I)”.

Once Theorem 6 is at hand, one can appeal to Theorem C where the foliations are induced
by the Kähler–Einstein metric as showed in the first step. Note that the algebraic integrability of
these foliations follows from the deep results of [5]. An easy induction allows one to split X as
a product of Q-Fano varieties with stable tangent sheaf. The isometric splitting follows from a
suitable characterization of singular Kähler–Einstein metrics, cf. Claim 28.

Theorem B. The proof of Theorem B takes up most of Section 3. It relies largely on the compu-
tations carried out in Section 2 to prove the polystability of TX , but on top of those, several new
ideas are needed to overcome the presence of singularities.

First, one needs to reduce the statement to one on a resolution in order to use analytic
methods. Then we use again the technique of working with approximate Kähler–Einstein metrics,
but in the current context this has the effect of modifying the canonical extension as well.
As a result, we cannot evaluate directly the slope of a subsheaf of the canonical extension
corresponding to the initial Kähler–Einstein metric. Dealing with this difficulty is our main
contribution in this framework. The rest of the proof uses a combination of the original idea
of Tian and the computations of Section 2.

Theorem C. The starting point is the observation that since each foliation Fi admits a comple-
ment inside TX , Fi is automatically weakly regular. It turns out that weakly regular foliations
have many nice properties. The important fact which is established here is that an algebraically
integrable, weakly regular foliation on a Q-factorial projective variety with klt singularities is in-
duced by a surjective, equidimensional morphism X → Y , cf. Theorem 17. When combined with
suitable generalisations of other techniques and results in [16], this leads to the proof of Theo-
rem C.
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2. Polystability of the tangent sheaf

2.1. Set-up

2.1.1. Notation

Definition 1. Let X be a projective variety of dimension n. We say that X is a Q-Fano variety if X
has klt singularities and −KX is an ampleQ-line bundle.

We also recall the definition of (twisted) singular Kähler–Einstein metric, cf. [2].

Definition 2. Let X be a Q-Fano variety, let ϑ ∈ c1(X ) be a smooth representative and let γ ∈ [0,1).
A twisted Kähler–Einstein metric relatively to the couple (ϑ,γ) is a closed, positive current ωKE,γ ∈
c1(X ) with bounded potentials, which is smooth on Xreg and satisfies

RicωKE,γ = (1−γ)ωKE,γ+γϑ
on that open set. When γ= 0, we write ωKE :=ωKE,0 and we call it a Kähler–Einstein metric.
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Remark 3. By [2, Prop. 3.8], a smooth Kähler metric ω ∈ c1(Xreg) on Xreg satisfying Ricω = ω

extends to a Kähler–Einstein metric in the sense of Definition 2 if and only if
∫

Xreg
ωn = c1(X )n .

In particular, if f : Y → X is a (finite) quasi-étale cover between Q-Fano varieties and ωKE is a
Kähler–Einstein metric on X , then f ∗ωKE is a Kähler–Einstein metric on Y .

Let ωX ∈ c1(X ) be a fixed Kähler metric on X . We will systematically make either one of the
following assumptions:

Assumption A. For any γ ∈ (0,1) small enough, there exists a twisted Kähler–Einstein metricωKE,γ

on X relatively to (ωX ,γ).

Assumption B. There exists a Kähler–Einstein metric ωKE on X .

Remark 4. One can rephrase the Assumptions A-B using the algebraic notion of K -stability. It
follows from [36] (building upon results of [8–10], [38], [34], [3] in the smooth case) that

• X satisfies Assumption A if and only if X is K -semistable.
• X satisfies Assumption B if X is uniformly K -stable, and the converse holds provided

Aut◦(X ) = {1}.

Notation 5. Let π : X̂ → X be a resolution of singularities of X with exceptional divisor E =∑
k∈I Ek and discrepancies ak >−1 given by

K X̂ =π∗KX +
∑

ak Ek .

There exist numbers εk ∈ Q+ such that the cohomology class π∗c1(X )−∑
εk c1(Ek ) contains a

Kähler metricωX̂ . We fix them for the rest of the paper. Next, we pick sections sk ∈ H 0(X̂ ,OX̂ (Ek ))
such that Ek = (sk = 0), smooth hermitian metrics hk on OX̂ (Ek ) with Chern curvature ϑk :=
iΘhk

(Ek ) and a volume form dV on X̂ such that RicdV =π∗ωX −∑
k∈I akϑk . We set

hE :=
∏
k∈I

hk (2)

which defines a smooth metric on OX̂ (E).

2.1.2. The twisted Kähler–Einstein metric and its regularizations

In this section, we assume that either Assumption A or Assumption B is fulfilled so that there
exists a (twisted) Kähler–Einstein metric ωKE,γ

• either for any γ ∈ [0,1) such that 0 < γ≪ 1
• or for γ= 0.

For the time being, the parameter γ is fixed.
We denote by π∗ωKE,γ =π∗ωX +ddcϕ the singular metric solving

(π∗ωX +ddcϕ)n = e−(1−γ)ϕ f dV

where f = ∏
i∈I |si |2ai ∈ Lp (dV ) for some p > 1. It is known that ϕ is bounded (even continuous)

on X̂ and smooth outside E , cf. [2]. Note thatϕ depends on γ, but as notation will get quite heavy
later, we choose not to highlight that dependence.

Next, we choose a family ψε ∈C∞(X̂ ) of quasi-psh functions on X̂ such that:

• One has ψε→ϕ in L1(X̂ ) and in C∞
loc(X̂ \ E).

• There exists C > 0 such that ∥ψε∥L∞(X̂ ) ≤C .
• There exists a continuous function κ : [0,1] →R+ with κ(0) = 0 such that π∗ωX +ddcψε ≥

−κ(ε)ωX̂ .

This is a standard application of Demailly’s regularization results ([11]). The smooth convergence
outside E claimed in the first item follows from the explicit expression of the function ψε, see
e.g. [13, (3.3)].



98 Stéphane Druel, Henri Guenancia and Mihai Păun

For ε, t ≥ 0, one introduces the unique function ϕt ,ε ∈ L∞(X )∩PSH(X̂ ,π∗ωX + tωX̂ ) solving
{

(π∗ωX + tωX̂ +ddcϕt ,ε)n = fεe−(1−γ)ψεe−ct dV

supX̂ ϕt ,ε = 0

where

• fε := eaε
∏

(|si |2 +ε2)ai ,
• aε is a normalizing constant such that

∫
X̂ fεe−(1−γ)ψεdV = c1(X )n ; it converges to 1 when

ε→ 0.
• ct is defined by {π∗ωX + tωX̂ }n = ect · c1(X )n .

The existence and uniqueness ofϕt ,ε follows from Yau’s theorem [39] when t ,ε> 0 (in which case
ϕt ,ε is actually smooth) while the general case is treated in [18]. It follows from ibid. that there
exists a constant C > 0 such that

∥ϕt ,ε∥L∞(X ) ≤C (3)

for any t ,ε ∈ [0,1]. Moreover, any weak limit ϕ̂ of a sequence (ϕtk ,εk ) is bounded and is a smooth
limit outside E . Therefore, it solves the equation

(π∗ωX +ddc ϕ̂)n = e−(1−γ)ϕ f dV

on X̂ . By the uniqueness result [18, Thm. A], we have ϕ̂=ϕ. That is

ϕt ,ε −→
t ,ε→0

ϕ in L1(X̂ ) and in C∞
loc(X̂ \ E). (4)

One sets
ωt ,ε :=π∗ωX + tωX̂ +ddcϕt ,ε (5)

which solves the equation
Ricωt ,ε =π∗ωX + (1−γ)ddcψε−Θε (6)

where
Θε =Θ(E ,hεE ) =

∑
aiϑi ,ε (7)

is the curvature of
hεE =

∏
i

(|si |2 +ε2)−1hi (8)

and ϑi ,ε =ϑi +ddc log(|si |2 +ε2) converges to the current of integration along Ei when ε→ 0.

2.2. Stability of TX .

Setup and notation as in Section 2.1.
Let F ⊂ TX̂ be a subsheaf of positive rank r . We can assume that F is saturated in TX̂ , i.e.

TX̂ /F is torsion-free. This is because saturating a subsheaf increases its slope.
From now on, we choose small numbers t ,ε > 0 which we will later let go to zero. The

Kähler metric ωt ,ε defined in (5) induces an hermitian metric ht ,ε on TX̂ which in turn induces a
hermitian metric hF on F :=F |W , where W ⊂ X̂ is the maximal locus where F is a subbundle of
TX̂ . Then, it is classical (see e.g. [29, Rem. 8.5]) that one can compute the slope of F by integrating
the trace of the first Chern form of (F,hF ) over W , i.e.∫

W
c1(F,hF )∧ωn−1

t ,ε = c1(F ) · {ωt ,ε}n−1. (9)

On W , we have the following standard identity (cf. e.g. [12, Thm. 14.5])

iΘ(F,hF ) = prF

(
iΘ(TX̂ ,ht ,ε)|F

)+βt ,ε∧β∗
t ,ε,

where β ∈ C ∞
0,1(W,Hom(TX̂ ,F )) (i.e. β is a smooth (0,1)-form on W with values in Hom(TX̂ ,F ))

and β∗ is its adjoint with respect to ht ,ε and hF . Therefore, we get

c1(F,hF )∧ωn−1
t ,ε = trEnd

(
prF

(
iΘ(TX̂ ,ht ,ε)|F

))∧ωn−1
t ,ε + trEnd(βt ,ε∧β∗

t ,ε∧ωn−1
t ,ε ). (10)
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By (9), the integral of the left-hand side over W , yields r times the slope of F with respect to
{π∗ωX + tωX̂ }. As for the right-hand side, one can simplify the first term using the formula

n · iΘ(TX̂ ,ht ,ε)∧ωn−1
t ,ε = (♯Ricωt ,ε)ωn

t ,ε. (11)

Here we denote by ♯Ricωt ,ε the endomorphism of TX̂ induced by the Ricci curvature of ωt ,ε.
The equation (6) is equivalent to

Ricωt ,ε = (1−γ)ωt ,ε+γπ∗ωX − tωX̂ + (1−γ)ddc (ψε−ϕt ,ε)−Θε. (12)

Using the formula above, one gets

µωt ,ε (F ) ≤ (1−γ)µωt ,ε (TX )+ 1−γ
nr

∫

X̂
trEnd prF (♯ddc (ψε−ϕt ,ε))|F ωn

t ,ε
︸ ︷︷ ︸

=:(I)

+ γ

nr

∫

X̂
trEnd prF (♯π∗ωX )|F ωn

t ,ε
︸ ︷︷ ︸

=:(II)

− 1

nr

∫

X̂
trEnd prF (♯Θε)|F ωn

t ,ε
︸ ︷︷ ︸

=:(III)

+ 1

nr

∫

W
trEnd(βt ,ε∧β∗

t ,ε∧ωn−1
t ,ε )

︸ ︷︷ ︸
=:(IV)

.

We therefore have four terms to deal with. To deal with (II)–(IV), we will use the same
computations as in [25], cf. explanations below. The main new term is (I), which we treat first.

The term (I). It arises from the fact that, say when γ = 1, we can not necessarily solve the
perturbed equation Ricωt ,ε =ωt ,ε− tωX̂ −Θε unlike in the case where KX is ample or trivial. If all
the discrepancies ai were negative, one could likely still solve that equation using e.g. properness
of Ding functional but we will not expand on that.

In order to deal with (I), one makes the following observations:
• Given δ> 0, there exist η= η(δ) > 0 and an open neighborhood Uδ of E ⊂ X̂ such that

∀ ε, t ≤ η,
∫

Uδ

(ωψε +ωt ,ε)∧ωn−1
t ,ε ≤ δ, (13)

where ωψε = π∗ωX + tωX̂ + ddcψε. This inequality is a consequence of the Chern–Levine–
Nirenberg inequality along with the bound of the potentials below

∃C > 0,∀ ε, t , ∥ϕt ,ε∥L∞(X̂ ) +∥ψε∥L∞(X̂ ) ≤C (14)

that we infer from (3). Indeed, as explained in [25], one proceeds as follows. Let
(
Ξδ

)
δ>0 be a

family of functions defined on R+, such that Ξδ(x) = 0 if x ≤ δ−1 and Ξδ(x) = 1 if x ≥ 1+δ−1.
Moreover we can assume that the derivative of Ξδ is bounded by a constant independent of δ.
Then we evaluate the quantity

∫

X̂
Ξδ

(
loglog

1

|sE |2
)
(ωψε +ωt ,ε)∧ωn−1

t ,ε (15)

and the proof of the classical Chern–Levine–Nirenberg (see e.g. [12, III.3 (3.3)]) inequality shows
that the integral in (13) is smaller than ∫

Uδ

ωn
E (16)

up to a constant which is independent of t ,ε. In (16) we denote byωE a metric with Poincaré sin-
gularities along the divisor E , and by Uδ the support of the truncation function Ξδ

(
loglog 1

|sE |2
)
.

Here the main point is that the norm of the Hessian of the truncation function is uniformly
bounded when measured with respect to ωE . The conclusion follows.
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The hermitian endormorphism ♯ddc (ψε−ϕt ,ε) is dominated (in absolute value) by the positive
endomorphism

♯(ωψε +ωt ,ε)

whose endomorphism trace is nothing but trωt ,ε (ωψε +ωt ,ε). By (13), we are done with (I) on Uδ.
• The second observation is that given K ⋐ X̂ \ E , there exists η= η(K ) > 0 such that

∀ ε, t ≤ η, ∥ψε−ϕt ,ε∥C 2(K ) ≤ δ. (17)

This is a consequence of the fact that (ϕt ,ε) and (ψε) converge uniformly (in ε, t ) to ϕ on K by
stability of the Monge–Ampère operator, cf. e.g. [24, Thm. C], and have uniformly bounded C p (K )
norm for any p thanks to (14), Tsuji’s trick and Evans–Krylov plus Schauder estimates.

Therefore, one has ±♯ddc (ψε−ϕt ,ε) ≤ δωX̂ hence (I) is controlled on K by δ
∫

K ωX̂ ∧ωn
t ,ε ≤Cδ.

Conclusion. Let Ft ,ε := trEnd prF (♯ddc (ψε−ϕt ,ε))|F ωn
t ,ε. One fixes δ > 0. We get a neighborhood

Uδ of E and a number η′ = η′(δ) > 0 such that
∫

Uδ
Ft ,ε ≤ δ for any ε, t ≤ η′. Applying the second

observation to K = X̂ \Uδ, we find η′′ = η′′(δ) such that
∫

X \Uδ
Ft ,ε ≤Cδ for any ε, t ≤ η′′. Choosing

η := min{η′,η′′}, we find that

∀ ε, t ≤ η,
∫

X̂
Ft ,ε ≤C ′δ.

In short, the term (I) converges to zero when ε, t → 0.

The term (II). As π∗ωX ≥ 0, one has

trEnd prF (♯π∗ωX )|Fωn
t ,ε ≤ trEnd(♯π∗ωX )ωn

t ,ε

= trωt ,ε (π∗ωX ) = nπ∗ωX ∧ωn−1
t ,ε .

Integrating over X , one finds
(II) ≤ γr−1(π∗c1(X ) · {ωt ,ε}n−1)

and the right-hand side converges to γn
r µ(TX̂ ) when t → 0, where the slope is taken with respect

to π∗c1(X ).

The term (III). As said above, the arguments to treat this term are borrowed from [25]. For the
convenience of the reader, we will recall the important steps. To lighten notation, we will drop

the index i . One can write Θε = ε2|D ′s|2
(|s|2+ε2)2 + ε2

|s|2+ε2 ·ϑ. Let us set gε := ε2

|s|2+ε2 . Up to rescaling ωX̂ ,
one can assume that −ωX̂ ≤ϑ≤ωX̂ so that Θε+ gεωX̂ ≥ 0. Then one sees easily that

trEnd prF (♯Θε)|F ωn
t ,ε ≤ trEnd

(
♯Θε+ ♯(gεωX )

)
ωn

t ,ε

=Θε∧ωn−1
t ,ε + gεωX̂ ∧ωn−1

t ,ε

and one obtains that the term (III) converges to zero when ε, t → 0 since

• ∫
X Θε∧ωn−1

t ,ε = c1(E)· {π∗ωX + tωX̂ }n−1 and E is exceptional,
• ∫

X gεωX̂ ∧ωn−1
t ,ε → 0 when ε, t → 0 thanks to the smooth convergence to 0 outside E and

the Chern–Levine–Nirenberg inequality combined with the bound (3) on the potentials,
cf. first item in Part (I).

The term (IV). Note that the term βt ,ε∧β∗
t ,ε is pointwise negative in the sense of Griffiths on W .

In particular, the term (IV) is non-positive. Since (I) and (III) converge to zero, this shows that

µ(F ) ≤ (
1+γ(n

r
−1

)) ·µ(TX̂ ), (18)

where the slope is taken with respect to π∗c1(X ).
Working under Assumption A, one obtains the inequality (18) above for any γ > 0 small

enough. In particular, this shows that under Assumption A, TX̂ is semistable with respect to
π∗c1(X ).
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From now on, we assume that the stronger Assumption B holds; i.e. one can choose γ = 0.
Assume additionally that there exists a subsheaf F ⊂ TX̂ with the same slope as TX̂ and let F sat

be its saturation in TX̂ ; it is a subbundle in codimension one. As the slope has not increased by
saturation, F = F sat in codimension one on X̂ \ E . Therefore, if we set W ◦ := W ∩ (X̂ \ E), then
W ◦ ⊂ X̂ \ E has codimension at least two and by the above computation, one has

lim
ε,t→0

∫

W ◦
(βt ,ε∧β∗

t ,ε∧ωn−1
t ,ε ) = 0.

We know by (4) that βt ,ε → β∞ locally smoothly on W ◦ when ε, t → 0 where β∞ is the second
fundamental form induced by the hermitian metric hKE induced by π∗ωKE on TX̂ |W ◦ and on
F |W ◦ by restriction. By Fatou lemma, we have β∞ ≡ 0 on W ◦, that is, we have a holomorphic
decomposition TX̂ |W ◦ =F |W ◦ ⊕F |⊥W ◦ where the orthogonal is taken with respect to hKE.

We are now ready to prove

Theorem 6. Let X be aQ-Fano variety.

(i) If Assumption A is satisfied, then TX is semistable with respect to c1(X ).
(ii) If Assumption B is satisfied, then TX is polystable with respect to c1(X ). More precisely, we

have:
• Any saturated subsheaf F ⊂ TX with µ(F ) = µ(TX ) is a direct summand of TX and

F |Xreg ⊂ TXreg is a parallel subbundle with respect to ωKE.
• There exists a decomposition

TX =
⊕
i∈I

Fi

such that Fi is stable with respect to c1(X ), Fi |Xreg ⊂ TXreg is a parallel subbundle
with respect to ωKE, and the decomposition TXreg = ⊕i∈I Fi |Xreg is orthogonal with
respect to ωKE.

Proof. Let F ⊂ TX be a subsheaf and letα := c1(X ). The sheaf F induces a subsheaf G ◦ ⊂ TX̂ |X̂ \E
and we denote by G ⊂ TX̂ the saturation of G ◦ in TX̂ . By the arguments above (cf. inequality (18)
and the comments below it), one has µπ∗α(G ) ≤ µπ∗α(TX̂ ) = c1(X )n/n = µα(TX ). Moreover, one
has clearly µπ∗α(G ) =µα(F ). This shows that TX is semistable with respect to c1(X ).

Now, assume that there exists a Kähler–Einstein metric ωKE. If F ⊂ TX satisfies µα(F ) = 0,
then µπ∗α(G ) = 0 and we have shown above that π∗ωKE induces a splitting TX̂ |W =G |W ⊕ (G |W )⊥

over a Zariski open subset W ⊂ X̂ \E whose complement in X̂ \E has codimension at least two. Set
V :=π(W ) ⊂ Xreg so that F |V is a subbundle of TX and we have a splitting TX |V =F |V ⊕ (F |V )⊥

induced by ωKE and codimX (X \V ) ≥ 2.
Let us denote by j : V ,→ X the open immersion. As F ⊂ TX is saturated, it is reflexive, hence

j∗(F |V ) = F . Moreover, (F |V )⊥ extends to a reflexive sheaf F⊥ := j∗((F |V )⊥) on X satisfying
TX = F ⊕F⊥ on the whole X . In particular, F is a direct summand of TX and as such, it is
subbundle of TX over Xreg. By iterating this process and starting with F with minimal rank,
one can decompose TX = ⊕

i∈I Fi into reflexive sheaves which, over Xreg, are parallel (pairwise
orthogonal) subbundles with respect to ωKE. □

3. Polystability of the canonical extension

In this section, we keep using the setup and notation of Section 2.1.

3.1. The canonical extension

Let E be a coherent sheaf on X sitting in the exact sequence below

0 −→Ω[1]
X −→ E −→OX −→ 0. (19)
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The sheaf E is automatically torsion-free and it is locally free on Xreg.

Remark 7. Let U ⊂ X be a non-empty Zariski open subset. As an extension of OX by Ω[1]
X ,

E |U is uniquely determined by the image of 1 ∈ H 0(U ,OX ) in H 1(U ,Ω[1]
X ) under the connecting

morphism in the long exact sequence arising from H 0(U ,−).

From now on, one assumes that the extension class of E is the image of c1(X ) in H 1(X ,Ω1
X )

under the canonical map

Pic(X )⊗Q≃ H 1(X ,O∗
X )⊗Q→ H 1(X ,Ω1

X ) → H 1(X ,Ω[1]
X ).

This is legitimate since KX isQ-Cartier.

Definition 8. The dual E ∗ of the sheaf E sitting in the exact sequence (19) with extension class
c1(X ) is called the canonical extension of TX by OX .

The exact sequence (19) is locally splittable since for any affine U ⊂ X , one has h1(U ,Ω[1]
U ) = 0.

In particular, when one dualizes (19), one see that the canonical extension of TX by OX sits in the
short exact sequence below

0 −→OX −→ E ∗ −→ TX −→ 0. (20)

The goal of this section is to prove the following, cf. Theorem B.

Theorem 9. Let X be aQ-Fano variety. If Assumption A (resp. Assumption B) is satisfied, then the
canonical extension E ∗ of TX by OX is semistable (resp. polystable) with respect to c1(X ).

The proof of Theorem 9 above is divided into three main steps corresponding to the next three
sub-sections. First one can reduce the semistability statement above to a semistability property
on the resolution X̂ thanks to Lemma 10, then we prove the said statement, cf. Theorem 11 and,
finally, we prove polystability assuming the existence of a Kähler–Einstein metric.

3.2. Reduction to a statement on the resolution

Let Ê be the vector bundle on X̂ sitting in the exact sequence below

0 −→Ω1
X̂
−→ Ê −→OX̂ −→ 0 (21)

such that its extension class is π∗c1(X ) ∈ H 1(X̂ ,Ω1
X̂

). Its dual sits in the exact sequence

0 −→OX̂ −→ Ê ∗ −→ TX̂ −→ 0. (22)

Lemma 10. If the vector bundle Ê ∗ is semistable with respect to π∗c1(X ), then the torsion-free
sheaf E ∗ is semistable with respect to c1(X ).

Although slope stability is usually defined with respect to an ample polarization, the same
definition actually makes sense with respect to an arbitrary nef class like π∗c1(X ), cf e.g. [22].

Proof. Set α := c1(X ). Let X ◦ ⊆ Xreg be an open set with complement of codimension at least 2
in X such that the restriction π|X̂ ◦ of π to X̂ ◦ := π−1(X ◦) induces an isomorphism X̂ ◦ ≃ X ◦. By
Remark 7 we have

(π∗E ∗)|X̂ ◦ ≃ Ê ∗
|X̂ ◦ . (23)

Let F ⊆ E ∗ be a subsheaf and let F̂ ⊆ Ê ∗ be the saturated subsheaf of Ê ∗ whose restriction to
X̂ ◦ is (π∗F )|X̂ ◦ . By the projection formula together with the fact that X \ X ◦ has codimension at
least 2 in X , we have

µα(F ) =µπ∗α(F̂ ) and µα(E ∗) =µπ∗α(Ê ∗).

The lemma follows easily. □
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3.3. Statement on the resolution

In this section, we prove that the vector bundle Ê ∗ from Section 3.2 is semistable with respect
to π∗c1(X ), cf. Theorem 11 below. In order to streamline the notation, we set V := Ê ∗ and in
the following we will not distinguish between the locally free sheaf V and the associated vector
bundle. Recall that V fits into the exact sequence of locally free sheaves

0 −→OX̂ −→V → TX̂ −→ 0. (24)

We denote by β ∈ H 1(X̂ ,T⋆
X̂

) the second fundamental form.
Our result in this section is a singular version of Theorem 0.1 in [37].

Theorem 11. Let X be aQ-Fano variety satisfying Assumption A. Let V be the vector bundle on X̂
appearing in (24), whose extension class β coincides with the inverse image of the first Chern class
of X by the resolution π : X̂ → X . Then V is semistable with respect to π⋆c1(X ).

Proof. The strategy of proof is as follows. We would like to compute the slope of F using an
hermitian metric on V induced by the (twisted) Kähler–Einstein metric, using an approximation
process as in Section 2.2. As the natural metric in the extension class of V is singular, we
introduce an algebraic 1-parameter family (Vz )z∈C that can be endowed with natural smooth
hermitian metrics for suitable z ∈ R close to zero and such that we have sheaf injections V ,→
Vt ⊗OX̂ (E). We then proceed to compute slopes following the strategy of Section 2.2.

Step 1. Deformations of V . We pick an arbitrary subsheaf F ⊆V of the vector bundle V sitting
in the exact sequence below

0 →OX̂ →V → TX̂ → 0

and corresponding to the extension class

α= (ai j ) ∈ Ext1(TX̂ ,OX̂ ) ≃ H 1(X̂ ,H om(TX̂ ,OX̂ ))

relatively to a covering by open subsets (Ui ). The bundle V can be obtained as follows: on Ui , it
is the trivial extension, V|Ui =OX̂ |Ui

⊕TX̂ |Ui
and the transition functions are given by

(
IdOX̂

|Ui j ai j

0 IdTX̂
|Ui j

)
.

The subsheaf F is given by two morphisms of sheaves pi : F|Ui → OX̂ |Ui
and qi : F|Ui → TX̂ |Ui

satisfying {
pi |Ui j = p j |Ui j +ai j ◦ (q j |Ui j ),

qi |Ui j = q j |Ui j .

Recall that we have a reduced divisor E = E1 + ·· · +Er . Up to refining the covering (Ui ), one
can assume that Ek is given by the equation fki = 0 on Ui . The transition functions of OX̂ (Ek ) are

gk,i j =
fk j

fki
.

Now, given complex numbers z1, . . . , zr ∈ C, one considers the extension Vz1,...,zr of TX̂ by OX̂
whose class is

α+ z1

[
dg1,i j

g1,i j

]
+·· ·+ zr

[
dgr,i j

gr,i j

]
=α+

∑
k

zk c1(Ek ).

Set Vz1,...,zr (E) :=Vz1,...,zr ⊗OX̂ (E). Then, there is an injection of sheaves

F ⊆Vz1,...,zs (E)

extending F ⊆V ⊆V (E) for (zk ) in a Zariski open neighborhood of 0 ∈Cr .
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Indeed, consider the morphism F|Ui → Vz1,...,zs (E)|Ui given by pi +
∑

k zk
d fki
fki

◦ qi on the first
factor and qi on the second. Those morphisms can be glued since one has

d fki

fki
=

dgk,i j

gk,i j
+

d fk j

fk j
,

for any index k. The induced map F →Vz1,...,zs (E) is obviously injective for (zk ) in a Zariski open
neighborhood of 0 ∈Cr .

Now, recall that α=π∗c1(X ) and that the Kähler metric ωX̂ lives in the class α−∑
εk c1(Ek ) for

some εk > 0, so that the approximate Kähler–Einstein metric ωt ,ε belongs to (1+ t )αt , where

αt :=α− t

1+ t

∑
k
εk c1(Ek ).

For any t ∈R, we set

Vt :=Vz1,...,zr and Vt (E) :=Vt ⊗OX̂ (E)

where zk := − t
1+t · εk for 1 ≤ k ≤ r . This vector bundle Vt is the extension of TX̂ by OX̂ with

extension class αt and Vt (E) comes equipped with a sheaf injection

F ⊆Vt (E). (25)

Moreover, it is clear from the definition of Vz1,...,zr that we have

c1(Vt (E)) = c1(V )+ c1(E) (26)

for any t ∈R.

Step 2. Metric properties of Vt (E). First of all, we pick one number γ > 0 as in Assumption A. It
will be fixed until the very end of the argument.

We seek to endow Vt (E) with a suitable smooth hermitian metric, at least when t > 0 is small
enough. Given that Vt (E) =Vt ⊗OX̂ (E) and that we have already fixed a smooth hermitian metric
hE on OX̂ (E) in (2), it is enough to construct a hermitian metric on Vt .

Now, we can endow the bundles OX̂ and TX̂ with the trivial metric and the hermitian metric
ht ,ε induced by ωt ,ε, respectively. Now, we set

βt =
1

1+ t
ωt ,ε ∈αt

which we view as an element of C ∞
0,1(X̂ ,T ∗

X̂
). Relatively to a fixed C ∞ splitting of Vt , the direct

sum metric hVt
induced on Vt has a Chern connection DVt

which has the following expression

DVt
=

(
d −βt

β∗
t DTX̂

)

or equivalently

DVt
(s1, s2) =

(
d s1 −βt · s2,β⋆t · s1 +DTX̂

s2

)
(27)

where DTX̂
is the Chern connections induced by ht ,ε on TX̂ . Of course, it depends strongly on

the parameters t ,ε. We denote by β⋆t ∈C ∞
1,0(X̂ ,TX̂ ) the adjoint of βt ∈C ∞

0,1(X̂ ,T ∗
X̂

). Moreover, the
Chern curvature of DVt

is given by

Θ(Vt ,hVt
) =

(−βt ∧β∗
t D ′

T ∗
X̂

βt

∂β∗
t Θ(TX̂ ,ht ,ε)−β∗

t ∧βt

)
,

where D ′
T ∗

X̂

is the (1,0)-part of the Chern connection of (T⋆
X̂

,h∗
t ,ε).

We analyze next several quantities which are playing a role in the evaluation of the curvature
of Vt .
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• The factor βt . The form βt is given by

βt =
1

1+ t

∑
ωpq

(
∂

∂zp

)⋆
⊗dzq , (28)

where ωpq are the coefficients of ωt ,ε with respect to the coordinates (zi )i=1,...,n . Its adjoint is
computed by the formula

〈βt · v, w〉+〈v,β⋆t ·w〉 = 0, (29)

where the first bracket is the standard hermitian product in C and the second one is the one
induced by (TX̂ ,ht ,ε). We have

β⋆t =− 1

1+ t

∑ ∂

∂zi
⊗dzi . (30)

We have the following formulas

D ′
T ∗

X̂
βt = 0, ∂β⋆t = 0. (31)

The first equality holds since ωt ,ε is a Kähler metric while the second one is obvious from (30).
Moreover, we have

(1+ t )2 ·βt ∧β⋆t ∧ωn−1
t ,ε =− 1

n
ωn

t ,ε (32)

as well as

(1+ t )2 ·β⋆t ∧βt =ωt ,ε⊗ IdTX̂
. (33)

• The curvature of Vt . If we replace βt by (1+ t )
p
µβt for some positive number µ, this does not

affect the complex structure of the bundles at stake but only the metrics. Moreover, we see from
the identities (31)-(32)-(33) that the curvature becomes

Θ(Vt ,hVt
)∧ωn−1

t ,ε =
(µ

nω
n
t ,ε 0

0 Θ(TX̂ ,ht ,ε)∧ωn−1
t ,ε −µωn

t ,ε⊗ IdTX̂

)
.

Now we choose µ so that µ
n = 1−µ, i.e. µ := n

n+1 . Recalling (11) and the expression of the Ricci
curvature of ωt ,ε given in (12), we get that

Θ(TX̂ ,ht ,ε)∧ωn−1
t ,ε −µωn

t ,ε⊗ IdTX̂
= 1

n +1
ωn

t ,ε⊗ IdTX̂
+At ,ε,γω

n
t ,ε,

where

At ,ε,γ =−γ IdTX̂
+♯[γπ∗ωX − tωX̂ + (1−γ)ddc (ψε−ϕt ,ε)−Θε

]
(34)

is such that the number

at ,ε,γ := 1

n

∫

X̂
trEnd prF (At ,ε,γ)|F ωn

t ,ε

satisfies

limsup
γ→0

limsup
t→0

limsup
ε→0

at ,ε,γ = 0 (35)

thanks to the computations of Section 2.2.

• The curvature of Vt (E). Finally, we endow Vt (E) with the metric hVt (E) := hVt
⊗hE . It satisfies

Θ(Vt (E),hVt (E))∧ωn−1
t ,ε = 1

n +1
ωn

t ,ε⊗ IdVt
+At ,ε,γω

n
t ,ε+ (ΘE ∧ωn−1

t ,ε )⊗ IdVt (E) . (36)

where At ,ε,γ is defined in (34) and satisfies (35).

Step 3. The slope inequality. Now, one wants to follow the strategy in Section 2.2 and compute
the slope of F using the induced metric hFt from (Vt (E),hVt (E)) under the sheaf injection (25).
The metric hFt is well-defined only on the locus W ⊂ X̂ where Ft := F |W is a subbundle. As F



106 Stéphane Druel, Henri Guenancia and Mihai Păun

may not be saturated in Vt (E), the complement of W may have codimension one. However, we
have the formula

µωt ,ε (F ) = 1

r

∫

W
c1(Ft ,hFt )∧ωn−1

t ,ε − c1(D) · {ωt ,ε}n−1

≤ 1

r

∫

W
c1(Ft ,hFt )∧ωn−1

t ,ε

≤µωt ,ε (Vt (E))+at ,ε,γ+ c1(E) · {ωt ,ε}n−1

where D is an effective divisor such that OX (D) = det((Vt (E)/F )tor). Since E is π-exceptional, the
conclusion follows from the curvature formula (36) along with (35) and the two easy facts below

• µωt ,ε (F ) →µα(F ) when t → 0,
• µωt ,ε (Vt (E)) →µα(V ) when t ,ε→ 0 since E is exceptional, cf. (26).

Theorem 11 is now proved. □

3.4. Polystability

In this paragraph, we work under the Assumption B and we aim to prove the second part of
Theorem 9, i.e. that E ∗ is polystable with respect to c1(X ).

By a standard inductive argument, it is enough to prove that if F ⊂ E ∗ is any saturated
subsheaf with µc1(X )(F ) = µc1(X )(E ∗), then it is holomorphically complemented; i.e. there exists
G ⊂ E ∗ such that E ∗ =F ⊕G .

Let F be such a subsheaf and let F̂ ⊂ V the induced sheaf on X̂ , cf. Lemma 10; it satisfies
µα(F̂ ) = µα(E ∗). The same arguments as in the end of Section 2.2 show the orthogonal
complement Ĝ of F̂ ⊂ V0(E) with respect to the well-defined hermitian metric hV0(E) on X̂ \ E
is holomorphic. Note that V0(E) ≃ Ê ∗ on X̂ \ E , hence π∗(V0(E)|X̂ \E ) ≃ E ∗ by (23).

Now, define G :=π∗Ĝ on Xreg; this is a coherent subsheaf of E ∗|Xreg by the observation above.
We can extend it to a coherent saturated subsheaf G ⊂ E ∗ across Xsing; in particular, G is reflexive.
The injection F ⊕G ,→ E ∗ isomorphic over Xreg, hence everywhere by reflexivity of the sheaves
involved. This concludes the proof of Theorem 9.

4. A splitting theorem

4.1. Foliations

In this section, we recollect some results about foliations that we will use later on for the reader’s
convenience. We refer to [16, §3 and 4] and the references therein for notions around foliations
on normal varieties and their singularities.

Here we only recall the notion of weakly regular foliation. Let F be a foliation of positive rank
r on a normal variety X . The r -th wedge product of the inclusion F ⊆ TX gives a map

OX (−KF ) ,→ (∧r TX )∗∗.

We will refer to the dual map
Ω[r ]

X →OX (KF )

as the Pfaff field associated to F . The foliation F is called weakly regular if the induced map

(Ωr
X ⊗OX (−KF ))∗∗ →OX

is surjective (see [16, §5.1]).

Examples of weakly regular foliations are provided by the following result (see [16, Lem. 5.8]).
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Lemma 12. Let X be a normal variety, and let F be a foliation on X . Suppose that there exists a
distribution G on X such that TX =F ⊕G . Then F is weakly regular.

The following lemma says that a weakly regular foliation has mild singularities if its canonical
divisor is Cartier and the ambient space has klt singularities (see [16, Lem. 5.9]).

Lemma 13. Let X be a normal variety with klt singularities, and let F be a foliation on X . Suppose
that KF is Cartier. If F is weakly regular, then it has canonical singularities.

Next, we recall the behaviour of weakly regular foliations with respect to finite covers (see [16,
Prop. 5.13]).

Lemma 14. Let X be a normal variety, let F be a foliation on X , and let f : X1 → X be a finite cover.
Suppose that each codimension 1 irreducible component of the branch locus of f is F -invariant.
Then F is weakly regular if and only if f −1F is weakly regular.

Finally, we recall the behaviour of foliations with canonical singularities with respect to finite
covers and birational maps (see [16, Lem. 4.3]).

Lemma 15. Let f : X1 → X be a finite cover of normal varieties, and let F be a foliation on X
with KF Q-Cartier. Suppose that each codimension 1 component of the branch locus of f is F -
invariant. If F has canonical singularities, then f −1F has canonical singularities as well.

Recall that Q-divisors D1 and D2 are said to be Q-linearly equivalent if there exists an integer
m > 0 such that mD1 and mD2 are linearly equivalent. We write D1 ∼Q D2.

Lemma 16. Let q : Z → X be a birational quasi-projective morphism of normal varieties, and
let F be a foliation on X . Suppose that KF is Q-Cartier and that Kq−1F ∼Q q∗KF . If F has
canonical singularities, then q−1F has canonical singularities as well.

Proof. By assumption, there exist a normal variety Z ⊇ Z and a projective birational morphism
q : Z → X whose restriction to Z is q . The same argument used in the proof of [16, Lem. 4.2]
shows that

a(E , Z , q −1F ) = a(E , X ,F )

for any exceptional prime divisor E over Z with non-empty center in Z . The lemma follows
easily. □

4.2. Weakly regular foliations with algebraic leaves

This section contains a generalization of Theorem 6.1 in [16]. The following result is proved in [16]
under the additional assumption that F has canonical singularities.

Theorem 17. Let X be a normal projective variety with Q-factorial klt singularities, and let F be
a weakly regular foliation on X with algebraic leaves.

(1) Then F is induced by a surjective equidimensional morphism p : X → Y onto a normal
projective variety Y .

(2) Moreover, there exists an open subset Y ◦ with complement of codimension at least 2 in Y
such that p−1(y) is irreducible for any y ∈ Y ◦.

Before we give the proof of Theorem 17, we need to prove a number of auxiliary statements.
Throughout the present section, we will be working in the following setup.

Setup 18. Let X and Y be normal quasi-projective varieties, and let p ′ : X 99K Y be a dominant
rational map with r := dim X −dimY > 0. Let Z be the normalization of the graph of p ′, and let
p : Z → Y and q : Z → X be the natural morphisms. Let F be the foliation induced by p ′.
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Proposition 19. Let the setting and notation be as in 18, and assume that KF is Cartier.

(1) Then the Pfaff field Ω[r ]
X →OX (KF ) associated to F induces a map

Ω[r ]
Z → q∗OX (KF )

which factors through the Pfaff fieldΩ[r ]
Z →OZ (Kq−1F ) associated to q−1F . In particular,

there exists an effective q-exceptional Weil divisor B on Z such that

Kq−1F +B ∼Z q∗KF .

(2) Moreover, if E is a q-exceptional prime divisor on Z such that p(E) = Y , then E ⊆ SuppB.

Proof. Let Z0 ⊆ Y × X be the graph of p ′, and denote by n : Z → Z0 the normalization map.
Consider the foliation

G := pr∗X F ⊆ pr∗X TX ⊆ pr∗Y TY ⊕pr∗X TX .

Let Ωr
X → OX (KF ) be the map induced by the Pfaff field Ω[r ]

X → OX (KF ). By construction, Z0 is
invariant under G , and hence, there is a factorization:

Ωr
Y ×X |Z0 pr∗X Ω

r
X |Z0 (pr∗X OX (KF ))|Z0

Ωr
Z0

OY ×X (KG )|Z0 .

Notice that the foliation induced by G on Z is q−1F . By [1, Prop. 4.5], the map Ωr
Z0

→
(pr∗X OX (KF ))|Z0 extends to a map

Ωr
Z → n∗((pr∗X OX (KF ))|Z0 ) ≃ q∗OX (KF ),

which gives a morphism

Ω[r ]
Z → q∗OX (KF ).

This map factors through the Pfaff field

νZ : Ω[r ]
Z →OZ (Kq−1F )

associated to q−1F away from the closed set where νZ is not surjective, which has codimension
at least 2 in Z . Hence, there exists an effective Weil divisor B on Z such that

Kq−1F +B ∼Z q∗KF .

Moreover, the morphism Ω[r ]
Z → q∗OX (KF ) identifies with the composition

Ω[r ]
Z →OZ (Kq−1F ) → q∗OX (KF )

since q∗OX (KF ) is torsion-free. Note that B is obviously q-exceptional, proving the first item.
The second item follows from [16, Lem. 4.19] by induction on the rank of F as in the proof of

Proposition 4.17 in [16]. Notice that the assumption that the birational morphism is projective in
the statement of Lemma 4.19 in [16] is not necessary. □
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Corollary 20. Setting and notation as in Setup 18. Suppose that X has klt singularities. Suppose
in addition that KF is Cartier and that F is weakly regular.

(1) Then the foliation q−1F is weakly regular and Kq−1F ∼Z q∗KF .
(2) Moreover, if E is a prime q-exceptional divisor on Z , then p(E)⊊ Y .

Proof. By Proposition 19(1), the Pfaff field

Ω[r ]
X →OX (KF )

associated to F induces a map

Ω[r ]
Z → q∗OX (KF )

which factors through the Pfaff field Ω[r ]
Z →OZ (Kq−1F ) associated to q−1F . On the other hand,

by [28, Thm. 1.3], there exists a morphism of sheaves

q∗Ω[r ]
X →Ω[r ]

Z

that agrees with the usual pull-back morphism of Kähler differentials wherever this makes sense.
One then readily checks that we obtain a commutative diagram as follows:

q∗Ω[r ]
X q∗OX (KF )

Ω[r ]
Z q∗OX (KF ).

This implies that the map Ω[r ]
Z → q∗OX (KF ) is surjective. Consequently, this map identifies with

the Pfaff field associated to q−1F , proving item (2).
Finally, item (2) is an immediate consequence of item 1 together with Proposition 19(2). □

As we will see, Theorem 17 is an easy consequence of Lemma 21 and Lemma 22 below.

Lemma 21. Setting and notation as in 18. Suppose that X has klt singularities and that F is
weakly regular. Then there exists an open subset Y ◦ with complement of codimension at least 2
in Y such that, for any y ∈ Y ◦, either p−1(y) is empty or any connected component of p−1(y) is
irreducible.

Proof. We argue by contradiction and assume that there exists a prime divisor D ⊂ Y such that,
for a general point y ∈ D , p−1(y) is non-empty and some connected component of p−1(y) is
reducible. Let S ⊆ p−1(D) be a subvariety of maximal dimension and dominating D such that for
a general point z ∈ S there is at least two irreducible components of p−1(p(z)) passing through z.
We will show in Step 2 that S has codimension 2 in Z .

Step 1. Construction. Shrinking Y if necessary, we may assume without loss of generality that p
is equidimensional. Replacing X by an open neighborhood of the generic point of q(S), we may
also assume that there exists a positive integer m such that

OX (mKF ) ≃OX .

Let f : X1 → X be the associated cyclic cover, which is quasi-étale (see [33, Def. 2.52]), and let Z1

be the normalization of the product Z ×X X1. The induced morphism g : Z1 → Z is then a finite
cover.

By [14, Lem. 4.2], there exists a finite cover Y2 → Y with Y2 normal and connected such that
the following holds. If Z2 denotes the normalization of the product Y2 ×Y Z1, then the natural
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morphism p2 : Z2 → Y2 has reduced fibers over codimension 1 points in Y2. We may also assume
that Y2 → Y is a Galois cover. We obtain a commutative diagram as follows:

Z2 Z1 X1

Z X

Y2 Y .

p2

g1

p1

g

q1

f

p

q

Notice that g ◦ g1 : Z2 → Z is a finite Galois cover.

Step 2. Away from a closed subset of codimension at least 3, Z has quotient singularities and
the foliation induced by p on Z is weakly regular. Moreover, S has codimension 2 in Z . Notice
that X1 has klt singularities by [30, Prop. 3.16], and that the foliation FX1 := f −1F is weakly
regular by Lemma 14. Observe now that the foliation FZ1 := q−1

1 FX1 is given by p1 and that Z1

identifies with the normalization of the graph of the rational map p1 ◦ q−1
1 . Therefore, FZ1 is

weakly regular and

KFZ1
∼Z q∗

1 KFX1

by Corollary 20(1). On the other hand, FX1 has canonical singularities (see Lemma 13). Applying
Lemma 16, we conclude that FZ1 has canonical singularities as well. This in turn implies that the
foliation FZ2 := g−1

2 FZ1 has also canonical singularities (see Lemma 15). From [14, Lem. 5.4],
we conclude that Z2 has canonical singularities over a big open set contained in Y2, using the
fact that p2 has reduced fibers over codimension 1 points by construction. In particular, Z2 has
canonical singularities in codimension 2.

Since g ◦g1 : Z2 → Z is a finite Galois cover, there exists an effectiveQ-divisor∆ on Z such that

KZ2 ∼Q (g ◦ g1)∗(KZ +∆).

Moreover, away from a closed subset of codimension at least 3, KZ +∆ is Q-Cartier by [16,
Lem. 2.6]), and the pair (Z ,∆) is klt by [30, Prop. 3.16] so that it has Cohen–Macaulay singularities.
Then Harstshorne’s connectedness theorem implies that S has codimension 2 in Z .

By construction, any irreducible codimension 1 component of the ramification locus of g is
q1-exceptional, and hence invariant under FZ1 by Corollary 20(2). It follows from Lemma 14
that FZ := q−1F is weakly regular in codimension 2.

Step 3. End of proof. Let z ∈ S be a general point. Recall from [21, Prop. 9.3] that z has an analytic
neighborhood U ⊆ Z that is biholomorphic to an analytic neighborhood of the origin in a variety
of the form Cdim Z /G , where G is a finite subgroup of GL(dim Z ,C) that does not contain any
quasi-reflections. In particular, if W denotes the inverse image of U in the affine space Cdim Z ,
then the quotient map

gU : W →W /G ≃U

is étale outside of the singular set.
By Lemma 14 again, FZ induces a regular foliation on W . Let F1 and F2 be irreducible

components of p−1(p(z)) passing through z with F1 ̸= F2. Note that

g−1
U (F1 ∩U )∩ g−1

U (F2 ∩U ) ̸= ;.

By general choice of z, F1 and F2 are not contained in the singular locus of FZ , and hence both
g−1

U (F1 ∩U ) and g−1
U (F2 ∩U ) are a disjoint union of leaves. But then, any leaf passing through

some point of g−1
U (F1 ∩U ) ∩ g−1

U (F2 ∩U ) is a connected component of both g−1
U (F1 ∩U ) and
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g−1
U (F2 ∩U ). This in turn implies that F1 = F2, yielding a contradiction. This finishes the proof of

the lemma. □

Lemma 22. Setting and notation as in 18. Suppose that X has klt singularities and that F is
weakly regular. Let E be a prime q-exceptional divisor on Z such that dim p (E) ≥ dimY −1.

(1) Then dim p (E) = dimY −1. In particular, E is invariant under the foliation on Z induced
by p.

(2) Moreover, if z is a general point in E, then there exists a curve T ⊆ E passing through z with
dim p(T ) = 1 such that q(Ep(t1)(t1)) = q(Ep(t2)(t2)) for general points t1 and t2 in T , where
Ep(t )(t ) denotes the irreducible component of Ep(t ) ⊆ p−1(p(t )) passing through t ∈ T ⊂ E.

Proof. For the reader’s convenience, the proof is subdivided into a number of steps.

Step 1. Reduction to the case where KF is Cartier and proof of (1). Replacing X by an open
neighborhood of the generic point of q(E), we may assume without loss of generality that there
exists a positive integer m such that

OX (mKF ) ≃OX .

Let f : X1 → X be the associated cyclic cover, which is quasi-étale (see [33, Def. 2.52]), and let Z1

be the normalization of the product Z ×X X1. The induced morphism g : Z1 → Z is then a finite
cover. We obtain a commutative diagram as follows:

Z1 X1

Z X

Y .

p1

g

q1

f

p

q

Notice that X1 has klt singularities by [30, Prop. 3.16], and that the foliation FX1 := f −1F is
weakly regular by Lemma 14. Observe now that the foliation FZ1 := q−1

1 FX1 is given by p1 and
that Z1 identifies with the normalization of the graph of the rational map p1 ◦ q−1

1 . By item 1
in Corollary 20, FZ1 is weakly regular. Let E1 be a prime divisor on Z1 such that g (E1) = E .
Notice that E1 is q1-exceptional and that dim p (E) = dim p1(E1). Thus, replacing X by X1, we
may assume without loss of generality that

KF ∼Z 0.

Then, by Corollary 20(2), we must have p(E) ⊊ Y . It follows that p(E) is a prime divisor on
Y since dim p (E) ≥ dimY − 1 by assumption. In particular, E is invariant under the foliation
FZ := q−1F .
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Step 2. The foliation induced by F on q(E). Set B := q(E), and let E◦ ⊆ E ∩Zreg be a non-empty
open set. We obtain a commutative diagram as follows:

E◦ B

E B

Z X

Y .

a

j

i

p

q

Shrinking X , if necessary, we may assume without loss of generality that B is smooth. By [28,
Thm. 1.3 and Prop. 6.1], there is a factorization

Ωr
X |B Ω[r ]

X |B Ωr
B .

di

drefli

This implies that the map Ω[r ]
X |B →Ωr

B is surjective.

Claim 23. The foliation FE◦ on E◦ induced by FZ is projectable under a.

Proof of Claim 23. Let

νX : Ω[r ]
X ↠OX (KF ) and νZ : Ω[r ]

Z →OZ (KFZ
)

be the Pfaff fields associated to F and FZ respectively. Since E◦ is invariant by FZ , there is a
factorization

Ωr
Z |E◦ Ω[r ]

Z |E◦ OZ (KFZ
)|E◦

Ωr
E◦ Ωr

E◦ OZ (KFZ
)|E◦ .

drefl j

νZ |E◦

Recall from the proof of Corollary 1 that there is a commutative diagram

q∗Ω[r ]
X q∗OX (KF )

Ω[r ]
Z OZ (KFZ

).

q∗νX

dreflq

νZ

∼

Finally, by [28, Prop. 6.1], the diagram

(q∗Ω[r ]
X )|E◦ ≃ a∗(Ω[r ]

X |B ) a∗Ωr
B

Ω[r ]
Z |E◦ Ωr

E◦

a∗drefli

dreflq|E◦

drefl j
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is commutative as well. Therefore, we have a commutative diagramm as follows:

(q∗Ω[r ]
X )|E◦ ≃ a∗(Ω[r ]

X |B ) a∗Ωr
B

Ωr
E◦

(q∗OX (KF ))|E◦ OZ (KFZ
)|E◦ .

a∗drefli

(q∗νX )|E◦

∼

This in turn implies that there is a factorization

Ω[r ]
X |B Ωr

B

OX (KF )|B OX (KF )|B
νX |B

drefli

whose pull-back to E◦ gives the diagram above. It follows that the map

Ωr
B ↠OX (KF )|B

is the Pfaff field associated to a weakly regular foliation FB of rank r on B such that d a(FE◦ ) =
FB . This completes the proof of the claim. □

Then item (2) is an immediate consequence of Claim 23 above. □

We are now ready to prove Theorem 17.

Proof of Theorem 17. Let p : Z → Y be the family of leaves, and let q : Z → X be the natural
morphism. Since p has connected fibers by construction, Lemma 21 applied to p ◦ q−1 implies
that p has irreducible fibers over a big open set contained in Y . Hence, to prove Theorem 17, it
suffices to show that Exc q is empty.

We argue by contradiction and assume that Exc q ̸= ;. Let E be an irreducible component of
Exc q . Then E has codimension 1 since X is Q-factorial by assumption. Recall from Lemma 21
that p−1(y) is irreducible for a general point y in p(E). Therefore, by Lemma 22, we must have
E = p−1(p(E)). Moreover, if y is a general point in p(E), then there exists a curve T ⊆ p (E) passing
through y such that q(p−1(t1)) = q(p−1(t2)) for general points t1 and t2 in T . Now, there exists a
positive integer t such that the cycle theoretic fiber p [−1](y) is t [p−1(y)] for a general point y in
p(E). It follows that the restriction of the map Y → Chow(X ) to p(E) has positive dimensional
fibers, yielding a contradiction. This finishes the proof of the theorem. □

Remark 24. In the setup of Theorem 17, let p : Z → Y be the family of leaves, and let q : Z → X
be the natural morphism. If X is only assumed to have klt singularities, then the same argument
used in the proof of the theorem shows that q is a small birational map. We have

KZ /Y −R(p) ∼Q q∗KF ,

where R(p) denotes the ramification divisor of p. In particular, if F denotes the normalization of
the closure of a general leaf of F , then

KF |F ∼Q KF .
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4.3. A splitting theorem

The following theorem, advertised in the introduction as Theorem C, is the main result of this
section.

Theorem 25. Let X be a normal projective variety, and let

TX =
⊕
i∈I

Fi

be a decomposition of TX into involutive subsheaves with algebraic leaves. Suppose that there
exists aQ-divisor∆ such that (X ,∆) is klt. Then there exists a quasi-étale cover f : Y → X as well as
a decomposition

Y ≃
∏
i∈I

Yi

of Y into a product of normal projective varieties such that the decomposition TX = ⊕
i∈I Fi lifts

to the canonical decomposition
T∏

i∈I Yi =
⊕
i∈I

pr∗i TYi .

Proof. To prove the theorem, it is obviously enough to consider the case where I = {1,2}. Set
τ(i ) = 3− i for each i ∈ {1,2}.

Step 1. Reduction to the case where X isQ-factorial with klt singularities. Let π : Z → X be a
Q-factorialization, whose existence is established in [31, Cor. 1.37]. Recall that π is a small
birational projective morphism and that Z is Q-factorial with klt singularities. Then we have
the decomposition

TZ =π−1F1 ⊕π−1F2

into involutive subsheaves with algebraic leaves.
Suppose that there exist normal projective varieties W1 and W2 and a quasi-étale cover

g : W1 ×W2 → Z

such that the decomposition TZ =π−1F1 ⊕π−1F2 lifts to the canonical decomposition

TW1×W2 = pr∗1 TW1 ⊕pr∗2 TW2 .

The Stein factorization
f : Y → X

of π◦ g is then a quasi-étale cover, and the natural map

W1 ×W2 → Y

is a small birational morphism. Moreover, by [30, Prop. 3.16], Y has klt singularities. In particular,
it has rational singularities. Lemma 26 below applied to Y 99K W1 ×W2 then implies that X
satisfies the conclusion of Theorem 25.

Therefore, replacing X by Z , if necessary, we may assume without loss of generality that X is
Q-factorial with klt singularities.

Step 2. Covering construction. By Lemma 12, Fi is a weakly regular foliation. Therefore, by
Theorem 17, Fi is induced by a surjective equidimensional morphism pi : X → Ti onto a normal
projective variety Ti . Moreover, pi has irreducible fibers over a big open set contained in Ti . Let
Fi be a general fiber of pτ(i ).

Let Mi denote the normalization of the product Fi ×Ti X , and let Mi → Ni → X denote the
Stein factorization of the natural morphism Mi → X . We will show that Ni → X is a quasi-étale
cover. Notice that for any prime P on Ti , p∗

i P is well-defined (see [16, §2.7]) and has irreducible
support.
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Write p∗
i P = mQ for some prime divisor Q on X and some integer m ≥ 1. Set n := dim X , and

s := dimTi . By general choice of Fi , we may assume that Fi \ Xreg has codimension at least 2 in
Fi . In particular, Fi ∩Q ∩ Xreg ̸= ;. Let x ∈ Fi ∩Q ∩ Xreg be a general point. Since F1 and F2 are
regular foliations at x and TX =F1 ⊕F2, there exist local analytic coordinates centered at x and
pi (x) respectively such that pi is given by

(x1, x2, . . . , xn) 7→ (xm
1 , x2 . . . , xs ),

and such that Fi is given by the equations

xs+1 = ·· · = xn = 0.

A straightforward local computation then shows that Ni → X is a quasi-étale cover over the
generic point of p−1

i (P ). This immediately implies that Ni → X is a quasi-étale cover.
Let Y be the normalization of X in the compositum of the function fields C(Ni ), and let

f : Y → X be the natural morphism. Set Gi := f −1Fi . By construction, f is a quasi-étale cover,
and Gi is induced by a surjective equidimensional morphism qi : Y → Ri with reduced fibers
over a big open set contained in Ri . Moreover, there exists a subvariety Gi ⊆ f −1(Fi ) such that the
restriction Gi → Ri of qi to Gi is a birational morphism.

Step 3. End of proof. Let R◦
i denote the smooth locus of Ri , and set Y ◦

i := q−1
i (R◦

i ). Let Z ◦
i ⊆ Y ◦

i
be the open set where qi |Y ◦

i
is smooth. Notice that Z ◦

i has complement of codimension at least 2
in Y ◦

i since qi has reduced fibers over a big open set contained in Ri .
The restriction of the tangent map

T qi |Y ◦
i

: TY ◦
i
→ (

qi |Y ◦
i

)∗TR◦
i

to Gτ(i )|Z ◦
i
⊆ TZ ◦

i
then induces an isomorphism Gτ(i )|Z ◦

i
≃ (

qi |Z ◦
i

)∗TR◦
i
. Since Gτ(i )|Y ◦

i
and(

qi |Y ◦
i

)∗TR◦
i

are both reflexive sheaves, we finally obtain an isomorphism

Gτ(i )|Y ◦
i
≃ (

qi |Y ◦
i

)∗TR◦
i
.

A classical result of complex analysis says that complex flows of vector fields on analytic spaces
exist (see [27]). It follows that qi |Y ◦

i
is a locally trivial analytic fibration for the analytic topology.

The morphism q1 ×q2 : Y → R1 ×R2 then induces an isomorphism

q−1
1 (R◦

1)∩q−1
2 (R◦

2) ≃ R◦
1 ×R◦

2

since G1 ·G2 = 1 and qi is locally trivial over R◦
i . In particular, q1 × q2 is a small birational

morphism. By [30, Prop. 3.16] again, Y has klt singularities. Hence, it has rational singularities.
Lemma 26 below applied to q1 × q1 then implies that X satisfies the conclusion of Theorem 25,
completing the proof of the theorem. □

Lemma 26 ([32, Prop. 18]). Let X , Y1 and Y2 be normal projective varieties, and let π : X 99K
Y1 ×Y2 be a birational map that does not contract any divisor. Suppose in addition that X has
rational singularities. Then X decomposes as a product X ≃ X1 × X2 and there exist birational
maps πi : Xi 99K Yi such that π=π1 ×π2.

5. Proof of Theorem A

The present section is devoted to the proof of Theorem A.

Proof of Theorem A. We have seen in Theorem 6 that the tangent sheaf of X is polystable. By
definition it means that we have a decomposition

TX =
⊕
i∈I

Fi
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where the Fi are stable with respect to c1(X ) and have the same slope. Moreover, each subsheaf
Fi defines on Xreg a parallel subbundle of TXreg with respect to the Kähler–Einstein metric
ωKE|Xreg . This immediately implies that Fi |Xreg is involutive.

Claim 27. Each foliation Fi has algebraic leaves.

Proof. Let m be a positive integer such that −mKX is very ample, and let C ⊂ X be a general
complete intersection curve of elements in |−mKX |. By general choice of C , we may assume that
C ⊂ Xreg and that Fi is locally free in a neighborhood of C . If m is large enough, then the vector
bundle Fi |C is semistable by [19, Thm. 1.2]). We conclude that it is ample since it has positive
slope. Then [5, Fact 2.1.1] says that Fi has algebraic leaves. Alternatively, one can apply [7,
Thm. 1.1] to the foliation F̂i on the resolution X̂ (cf. Notation 5) induced by Fi by pullback over
Xreg and saturation inside TX̂ . □

Let f : Y → X be the quasi-étale cover and Y = ∏
i∈I Yi be the splitting that are both provided

by Theorem 25. The decomposition
TY =

⊕
i∈I

pr∗i TYi (37)

is a decomposition of TY into summands of maximal slope. If there exists i ∈ I such that
TYi is not stable with respect to c1(Yi ), then it means that the polystable decomposition of TY

provided by Theorem 6 via f ∗ωKE refines strictly the decomposition (37). By applying Theorem 25
again, we can find another quasi-étale cover Y ′ → Y which splits according to the polystable
decomposition of TY and one can then compare again the polystable decomposition of TY ′ to the
one coming from TY . After finitely many such steps, one can find a quasi-étale cover g : Z → X
such that

(i) There exists a splitting Z =∏
k∈K Zk into a product ofQ-Fano varieties.

(ii) For any k ∈ K , the tangent sheaf TZk is stable with respect to c1(Zk ).
(iii) The variety Z admits a Kähler–Einstein metric given by g∗ωKE.

Theorem A is a consequence of the Claim below.

Claim 28. There exists a Kähler–Einstein metric ωk on each variety Zk such that g∗ω =∑
k∈K pr∗k ωk .

Proof of Claim 28. We set nk := dim Zk . As the saturated subsheaf Fk := pr∗k TZk ⊂ TZ is stable
with maximal slope with respect to c1(Z ), it has to coincide with one of the factors in the
decomposition of TZ provided by Theorem 6 (one can see that by looking at the projections on
each factor and use stability). In particular, the Fk |Zreg are mutually orthogonal with respect
to g∗ωKE, which enables one to define a smooth hermitian metric ωk on Z reg

k such that g∗ωKE =∑
k∈K pr∗k ωk on Zreg. Since g∗ωKE is closed and d commutes with pr∗k , it follows thatωk is a Kähler

metric on Zreg.
Clearly, one has Ricωk =ωk on Z reg

k . In order to check thatωk defines a Kähler–Einstein metric
on Zk in the sense of Definition 2, it is sufficient to check that

∫
Z

reg
k
ω

nk
k = c1(Zk )nk by Remark 3.

By [2, Prop. 3.8] we always have the inequality
∫

Z
reg
k
ω

nk
k ≤ c1(Zk )nk and therefore

c1(Z )n =
∫

Zreg

g∗ωn
KE =

∏
k∈K

∫

Z
reg
k

ω
nk
k ≤

∏
k∈K

c1(Zk )nk .

Since c1(Z )n =∏
k∈K c1(Zk )nk , one must have

∫
Z

reg
k
ω

nk
k = c1(Zk )nk for all k ∈ K . □

Theorem A is now proved. □
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1. Introduction

The space of arcs through the singular locus of a complex variety decomposes into a finite union
of irreducible components, each defining a distinct divisorial valuation, that is, a prime divisor
on some resolution of singularities. These components were studied by Nash [38]; we will refer to
them as Nash families of arcs, and to the valuations they define as Nash valuations. The problem
of characterizing Nash families of arcs in terms of resolutions of singularities fits within the Nash
problem, which was motivated by the desire of understanding what different resolutions would
have in common.

It is natural to ask whether a similar picture holds for families of jets through the singular
locus, at least when one looks at jets of sufficiently high order. (For clarity of exposition, in this
introduction we restrict the discussion to the case where families of arcs and families of jets all
stem from the singular locus of the variety; we refer to the main body of the paper for a more
general formulation of the question.) As jets are parametrized by schemes of finite type, the fact
that there are finitely many irreducible components of the set of jets of fixed order through the
singular locus is clear. The question is how the families of jets defined by such components relate
to the families of arcs identified by Nash.

Even though families of jets are introduced similarly to families of arcs, at the core there is
an essential difference between the two: Nash families of arcs lift to resolutions of singularities
and are naturally related to divisorial valuations; by contrast, families of jets through singularities
do not lift to resolutions and cannot be related to valuations in any obvious way. In particular,
the approach followed by Nash to study families of arcs using resolution of singularities does not
apply to finite order jets.

Families of jets have been computed in several concrete examples, see, e.g., the works on
plane curves and surface singularities [6, 28, 32–36]; in many of these works, the computation is
carried out through a direct analysis of the defining equations. The problem of understanding
families of jets is closely related to the embedded Nash problem, which aims to describe the
irreducible components of contact loci of effective divisors on smooth ambient varieties in terms
of embedded resolutions. A breakthrough in this direction was recently made in [3], where the
problem was solved for unibranched plane curves; see also, e.g., [11, 21] for earlier work on this
problem.

The purpose of this paper is to unveil a natural correspondence between families of arcs
and certain families of jets of sufficiently high order. Our starting point is the following general
property.

Theorem A (Theorem 4). Among all families of jets of sufficiently high order stemming the
singular locus of a variety, there is a selection of them that is in natural one-to-one correspondence
with the Nash families of arcs.

The correspondence is obtained by defining, in a geometric meaningful way, an injective map
from the set of Nash families of arcs to the set of families of jets through the singular locus. We
say that a family of jets is of arc type if it is in the image of this map.

We then address the question whether all families of jets of sufficiently high order through
the singular locus are of arc type. Although in general there are more families of jets compared
to families of arcs (see, e.g., the case of toric surface singularities [33, 35]), we will show that
there is a one-to-one correspondence for certain rational singularities of arbitrary dimensions.
One case we already understand, thanks to [34], is that of Du Val singularities, where there is
a one-to-one correspondence. Here we extend the existence of such correspondence to a large
class of locally complete intersection rational singularities of arbitrary dimensions which include
isolated compound Du Val singularities.
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For every normal locally complete intersection variety X there is a bound on embedding
codimension in terms of minimal log discrepancy. The bound, which is proved in Proposition 16,
is given by

ecodim(OX ,x ) ≤ dim(OX ,x )−mldx (X )

for every x ∈ X . We say that X has maximal embedding codimension at x if the bound is achieved.
Within this class of singularities, we have those for which

mldx (X ) = dim(OX ,x )−ecodim(OX ,x ) = 1.

It is easy to see that these are isolated singularities. We will see in a moment that these
singularities have many properties that are natural higher dimensional analogues of properties
characterizing Du Val singularities in dimension two (the analogy is also manifest in the examples
provided in Proposition 25). For this reason, we call these singularities higher Du Val singularities.
In dimension two, this class of singularities coincides with Du Val singularities.

We then look at rational singularities of maximal embedding dimension that reduce to higher
Du Val singularities under generic hyperplane sections. One should think of this condition as
an analogue of the definition of compound Du Val singularity. We call these singularities higher
compound Du Val singularities. We have the following result.

Theorem B (Theorem 34). On an isolated higher compound Du Val singularity x ∈ X , all families
of jets of sufficiently high order stemming from x are of arc type.

As a special case, we see that all families of jets of sufficiently high order stemming from an
isolated compound Du Val singularities are of arc type. Theorem B addresses our motivating
question on families of jets. Combined with Theorem A, the theorem relates to and partially
recover a result of Mourtada on families of jets on Du Val singularities [34] (see Corollary 36).
Mourtada asked whether for any locally complete intersection variety with rational singularities
the number of families of jets of sufficiently high order stemming from the singular locus is the
same as the number of Nash families of arcs [34, Question 4.5]. Our result provides evidence in
this direction.

For higher Du Val singularities, we have a more precise result (see Theorem 28) which we
use to solve the Nash problem for this class of singularities. In our solution, Nash valuations
are characterized in terms of certain partial resolutions of the variety (the terminal models) that
originate from the minimal model program. Valuations defined by the exceptional divisors on
these models are called terminal valuations.

Theorem C (Corollary 29). For a divisorial valuation ordE on a variety X with higher Du Val
singularities, the following are equivalent:

(1) ordE is a Nash valuation.
(2) ordE is a terminal valuation.
(3) E is a crepant exceptional divisor over X .

This result is in line with the point of view proposed in [15]. It can be viewed as a higher
dimensional generalization of one of the properties characterizing Du Val singularities among
normal surface singularities.

In dimension two, there are four proofs of the Nash problem for Du Val singularities [10, 15,
39, 40]. While the proof given here follows a different path, relying on inversion of adjunction
and the minimal model program, it also uses on the main theorem of [15] and therefore it should
not be considered as providing a new proof in dimension two for Du Val singularities. In higher
dimensions, however, Theorem C does not follow directly from [15].

Throughout the paper, we work over an algebraically closed field k of characteristic zero.
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2. Arc spaces and jet schemes

For a scheme X over k, we denote by X∞ the arc space of X over k and by Xm the m-th jet
scheme of X . We refer to [9, 13, 44] for general references on the subject. An arc α ∈ X∞ is a
morphismα : Speckα�t�→ X and a jetβ ∈ Xm a morphismβ : Speckβ[t ]/(t m+1) → X . We denote
by α(0) and β(0) the images of the respective closed points, and by α(η) the image of the generic
point of Speckα�t�. There are truncation maps π : X∞ → X and πm : Xm → X sending an arc α
(respectively, an m-jet β) to its special point α(0) (respectively, β(0)), as well as ψm : X∞ → Xm

and πn,m : Xn → Xm for n > m. We denote these maps by πX , πX
m , ψX

m , and πX
n,m whenever there

is a need to specify the underlying scheme X .
Let now X be a variety. Constructibility in X∞ is defined as in [19] (see also [42, Tag 005G]):

a subset C ⊂ X∞ is constructible if and only if it is a finite union of finite intersections of
retrocompact open sets and their complements; equivalently, C is constructible if and only
C = ψ−1

m (S) for some m and some constructible set S ⊂ Xm . An irreducible subset C ⊂ X∞ is
non-degenerate if C ̸⊂ (Sing X )∞.

When X is smooth, constructible sets are also called cylinders. Their codimension is defined
by codim(C , X∞) := codim(S, Xm) where, as before, C =ψ−1

m (S). Using the simple structure of the
truncation maps πn,m , it is easy to check that this is well defined. The codimension of C defined
above agrees with topological codimension of the closure of C in X∞; if C is irreducible and α ∈C
is the generic point, then this is the same as dim(OX∞,α).

When X is singular, one defines the jet codimension of a constructible set C ⊂ Xm by setting
jet-codim(C , X∞) := (m+1)dim(X )−dim(S) where, again, C =ψ−1

m (S) (cf. [16]). If C is irreducible
and α ∈C is the generic point, then this agrees with edim(OX∞,α).

Every arc α ∈ X∞ defines a semi-valuation ordα : OX ,α(0) → Z ∪ {∞}, given by ordα(h) =
ordt (α♯(h)), which extends to a valuation of the function field of X if and only if the generic point
α(η) of the arc is the generic point of X . In a similar fashion, every jet β ∈ Xm defines a function
ordβ : OX ,β(0) → {0,1, . . . ,m}∪ {∞} given by ordβ(h) = ordt (β♯(h)), where we set ordt (0) =∞.

A prime divisor over X is, by definition, a prime divisor E on a normal birational model Y → X .
Any such divisor E defines a valuation ordE on X . A valuation on X of the form v = q ordE where
E is a prime divisor over X and q is a positive integer is called a divisorial valuation. The image in
X of the generic point of E is called the center of the valuation (or of E), and is denoted by cX (v)
or cX (E). For a divisorial valuation v = q ordE , the closure CX (v) ⊂ X∞ of the set of arcs α such
that ordα = v is called the maximal divisorial set associated to v . This is an irreducible closed
constructible subset of X∞. When v = ordE , we also denote this set by CX (E).

Let now X be a variety. As shown in [38] (see also, e.g., [13, 22]), the set π−1(Sing X ) decom-
poses as a finite union of irreducible components, and each component defines a divisorial val-
uation on X . These are called Nash valuations and the problem is to characterize them. Nash
conjectured that, in dimension two, Nash valuations are precisely those defined by the excep-
tional divisors on the minimal resolution, and proposed the notion of essential divisor as a pos-
sible higher dimensional generalization which he speculated may characterize Nash valuations
in all dimensions. These questions, which are generally referred to as the Nash problem, have
generated a lot of activity.

Culminating the work of many people, the complete solution of the Nash problem in dimen-
sion two was eventually found by Fernandez de Bobadilla and Pe Pereira in [10], and before that,
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in the toric case by Ishii and Kollár [22]. A new, algebraic proof in the surface case was later found
in [15], where it was proved that, in any dimension, all valuations defined by exceptional divisors
on terminal models over X are Nash valuations; we call the valuations arising in this way termi-
nal valuations. Nash’s original guess of what the picture should be in dimension ≥ 3, however,
turned out to be incorrect [12, 22, 23]. In view of this, one can reinterpret the Nash problem as
asking for a characterization of Nash valuations in terms of resolution of singularities of a variety
X and, more generally, its birational geometry.

3. Minimal log discrepancies

Let X be a normal variety, and assume that its canonical class KX is Q-Cartier. For every prime
divisor E over X , if f : Y → X is the normal birational model where E lies, then we define the log
discrepancy of E over X by aE (X ) := ordE (KY /X )+1, and the Mather log discrepancy of E over X
by âE (X ) := ordE (Jac f )+1. These invariants of E only depends on the valuation ordE , and they
agree if X is smooth at the center of E .

An effective R-subscheme Z of X is an expression Z = ∑s
j=1 c j Z j where Z j ⊂ X is a proper

closed subscheme and c j > 0 for every j . Its support is the union of the support of the Z j .
For any effective R-subscheme Z , we define the log discrepancy of E over the pair (X , Z ) to be
aE (X , Z ) := aE (X )−∑

c j ordE (IZ j ) where IZ j ⊂ OX is the ideal sheaf of Z j . The minimal log
discrepancy of (X , Z ) at a point x is defined by

mldx (X , Z ) := inf
cX (E)=x

aE (X , Z )

where the infimum is taken over all prime divisors E with center x. When there is no Z , we just
write mldx (X ). We set mldx (X , Z ) = 0 if x is the generic point of X . If dim X ≥ 2, then mldx (X , Z ) ∈
{−∞}∪ [0,∞). For sake of uniformity, it is convenient to declare that mldx (X , Z ) =−∞ whenever
it is negative when dim X = 1 as well.

The following is a slightly more general reformulation of the main theorem of [8]. The proof is
essentially contained in [9]. We review the key part of the argument for completeness. A similar
argument will also be used later in the paper, so it is useful to review it here anyway.

Theorem 1 (Inversion of adjunction [8]). Let X be a smooth variety, Y = H1 ∩ ·· · ∩ He ⊂ X a
normal positive dimensional subvariety defined by the complete intersection of e hypersurfaces
Hi ⊂ X , and Z = ∑

c j Z j an effective R-subscheme of X not containing Y in its support. Then for
every x ∈ Y we have

mldx (Y , Z |Y ) = mldx (X , Z +eY ) = mldx

(
X , Z +

e∑
i=1

Hi

)
,

where Z |Y :=∑
c j (Z j ∩Y ).

Proof. We may assume that x is not the generic point of Y , the statement being elementary in
that case. The proofs of the inequalities mldx (Y , Z |Y ) ≥ mldx (X , Z +eY ) ≥ mldx (X , Z +∑

Hi ) are
fairly standard and are omitted. We review the proof of the inequality

mldx (Y , Z |Y ) ≤ mldx

(
X , Z +

∑
Hi

)
,

which is the hard part of the theorem. To this end, it suffices to show that for every divisorial
valuation v = ordF on X with center cX (v) = x, there is a divisorial valuation w = q ordE over Y
with center cY (w) = x such that

q aE (Y , Z |Y ) ≤ aF

(
X , Z +

∑
Hi

)
.

We denote by Y x
∞ the reduced inverse image of x under the projection πY : Y∞ → Y . By

definition, Y x
∞ is the set of arcs in Y stemming from x.



124 Tommaso de Fernex and Shih-Hsin Wang

Let CX (v) ⊂ X∞ be the maximal divisorial set associated to v . Note that πX (CX (v)) is an
irreducible constructible set with generic point x. Consider the intersection

CX (v)∩Y∞.

As v is centered at x and CX (v) is closed under the action of the morphism Φ∞ : A1 × X∞ → X∞
given by (a,α(t )) 7→ α(at ) (cf. [8, Section 3]), we see that CX (v) contains the constant arc at x,
hence CX (v)∩Y x

∞ ̸= ;. It follows that x is the generic point of πX (CX (v)∩Y∞). Therefore we can
pick an irreducible component W of CX (v)∩Y∞ such that πY (W ) has x as its generic point. Note
that [9, Lemma 8.3] applies to CX (v)∩Y x

∞ since both CX (v) and Y x
∞ are closed under the action

of the morphism Φ∞, hence CX (v)∩Y x
∞ ̸⊂ (SingY )∞. Therefore we can assume that W is not

contained in (SingY )∞. By construction W is the closure of an irreducible constructible set in
Y∞, hence, by [16], its generic point γ ∈W defines a divisorial valuation w = q ordE on Y , and [9,
Lemma 8.4] (its proof, to be precise) gives

jet-codim(W,Y∞) ≤ codim(CX (v), X∞)+q ordE (JacY )−
∑

ordF (IHi ).

Since W ⊂ CY (w), [16, Theorem 3.8] implies that jet-codim(W,Y∞) ≥ q · âE (Y ) where âE (Y ) is
the Mather log discrepancy. As Y is normal and locally complete intersection, we have âE (Y ) =
aE (Y )+ordE (JacY ) (see, e.g., [14, Corollary 3.5]), hence

jet-codim(W,Y∞) ≥ q(aE (Y )+ordE (JacY )).

On the other hand, as X is smooth, we have

codim(CX (v), X∞) = aF (X ).

Finally, by the semicontinuity of order of contact function induced by IZ j on X∞, we have

q ordE (IZ j ·OY ) ≥ ordF (IZ j ).

By combining the above formulas, we conclude that q aE (Y , Z |Y ) ≤ aF (X , Z +∑
Hi ). □

Remark 2. Going through the above proof (with Z = 0), suppose that aF (X ,
∑

Hi ) =
mldx (X ,

∑
Hi ) ≥ 0. Then we necessarily have q aE (Y ) = aF (X ,

∑
Hi ), since q aE (Y ) ≥ aE (Y ) ≥

mldx (Y ), hence q aE (Y ) = aE (Y ) = mldx (Y ). In particular, if mldx (Y ) > 0 then q = 1. Fur-
thermore, the inequalities in the formulas displayed in the proof must all be equalities, hence
W =CY (w).

Corollary 3. Let X be a normal locally complete intersection variety, Y = H1 ∩ ·· · ∩ He ⊂ X a
normal positive dimensional subvariety defined by the complete intersection of e hypersurfaces
Hi ⊂ X , and Z = ∑

c j Z j an effective R-subscheme of X not containing Y in its support. Then for
every x ∈ Y we have

mldx (Y , Z |Y ) = mldx (X , Z +eY ) = mldx

(
X , Z +

e∑
i=1

Hi

)
.

Proof. Again, it suffices to prove that mldx (Y , ZY ) = mldx (X , Z+∑
Hi ). Working locally near x, we

can fix a closed embedding X ⊂ A where A is a smooth variety, and hypersurfaces D1, . . . ,Dr ⊂ A
where r = codim(Y , A), such that Hi = Di ∩ X for i = 1, . . . ,e and X = De+1 ∩ ·· ·∩Dr . Note that
Y = D1 ∩·· ·∩Dr . By Theorem 1 (applied twice, to Y ⊂ A and X ⊂ A), we have

mldx (Y , Z |Y ) = mldx

(
A, Z +

r∑
i=1

Di

)
= mldx

(
X , Z +

e∑
i=1

Hi

)
.

This completes the proof. □
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4. Families of jets of arc type

Let X be a positive dimensional variety. For any subset Σ⊂ X , we consider the sets

X Σ
∞ :=π−1(Σ)red = {α ∈ X∞ |α(0) ∈Σ}

and

X Σ
m :=π−1

m (Σ)red = {β ∈ Xm |β(0) ∈Σ}.

By definition, X Σ
∞ is the set of arcs on X through Σ, and X Σ

m is the set of m-jets through Σ.
Assume thatΣ⊂ X is a closed subset. Since Xm is a scheme of finite type, each X Σ

m decomposes
into a finite union of irreducible components, and a generalization of Nash’s theorem [38] tells us
that the same happens for X Σ

∞.
In the following, we denote by Γ⊂ X Σ

∞ \ (Sing X )∞ the set of generic points; that is, α ∈ Γ if and
only if α is the generic point of a non-degenerate irreducible component of X Σ

∞. Let

µ := max
α∈Γ

ordα(JacX ).

Note that µ<∞ since Γ is finite and each α ∈ Γ is non-degenerate.
We fix an integer ν≥µ such that the images ψν(α) ∈ Xν, for α ∈ Γ, are all distinct and there are

no specializations within the set ψν(Γ) ⊂ Xν (meaning that ψν(Γ), with the induced topology, is
discrete). The existence of such integer follows from the definition of X∞ as inverse image of the
jet schemes under the truncation maps.

Theorem 4. Let X be a variety and Σ ⊂ X a closed subset. Then for every m ≥ µ+ν there is a
naturally defined injective map

ΨΣ
m :

{
non-degenerate irreducible components of X Σ

∞
}→ {

irreducible components of X Σ
m

}

sending a non-degenerate irreducible component C of X Σ
∞ to the unique irreducible component D

of X Σ
m containing the image of C in Xm .

Definition 5. We say that an irreducible component of X Σ
m is of arc type if it is in the image of ΨΣ

m .

Remark 6. There are two special cases about Theorem 4. The first is when we take Σ= Sing X . In
this case every irreducible component of X Sing X

∞ is non-degenerate and the domain of ΨSing X
m is

the set of Nash families of arcs. The second special case is when Σ= X . In this case, the domain
of ΨX

m is a singleton and the image of ΨX
m is the irreducible component of Xm dominating X ,

namely, the closure of (Xreg)m .

We will break the proof of Theorem 4 into two steps: proving that ΨΣ
m is well-defined, and

showing that it is injective. We may assume that Σ is nonempty, the statement being trivial
otherwise.

We start with the basic observation that

ψm(X Σ
∞) ⊂ X Σ

m .

This implies that for every non-degenerate irreducible component C of X Σ
∞ there exists an

irreducible component D of X Σ
m such that ψm(C ) ⊂ D . Our goal is to prove that if m ≥ µ+ ν

then such component D is unique (proving well-definedness), and that a different component D
of X Σ

m occurs for each non-degenerate component C of X Σ
∞ (proving injectivity).

These properties follow by standard facts about the structure of the truncation maps, specif-
ically from Greenberg’s theorem on liftable jets [18] and from a result of Looijenga on the fibers
of the truncation maps between jet schemes [29]. For convenience, we will cite these results
from [9].

We start with the first assertion.
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Lemma 7. If m ≥µ+ν, then for every non-degenerate irreducible component C of X Σ
∞ there exists

a unique irreducible component D of X Σ
m such that ψm(C ) ⊂ D.

Proof. We proceed by contradiction and assume that there exists an integer m ≥µ+ν and a non-
degenerate irreducible component C of X Σ

∞ such that ψm(C ) is contained in the intersection of
two distinct irreducible components D and D ′ of X Σ

m . Whatever the value of m, we can find
another integer n such that

(1) n ≥ ν and
(2) 2n ≥ m ≥µ+n.

A choice of n can be made by setting n = ν+k where k is defined by m =µ+ν+k.
Let α ∈ C , β ∈ D and β′ ∈ D ′ denote the respective generic points, and let αn = ψn(α),

βn = πm,n(β), and β′
n = πm,n(β′) be their images in Xn . Note that both βn and β′

n specialize
to αn . Since ordα(JacX ) ≤µ≤ n, we have

ordβn (JacX ) ≤ ordαn (JacX ) = ordα(JacX ) ≤µ≤ n,

hence [9, Proposition 4.1(i)] implies that βn = ψn(γ) for some arc γ ∈ X∞. Similarly, we have
β′

n =ψn(γ′) for some γ′ ∈ X∞.
Note that γ,γ′ ∈ X Σ

∞. In fact, as n ≥ ν, we see that γ,γ′ ∈ C since, by the definition of ν,
no other irreducible component of X Σ

∞ contains a point whose image in Xm specializes to αm .
In particular, γ and γ′ are specializations of α, hence βn and β′

n are both generalizations and
specializations of αn , meaning that

βn =αn =β′
n ,

This means that β and β′ belong to the same fiber of Xm → Xn , namely, π−1
m,n(αn).

As αn ∈ X Σ
n , the fiber π−1

m,n(αn) is contained in X Σ
m , and since it contains the generic points β

and β′ of the irreducible components D and D ′ of X Σ
m , it follows that D and D ′ are irreducible

components of π−1
m,n(αn). This contradicts the fact that, by [9, Proposition 4.4(ii)], this fiber is

irreducible. □

We now turn to the second assertion.

Lemma 8. If m ≥ µ+ν, then for every irreducible component D of X Σ
m there exists at most one

non-degenerate irreducible component C of X Σ
∞ such that ψm(C ) ⊂ D.

Proof. We need to prove that if m ≥ µ+ν and α,α′ ∈ Γ are such that their images αm and α′
m in

Xm belongs to the same irreducible component D of X Σ
m , then α=α′.

To prove this, let β ∈ D be the generic point. Then β specializes to both αm and α′
m , hence

its image βm−µ := πm,m−µ(β) ∈ Xm−µ specializes to both images αm−µ and α′
m−µ of α and α′ in

Xm−µ. Note that m −µ≥ ν≥µ. By semicontinuity,

ordβm−µ (JacX ) ≤µ

Then, by [9, Proposition 4.1(i)], we see that βm−µ lifts to an arc; that is, there exists γ ∈ X∞ such
that ψm−µ(γ) = βm−µ. By construction, γ ∈ π−1(Σ), hence there exists α′′ ∈ Γ specializing to γ.
It follows that the image of α′′ in Xm−µ specializes to both αm−µ and α′

m−µ. As m −µ ≥ ν, we
conclude that α=α′′ =α′. □

Proof of Theorem 4. Lemma 7 implies that ΨΣ
m is well-defined for m ≥ µ+ν, and Lemma 8 that

this map is injective. □

Remark 9. The definition of the function ΨΣ
m constructed in Theorem 4 can be extended to all

m ≥ 0 as long as one is willing to regard them as multivalued function, sending each C to all
components D containing the image of C .



Tommaso de Fernex and Shih-Hsin Wang 127

5. The question of surjectivity

Given Theorem 4, it is natural to ask under which conditions on singularities one can guarantee
that the mapsΨΣ

m are surjective. These functions are well-defined for m ≫ 1, but if we are willing
to regard them as a multivalued functions, then we can remove the constrain on m. The question
of surjectivity still makes sense for multivalued functions.

Before we move to discuss the case we will be focusing on, it may be instructive to point out
that there is already an interesting answer to the problem (a sufficient condition for surjectivity)
in the special case where Σ = X . This comes from Mustaţă’s theorem on locally complete
intersection canonical singularities.

Theorem 10 ([37]). Let X be a locally complete intersection variety with canonical singularities.
ThenΨX

m is well defined and surjective for every m.

Proof. As X∞ has only one non-degenerate irreducible component (and in fact only one irre-
ducible component since it is irreducible by Kolchin’s theorem [24]), this is just a restatement of
Mustaţă’s theorem on the irreducibility of the jet schemes, since any additional irreducible com-
ponent of Xm would lie over the singular locus of X and therefore would not contain the image
of X∞. □

Like in Mustaţă’s theorem, we will be focusing on locally complete intersection canonical
singularities. Our goal is to find a class of singularities for whichΨSing X

m is surjective.
To get a sense of what one can expect, we start by reviewing some cases that are already

understood.

Example 11 (Nodal curve). The case where X is a nodal curve already shows that one cannot
expect ΨSing X

m to be always surjective. Indeed, if x ∈ X is a node, then for m ≥ 3 the set X x
m has

m −1 irreducible components, and only two of them are in the image ofΨx
m .

Example 12 (Affine cones). Let V ⊂PN−1 be a smooth complete intersection variety defined by
equations of degree r , let X ⊂ AN be the affine cone over V , and let x ∈ X be the vertex. As the
blow-up of x gives a resolution of X with a single exceptional divisor, one easily see that X x

∞ is
irreducible. On the other hand, for every m ≥ r we have

π−1
m (x) ∼= Xm−r ×AN (r−1),

see, e.g., the proof of [17, Theorem 3.5]. By [37, Theorem 0.1], we know that if X is canonical then
Xm is irreducible for all m, and conversely, using also [37, Proposition 1.6], if X is not canonical
at x then Xm is reducible for all m ≫ 1. It follows that X x

m is irreducible (hence Ψx
m is surjective)

for all m ≥ r if X is canonical, and is reducible (henceΨx
m fails to be surjective) for all m ≫ 1 if X

is not canonical.

Mourtada, in part in collaboration with Plénat and Cobo, has studied the irreducible decom-
position of X Sing X

m in many explicit situations where X is a surface [6, 34–36]; see also [26] for re-
lated work. While in some cases these results indicate that the number of components continues
to grow with m, there are also cases where the number of components stabilizes and matches the
number of Nash families.

Example 13 (Toric surface singularities). The irreducible decomposition of X Sing X
m was com-

puted for toric surfaces by Mourtada [35], and the only case where we have the same number of
components as Nash families is when X has An-singularities.

Example 14 (Du Val singularities). It is proved in [34] that, for m ≫ 1, the number of families
of m-jets through a Du Val singularity coincides with the number of exceptional divisors on the
minimal resolution, hence with the number of Nash families of arcs. It follows in particular that
in this caseΨSing X

m is a bijection.
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Example 15 (cA-type singularities). Another case where we can check directly that ΨSing X
m is

a bijection is that of c A-type singularities. Nash families of arcs on these singularities were
described in [23], and the deformation argument used in their proof can be adapted to show that,
for m ≫ 1, there is the same number of families of m-jets through the singularity, proving that
Ψ

Sing X
m is a bijection in this case as well. More specifically, suppose X is defined by an equation

x y = f (z1, . . . , zd−1)

in A = Ad+1, where µ := mult0( f ) ≥ 2. The proof in [23] begins by identifying µ− 1 irreducible
open sets Ui ⊂ X 0

∞, for 1 ≤ i ≤µ−1, given by

Ui =
{
α ∈ X 0

∞
∣∣ ordα(x) = i , ordα(y) =µ− i , ordα( f ) =µ

}
.

The proof then goes by showing that every arc α ∈ X 0
∞ can be deformed (in X 0

∞) to an arc α∗

with ordα∗ ( f ) =µ. Clearly such arc must belong to one of the Ui , hence proving that the closures
of these sets give all irreducible components of X 0

∞. The deformation is done in several steps:
first, one deforms α to an arc α′ with ordα′ ( f ) <∞, and if ordα′ > µ, then one deforms α′ to an
arc α′′ with ordα′′ ( f ) < ordα′ ( f ). After a finite number of steps, this process produces the desired
arc α∗.

This argument can be adapted to characterize the irreducible components of X 0
m , for any given

m ≥µ, as follows. For 1 ≤ i ≤µ−1, we consider the irreducible open sets

Vi =
{
β ∈ X 0

m

∣∣ ordβ(x) = i , ordβ(y) =µ− i , ordβ( f ) =µ
}
.

Given any β ∈ X 0
m , we take any lift α ∈ A0

∞ (i.e., any arc α on A such that ψA
m(α) =β) and apply the

same deformation argument as in [23] to produce a new arc α∗ ∈ A0
∞ such that ordα∗ ( f ) = µ. In

fact, without loss of generality we can pickα so that ordα( f ) <∞, hence skip the first deformation
and just deform to reduce ordα( f ) if the order of contact is larger than µ. The key observation
here is that, just like in [23] the deformation keeps the arc on X , in this setting the deformation
maintains the order of contact of the arc with X , hence the corresponding deformation at level m
stays on Xm .

The above examples are mainly understood through their equations. Our goal is to identify a
new class of examples of arbitrary dimensions where ΨSing X

m is surjective, without having to rely
on explicit equations. This will be done in the next two sections.

6. Singularities of maximal embedding codimension

For a local ring (R,m) we denote by dim(R) the Krull dimension, by edim(R) the embedding di-
mension (the dimension of the Zariski tangent space) and by ecodim(R) the embedding codi-
mension (the codimension of the tangent cone in the Zaristi tangent space). When R is Noether-
ian, the latter is also known as the regularity defect [27] and is equal to edim(R)−dim(R).

We start by establishing the following bound on embedding codimension for normal locally
complete intersection singularities. The bound is likely known to experts.

Proposition 16. Let X be a normal locally complete intersection variety. Then

ecodim(OX ,x ) ≤ dim(OX ,x )−mldx (X )

for every x ∈ X .

Proof. The assertion being trivial if mldx (X ) =−∞, we assume that mldx (X ) ≥ 0. Working locally
in X , we may assume that X is embedded in an affine space A := AN . Let d = dim(X ), r =
dim(OX ,x ), e = ecodim(OX ,x ) and c = codim(X , A). By inversion of adjunction (see Theorem 1),

mldx (X ) = mldx (A,c X ).
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Let mx ⊂ OX ,x be the maximal ideal. By applying [31, Theorem 25.2] to the sequence k →
OX ,x → kx , we get the exact sequence

0 →mx /m2
x →ΩX /k ⊗kx →Ωkx /k → 0.

This gives

dimkx (ΩX /k ⊗kx ) = edim(OX ,x )+d − r = d +e.

By the isomorphism X1
∼= Spec(Sym(ΩX /k )) (see [9, Example 2.5] or [44, (1.4)]), we have X x

1
∼=

Spec(Sym(ΩX /k ⊗kx )), hence

dimk (X x
1 ) = dimkx (X x

1 )+d − r = 2d +e − r.

The reduced inverse image V ⊂ A∞ of the closure X x
1 ⊂ A1 of X x

1 is a closed irreducible cylinder.
Let v be the valuation defined by V (namely, v = ordα where α ∈ V is the generic point). By [7,
Theorem C], v is a divisorial valuation, i.e., v = p ordF where F is a prime divisor over A and p is
a positive integer. Note that, by construction, we have v(IX ) ≥ 2. If C A(v) ⊂ A∞ is the maximal
divisorial set associated to the valuation, then we have V ⊂C (v), hence

codim(V , A∞) ≥ codim(CX (v), A∞) = p aF (A)

(the last formula is implicit in [7]; for a direct reference, see [16, Theorem 3.8]). On the other
hand,

codim(V , A∞) = codim(X x
1 , A1)

= dim(A1)−dim(X x
1 )

= 2(d + c)− (2d +e − r )

= r −e +2c.

It follows that

mldx (A,c X ) ≤ aF (A,c X ) ≤ 1

p

(
codim(V , A∞)−2c

)≤ r −e,

where we use in the last inequality that mldx (X ) ≥ 0 to ensure that the inequality is preserved
when we clear the denominator p. □

Definition 17. In accordance with Proposition 16, we say that a normal locally complete intersec-
tion variety X has maximal embedding codimension singularities if

ecodim(OX ,x ) = dim(OX ,x )−mldx (X )

for every x ∈ X .

Remark 18. Smooth varieties have maximal embedding codimension singularities.

Remark 19. Every locally complete intersection variety with maximal embedding codimension
singularities has log canonical singularities, since the condition implies that mldx (X ) ̸= −∞
hence mldx (X ) ≥ 0 for all x ∈ X . Note that if X is a curve then normality already implies that
X is smooth.

Example 20 (Hypersurface singularities). A normal hypersurface singularity x ∈ X has maximal
embedding codimension if and only if mldx (X ) = dim(OX ,x )−1. In particular Du Val singularities
in dimension 2 and isolated cDV singularities of dimension 3 are all the examples in these
dimensions of isolated hypersurface singularities of maximal embedding codimension (cf. [41]).
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7. Higher Du Val singularities

We now identify a particular subclass of locally complete intersection varieties with maximal
embedding codimension singularities which can be thought as a higher dimensional version of
Du Val singularities.

Definition 21. Let X be a normal locally complete intersection variety of dimension d ≥ 2. We say
that a point x ∈ X is a higher Du Val (hDV) singularity if

mldx (X ) = dim(OX ,x )−ecodim(OX ,x ) = 1.

By definition, hDV singularities are canonical but not terminal. They can be locally embedded
as complete intersection singularities of codimension d −1 in A2d−1 (cf. [5, Theorem 3.15]) but
not in any smaller affine space. In dimension two, these are the same as the Du Val singularities.

Remark 22. It is useful to compare the above definition with another classical way of general-
izing Du Val singularities, namely, compound Du Val singularities. Compound Du Val singulari-
ties preserve two properties of Du Val singularities: being hypersurface singularities, and having
minimal log discrepancy mldx (X ) = dim(X )−1. By contrast, the definition of hDV singularities
preserves the condition that mldx (X ) = 1 and requires maximal embedding codimension. The
attribute “higher” in hDV singularity reflects at the same time that these are higher dimensional
and higher codimensional generalizations of Du Val singularities.

Remark 23. If we extended Definition 21 to the case d = 1, then in dimension one the definition
would characterize smooth points on curves. This says something meaningful about the behavior
of this notion as a function of dimension. We prefer to assume d ≥ 2 as we want to regard this as
defining a class of actual singular points.

Example 24 (Intersections of quadric cones). In higher codimensions, the simplest example of
a hDV singularity is the cone X ⊂A2e+1 over the transversal intersection of e smooth quadrics in
P2e . The blow-up of the vertex x of the cone gives a log resolution of (A2e+1, X ), and

mldx (X ) = mldx (A2e+1,e X ) = 1

where the minimal log discrepancy is computed by the exceptional divisor of the blow-up.

More generally, we have the following set of examples, which shows the clear analogy with Du
Val singularities.

Proposition 25. Let e ≥ 1, let (u1, . . . ,u2e−2, x, y, z) denote affine coordinates of A2e+1, and let
X ⊂A2e+1 be the subvariety defined by the vanishing of e general linear combinations of any finite
set of generators of the ideal

a= (u1, . . . ,u2e−2)2 +b

of k[u1, . . . ,u2e−2, x, y, z], where b is one of the following:

b=





(x2, y2, zn+1) (n ≥ 1) An-type

(z2, x2 y, yn−2) (n ≥ 4) Dn-type

(z2, x3, y4) E6-type

(z2, x3, x y3) E7-type

(z2, x3, y5) E8-type

Then X has a hDV singularity at the origin 0 ∈A2e+1.
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Proof. Clearly, X is a complete intersection variety with an isolated singularity at the ori-
gin, and ecodim(OX ,0) = e. What is left to show is that mld0(X ) = 1. Note that mld0(X ) =
mld0(A2e+1,e X ). By looking at the exceptional divisor of the blow-up of A2e+1 at the origin, we
see that mld0(A2e+1,e X ) ≤ 1. On the other hand, a special case of the Thom–Sebastiani theorem
(see [25, Proposition 8.21]) gives us the following formula for the log canonical thresholds of a:

lct(a) = lct((u1, . . . ,u2e−2)2)+ lct(b) = e −1+ lct(b).

What we know about Du Val singularities already tells us that lct(b) > 1; this can also be checked
directly using Howald’s formula for the log canonical threshold of monomial ideals [20]. There-
fore lct(a) > e, hence mld0(A2e+1,e X ) > 0. We conclude that mld0(A2e+1,e X ) = 1, as required. □

Remark 26. Assuming k = C, hDV singularities are closely related certain hypersurface singu-
larities studied by Arnol’d [1]. These are isolated hypersurface singularities characterized by the
property that their versal deformations only contain finitely many analytically inequivalent sin-
gularities, and are known as simple singularities. They were classified in [1]; see also [4, Exam-
ple (3.4)]. In the notation of Proposition 25, for any a (which, according to the proposition, cor-
responds to an example of a hDV singularity) the vanishing of a general element h ∈ a defines a
simple singularity, and all simple singularities arise in this way. Conversely, the examples of hDV
singularities provided by Proposition 25 are complete intersections of simple singularities of the
same type.

Proposition 27. Let X be a variety with hDV singularities. Then X has isolated singularities.

Proof. Let f : Y → X be a log resolution that is an isomorphism over Xreg, and let E be the
reduced exceptional locus. Note that KY /X ≥ 0.

If dim(Sing X ) ≥ 1, then we can find a closed point x ∈ Sing X such that x is not the center of
any component of E . On the other hand, x ∈ f (E). Now, let F be an arbitrary prime divisor over
X with center cX (F ) = x. We may assume that F lies on a nonsingular model g : Z → Y . Since
f −1(x) has codimension at least 2 in Y and contains the center of F in Y , we have ordF (KZ /Y ) ≥ 1.
It follows that ordF (KZ /X ) ≥ 1, hence aF (X ) ≥ 2. This contradicts the fact that, by hypothesis,
mldx (X ) = 1. □

Theorem 28. Let x ∈ X be a hDV singularity.

(1) The multivalued functionΨx
m is surjective for all m.

(2) An irreducible set C ⊂ X x
∞ is a non-degenerate irreducible component if and only if

C = CX (E) for some prime divisor E over X with center cX (E) = x and log discrepancy
aE (X ) = 1.

Proof. By Proposition 27, x ∈ X is an isolated singularity.
Let d = dim(X ) = dim(OX ,x ) and e = ecodim(OX ,x ). Note that, by our assumption, e = d −1.

Though not strictly necessary, to simplify the notation we apply [5, Theorem 3.15] to reduce to
the case where X is embedded in A :=Ad+e .

Let f1, . . . , fe ∈ k[x1, . . . , xd+e ] be local generators of the ideal of X in A at the point x. For every
j ≥ 1, we denote by f ( j )

i the j -th Hasse–Schmidt derivative of fi . As X x
1 = Ax

1 (by our choice of
embedding), the polynomials fi and f ′

i vanish identically on Ax
1 , hence on Ax

m . Therefore, the

ideal of X x
m in Ax

m is generated by the elements f ( j )
i for 1 ≤ i ≤ e and 2 ≤ j ≤ m. In particular, if D

is any irreducible component of X x
m , then

codim(D, Ax
m) ≤ e(m −1).

Noticing that codim(Ax
m , Am) = d +e = 2e +1, it follows that

codim(D, Am) ≤ e(m +1)+1
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Let V ⊂ A∞ be the cylinder over D ⊂ Am . This is a closed irreducible cylinder of codimension

codim(V , A∞) = codim(D, Am) ≤ e(m +1)+1.

If v = p ordF is the divisorial valuation defined by the generic point of V , then V ⊂C (v), hence

codim(V , A∞) ≥ codim(CX (v), A∞) = p aF (A).

Note that v(IX ) ≥ m +1. Then

mldx (A,e X ) ≤ 1

p

(
codim(V , A∞)−e(m +1)

)≤ 1.

Since by our assumption on the singularity we have mldx (X ) = 1, and mldx (X ) = mldx (A,e X ) by
inversion of adjunction, it follows that all inequalities in the above formula are equalities, and in
particular V =C A(v).

We see from the proof of Theorem 1 (see also Remark 2) that there is a non-degenerate
irreducible component W of V ∩ X∞. Furthermore, any such component W is equal to CX (E)
for some prime divisor E over X with center cX (E) = x and log discrepancy aE (X ) = 1. Note that
W ⊂ X x

∞.
We may assume that E is an exceptional divisor on a log resolution f : X ′ → X of X . We

apply [2, Corollary 1.4.3] to X and f , with∆=∆0 = 0 and E equal to the set of exceptional divisors
with log discrepancy at most 1. The output of this operation is a terminal model Y over X where
the center of valE has codimension 1. This implies that valE is a terminal valuation, hence, by [15,
Theorem 1.1], a Nash valuation.

The fact that W is the maximal divisorial set of a Nash valuation implies that W is an
irreducible component of X x

∞. By construction, the image of W in X x
m is contained in D , showing

that D is in the image ofΨx
m . This proves (1).

To conclude, we use what we just proved and the injectivity of Ψx
m established in Theorem 4

for m ≫ 1 to infer that every non-degenerate irreducible component of X x
∞ is of the form CX (E)

for some prime divisor E over X with center cX (E) = x and log discrepancy aE (X ) = 1. Conversely,
as explained above, [15, Theorem 1.1] implies that for every prime divisor E over X with center
cX (E) = x and log discrepancy aE (X ) = 1, the set CX (E) is an irreducible component of X x

∞. This
gives (2). □

We apply this result to give a solution of the Nash problem for varieties with hDV singularities.

Corollary 29. Let X be a variety with hDV singularities. For a divisorial valuation ordE on X , the
following are equivalent:

(1) ordE is a Nash valuation.
(2) ordE is a terminal valuation.
(3) E is exceptional over X and aE (X ) = 1.

Proof. The implication (3) ⇒ (2) follows by [2, Corollary 1.4.3], the implication (2) ⇒ (1) follows
by [15, Theorem 1.1], and the implication (1) ⇒ (3) follows by Theorem 28. □

This result illustrates how this class of singularities preserves some of the properties that
characterize Du Val singularities. By [2, Corollary 1.4.3], there is a terminal model Y → X
whose exceptional locus consists exactly of the divisors with log discrepancy 1 over X ; from this
perspective, this model should be regarded as the analogue of the minimal resolution of a Du Val
singularity. Needless to say, it would be interesting to further study the structure of these higher
dimensional singularities.
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8. Higher compound Du Val singularities

In this section, we look again at rational singularities of maximal embedding codimension. We
recall that these are normal, isolated, locally complete intersection singularities. A particular
example of such singularities is given by isolated compound Du Val singularities. Compound
Du Val singularities were originally introduced in dimension three in [41]. In general, they are
defined as follows.

Definition 30. We say that x ∈ X is a compound Du Val (cDV) singularity if the surface S ⊂ X cut
out by dim(X )−2 general hyperplane sections through x has a Du Val singularity at x.

The following property characterizes isolated cDV singularities (cf. [30] for an earlier result in
this direction in dimension three).

Proposition 31. Let x ∈ X be an isolated hypersurface singularity of dimension d ≥ 3. Then the
following are equivalent:

(1) x ∈ X is a cDV singularity.
(2) mldx (X ) = d −1, and for every divisor E over X computing mldx (X ) we have ordE (mx ) = 1

and E computes mldx (X , (d −2){x}).

In particular, isolated cDV singularities are normal locally complete intersection singularities of
maximal embedding codimension, according to Definition 17.

Proof. First note that if x ∈ X is a normal locally complete intersection singularity, then, by
Proposition 16, we have mldx (X ) ≤ d −1 and ordE (mx ) ≥ 1 for any divisor E over X with center x.
On the other hand, if S is cut out by d−2 general hyperplane sections through x, then mldx (S) ≤ 1,
and x ∈ S is a Du Val singularity if and only if mldx (S) = 1.

Assume (1) holds. If S is cut out by general hyperplane sections as in Definition 30, then
ordE (IS ) = ordE (mx ) for any E computing mldx (X ) and

1 = mldx (S) = mldx (X , (d −2)S) ≤ aE (X , (d −2)S) = mldx (X )− (d −2)ordE (mx )

by inversion of adjunction (Corollary 3). The properties listed in (2) follows easily from this
inequality.

Conversely, if (2) holds and E is any divisor computing mldx (X ), then we have

mldx (S) = mldx (X , (d −2)S) = aE (X , (d −2)S) = aE (X , (d −2){x}) = 1,

hence S is a Du Val singularity. Here we used again that S is cut out by general hyperplane sections
through x, hence ordE (IS ) = ordE (mx ). □

Proposition 31 implies in particular that cDV singularities are examples of rational singulari-
ties of maximal embedding codimension. However, they satisfy an additional property, namely,
the condition that for every divisor E over X computing mldx (X ) we have ordE (mx ) = 1 and E
computes mldx (X , (d −2){x}). It is not clear to us whether this condition might follow from the
definition of singularity of maximal embedding codimension.

By regarding hDV singularities as a higher dimensional version of Du Val singularities, we
extend the notion of cDV singularity in the following way.

Definition 32. We say that x ∈ X is a higher compound Du Val (hcDV) singularity if, for some
r ≥ 0, the variety Y ⊂ X cut out by r general hyperplane sections through x has a hDV singularity
at x. (Alternatively, one could call these singularities compound higher Du Val singularities.)

A straightforward adaptation of Proposition 31 gives the following property.
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Proposition 33. Let x ∈ X be an isolated locally complete intersection singularity of dimension
d ≥ 3 and embedding codimension e. Then the following are equivalent:

(1) x ∈ X is a hcDV singularity.
(2) mldx (X ) = d −e, and for every divisor E over X computing mldx (X ) we have ordE (mx ) = 1

and E computes mldx (X , (d −e −1){x}).

In particular, isolated hcDV singularities are normal locally complete intersection singularities of
maximal embedding codimension, according to Definition 17.

Theorem 34. Let x ∈ X be an isolated hcDV singularity. Then the functionΨx
m is surjective, hence

a bijection, for all m ≫ 1.

Proof. With the case of hDV singularities already settled in Theorem 28, we may assume that
mldx (X ) > 1. Let d = dim(X ) and e = ecodim(OX ,x ). Note that mldx (X ) = d − e. As in the proof
of Theorem 28, for simplicity we reduce to the case where X is embedded in A := Ad+e . Let
H :=A2e+1 ⊂ A a general linear subspace of codimension d − e −1 through x, so that Y := X ∩H
is a variety with a hDV singularity at x.

Let m be any positive integer such that:

(1) Theorem 4 holds for Y (with Σ= {x}), and
(2) for every divisor E over X computing mldx (X ), we have

d(m +1)−dim(ψX
m(CX (E))) = jet-codim(CX (E), X∞).

Note that these conditions hold for all m ≫ 1. We can guarantee (1) because there are only finitely
many divisorial valuations computing mldx (X ) since the minimal log discrepancy is positive.

Let D be an irreducible component of X x
m , and pick an irreducible component D ′ of D∩Y x

m . If
h1, . . . ,hd−e−1 are linear forms on A cutting out H , then D ∩Y x

m is cut out off D by the equations
h( j )

i = 0 for 1 ≤ i ≤ d −e −1 and 1 ≤ j ≤ m, hence

codim(D ′,D) ≤ (d −e −1)m.

If f1 = ·· · = fe = 0 are local equations of X at x in A, then X x
m is cut out in Ax

m by the equations
f ( j )

i = 0 for 1 ≤ i ≤ e and 2 ≤ j ≤ m. Here we are using that X is singular at x hence, for all i , both
fi and f ′

i vanish identically on Ax
m . This implies that

codim(D, Ax
m) ≤ e(m −1).

Since codim(H x
m , Ax

m) = (d −e −1)m, we obtain

codim(D ′, H x
m) ≤ e(m −1),

hence

codim(D ′, Hm) ≤ e(m +1)+1.

Let V ′ ⊂ H∞ the cylinder over D ′. We have

codim(V ′, H∞) ≤ e(m +1)+1.

Write ordV ′ = p ′ ordF ′ for some divisor F ′ over H and some positive integer p ′. The same
argument as in the proof of Theorem 28 implies

1 = mldx (Y ) = mldx (H ,eY ) ≤ 1

p

(
codim(V ′, H∞)−e(m +1)

)≤ 1.

This implies that p ′ = 1, V ′ = CH (F ′), and F ′ computes mldx (H ,eY ). If W ′ ⊂ Y∞ is any non-
degenerate irreducible component of V ′ ∩ Y∞, then the argument also shows that W ′ is an
irreducible component of Y x

∞ and it is equal to CY (E ′) for some divisor E ′ over Y with aE ′ (Y ) = 1.
Furthermore, the argument implies that all inequalities above are equalities.
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In particular, if V ⊂ A∞ is the cylinder over D then

codim(V , A∞) = em +d .

Writing ordV = p ordF for some divisor F over A and arguing again as in the proof of Theorem 28
(using now that, by Proposition 33, mldx (A,e X ) = d−e), we conclude that V =CX (F ) where F is a
divisor over A computing mldx (A, X ). Moreover, there is an irreducible component W of V ∩X∞
that is not contained in (Sing X )∞, and this component is of the form W = CX (E) for a divisor E
over X computing mldx (X ).

By construction,
ψX

m(W ) ⊂ D.

We do not know, however, that W is an irreducible component of X x
∞. Note that we cannot

apply [15] as we did in the proof of Theorem 28 (and, above, for W ′) since now E does not define
a terminal valuation over X . The claim is that Z ⊂ X x

∞ is any irreducible component containing
W , then

ψX
m(Z ) ⊂ D.

This is all we need to conclude that D is in the image ofΨx
m .

To prove the claim, we proceed as follows. First, note that W ′ ⊂ W ∩Y∞. As discussed above,
we have W =CX (E) and W ′ =CS (E ′) where E and E ′ are divisors over X and S, respectively, with
center x and log discrepancies aE (X ) = d −e and aE ′ (X ) = 1. In particular,

aE ′ (X ) = aE (X )− (d −e −1).

Since X and S are locally complete intersections at x, we have

aE (X ) = âE (X )−ordE (JacX ),

aE ′ (Y ) = âE ′ (Y )−ordE ′ (JacY )

by [14, Corollary 3.5]. By Teissier’s Idealistic Bertini Theorem [43, 2.15 Corollary 3], we have
JacY = JacX|Y (the bar denoting integral closure), hence it follows by the inclusion W ′ ⊂ W ∩Y∞
that

ordE ′ (JacY ) ≥ ordE (JacX ).

Combining these formulas, we see that

âE ′ (Y ) ≥ âE (X )− (d −e −1).

By [16] and the assumption (2) on our choice of m, we have

âE (X ) = d(m +1)−dim
(
ψX

m(W )
)
,

âE ′ (Y ) ≤ (e +1)(m +1)−dim
(
ψY

m(W ′)
)
.

Using the previous inequality, we get

dim
(
ψY

m(W ′)
)≤ dim

(
ψX

m(W )
)− (d −e −1)n.

Observe that ψY
m(W ′) is contained in ψX

m(W ) ∩ Y x
m , which is cut out from ψX

m(W ) by the
equations h( j )

i = 0 for 1 ≤ i ≤ d − e − 1 and 1 ≤ j ≤ m. Here we are using that the polynomials
hi already vanish on X x

m , hence on ψX
m(W ). It follows that

dim
(
ψY

m(W ′)
)= dim

(
ψX

m(W )
)− (d −e −1)m,

and the h( j )
i form a regular sequence at the generic point of ψY

m(W ′).
Now, let Z be an irreducible component of X x

∞ containing W , and assume by contradiction
that ψX

m(Z ) ̸⊂ D . Then ψX
m(Z ) must be contained in another irreducible component of X x

m . In
particular, if D̃ denote the union of all irreducible components of X x

m containing ψY
m(W ′) and

different from D , then
ψY

m(W ′) ⊂ D ∩ D̃ .
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Note that (D ∪ D̃)∩Y x
m is the union of the irreducible components of Y x

m containing ψY
m(W ′).

Since the elements h( j )
i form a regular sequence at each generic point of D∩D̃ and cut out Y x

m on
X x

m , it follows that (D∪D̃)∩Y x
m must be reducible. This means that ψY

m(W ′) is contained in more
than one irreducible component of Y x

m , contradicting Theorem 4, which is supposed to holds for
Y by our assumption (1) on m.

We conclude that ψX
m(Z ) ⊂ D , as claimed. This finishes the proof of the theorem. □

9. The graph generated by families of jets

Following [6, 34, 35], to any variety X we associate a directed graph ΓX as follows.

Definition 35. Given a variety X , let ΓX be the directed graph whose vertices corresponds to the
irreducible components of X Sing X

m for m ≥ 0; an edge is drawn from a vertex v to a vertex v ′

whenever v and v ′ correspond, respectively, to irreducible components D ⊂ X Sing X
m and D ′ ⊂ X Sing X

m+1
with πm+1,m(D ′) ⊂ D. We say that a vertex v has order m, and write ord(v) = m, if v corresponds
to an irreducible component of X Sing X

m . The orientation is defined by the order of the vertices. For
every m, we denote by Γ≥m

X and Γ≤m
X the subgraphs of ΓX obtained by removing all vertices of order

< m, respectively, > m. We call the root of ΓX the set of vertices of order zero. For any vertex v of ΓX ,
the branch of ΓX stemming from v is the subgraph Γ≥v

X obtained by removing all vertices that are
not reachable by v.

By construction ΓX is a directed acyclic graph, that is, a directed graph with no directed
cycles. Due to the finiteness of the irreducible components of X Sing X

m , this graph has finitely
many vertices of any given order. In particular, Γ≤m

X is finite for every m.

Corollary 36. Let X be a variety with isolated hcDV singularities, and let ΓX be the associated
graph.

(1) (Root). The root of ΓX is in natural bijection with the singular points of X . Each root in
contained in a distinct connected component of ΓX .

(2) (Finite branches). There are no finite branches in ΓX beyond a certain order. That is,
there is an integer m0 such that for every vertex v of ΓX of order ord(v) ≥ m0 and every
m ≥ ord(v), there exists a vertex u of order m that is reachable by v.

(3) (Infinite branches). The infinite branches of ΓX are in bijection with the Nash valuations
on X . More precisely, for m ≫ 1, the subgraph Γ≥m

X ⊂ ΓX is a disjoint union of infinite
chains whose vertices have increasing orders m,m +1,m +2, . . . . The number of chains is
the number of Nash valuations on X , and each chain is in natural correspondence with a
distinct Nash valuation.

In particular, for m ≥ 1 the number of irreducible components of X Sing X
m is equal to the number of

irreducible components of X Sing X
∞ , and the functionΨSing X

m is a bijection.

Proof. Property (1) is clear since the vertices in the root of ΓX corresponds to the singular points
of X , viewed as 0-jets on X . Properties (2) and (3) follow from Theorems 4 and 34, which establish
that ΨSing X

m is a bijection for m ≫ 1. The correspondence is defined by associating to each chain
of Γ≥m

X the unique irreducible component C of X Sing X
∞ such that for n ≥ m its image ψn(C ) is

contained in the irreducible component of X Sing X
n corresponding to the vertex of order n in the

given chain.
Implicit in these arguments is the compatibility of the functions ΨSing X

m as m varies. Specif-
ically, in the range of application of Theorem 4, if D = Φ

Sing X
m (C ) and D ′ = Φ

Sing X
m+1 (C ), then it

follows by the geometric definition of these functions and their injectivity that πm+1,m(D ′) ⊂ D ,
hence the corresponding vertices v and v ′ are joined by an edge. □
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Remark 37. Regarding part (2) of Corollary 36, we should remark that bounded branching of
arbitrary large order does occur for other singularities (e.g., see [6, 35]). As for (3), one can
visualize the correspondence as attaching one vertex at the end of each chain, with such vertex
corresponding to the Nash component. Thinking of the chain as consisting of the integers on
[m,∞), with the intervals [n,n + 1] representing the edges, this is the same as adding ∞ to get
[m,∞]. Note that this extension ofΓX is not a graph, since we want to see its geometric realization
as a connected set but there is no edge ending at ∞.
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1. Introduction

1.1. The Miyaoka–Yau inequality for projective manifolds

Let X be an n-dimensional complex-projective manifold and let D be any divisor on X . Recall
that X is said to “satisfy the Miyaoka–Yau inequality for D” if the following Chern class inequality
holds, (

2(n +1) · c2(X )−n · c1(X )2) · [D]n−2 ≥ 0.

It is a classic fact that n-dimensional projective manifolds X whose canonical bundles are
ample or trivial satisfy Miyaoka–Yau inequalities. In case of equality, the universal covers are
of particularly simple form.

Theorem 1 (Ball quotients and hyperelliptic varieties). Let X be an n-dimensional complex
projective manifold.

• If KX is ample, then X satisfies the Miyaoka–Yau inequality for KX . In case of equality, the
universal cover of X is the unit the ball Bn .

• If KX is trivial and D is any ample divisor, then X satisfies the Miyaoka–Yau inequality for
D. In case of equality, the universal cover of X is the affine space Cn .

We refer the reader to [24] for a full discussion and references to the original literature.
In the Fano case, where −KX is ample, the situation is more complicated, due to the fact

that the tangent bundle TX and the canonical extension EX need not be semistable1. If EX is
semistable, then analogous results hold, see [21, Thm. 1.3], as well as further references given
there.

Theorem 2 (Projective space). Let X be an n-dimensional projective manifold. If −KX is ample
and if the canonical extension is semistable with respect to −KX , then X satisfies the Miyaoka–Yau
inequality for −KX . In case of equality, X is isomorphic to the projective space Pn .

In each of the three settings, the equality cases are characterized topologically: if M is any
projective manifold homeomorphic to a ball quotient, a finite étale quotient of an Abelian variety
or the projective space, then M itself is biholomorphic to a ball quotient, to a finite étale quotient
of an Abelian variety, or to the projective space. For ball quotients, this is a theorem of Siu [40].
The torus case is due to Catanese [6], whereas the Fano case is due to Hirzebruch–Kodaira [27]
and Yau [44].

1.2. Spaces with MMP singularities

In general, it is rarely the case that the canonical bundle of a projective variety has a definite
“sign”. Minimal model theory offers a solution to this problem, at the expense of introducing
singularities. It is therefore natural to extend our study from projective manifolds to projective
varieties with Kawamata log terminal (= klt) singularities. For klt varieties whose canonical
sheaves are ample, trivial or negative, analogues of Theorems 1 and 2 have been found in the last
few years. We refer the reader to [23, Thm. 1.5] for a characterization of singular ball quotients
among projective varieties with klt singularities (see Definition 8 for the notion of singular ball
quotients). Characterizations of torus quotients and quotients of the projective space can be
found in [33], [20, Thm. 1.2] and [21, Thm. 1.3]. In each case, we find it striking that the Chern
class equalities imply that the underlying space has no worse than quotient singularities.

1Recall that the canonical extension EX is defined as the middle term of the exact sequence 0 →OX → EX →TX → 0
whose extension class equals c1(X ) ∈ H1(

X ,Ω1
X

)
.
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1.3. Main results of this paper

This paper asks whether the topological characterizations of ball quotients, Abelian varieties
and the projective spaces have analogues in the klt settings. Section 2 establishes a topological
characterization of singular ball quotients. The main result of this section, Theorem 10, can be
seen as a direct analogue of Siu’s rigidity theorems.

Theorem 3 (Rigidity in the klt setting, see Theorem 10). Let X be a singular quotient of
an irreducible bounded symmetric domain and let M be a normal projective variety that is
homeomorphic to X . If dim X ≥ 2, then, M is biholomorphic or conjugate-biholomorphic to X .

Using somewhat different methods, Section 3 generalizes Catanese’s result to the klt setting.

Theorem 4 (Varieties homeomorphic to torus quotients, see Theorem 18). Let M be a compact
complex space with klt singularities. Assume that M is bimeromorphic to a Kähler manifold. If M
is homeomorphic to a singular torus quotient, then M is a singular torus quotient.

In both cases, we find that certain Chern classes equalities are invariant under homeomor-
phisms.

Varieties homeomorphic to projective spaces are harder to investigate. Section 4 gives a full
topological characterization of P3, but cannot fully solve the characterization problem in higher
dimensions.

Theorem 5 (TopologicalP3, see Theorem 40). Let X be a projective klt variety that is homeomor-
phic to P3. Then, X ∼=P3.

However, we present some partial results that severely restrict the geometry of potential exotic
varieties homeomorphic to Pn . These allow us to show the following.

Theorem 6 (Q-Fanos in dimension 4 and 5, see Theorem 41). Let X be a projective klt variety
that is homeomorphic to Pn with n = 4 or n = 5. Then, X ∼=Pn , unless KX is ample.

Dedication

We dedicate this paper to the memory of Jean-Pierre Demailly. His passing is a tremendous loss
to the mathematical community and to all who knew him.

Greb
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was a revelation for me, as it connected the classical concepts of Complex Analysis with those
of modern Complex Differential Geometry and Algebraic Geometry. This greatly shaped my
mathematical interests and still influences me today. When I later got to know him during several
“Komplexe Analysis” Oberwolfach meetings, I was deeply impressed by his vast knowledge of
the field that he shared generously and in his kind and gentle manner, especially with younger
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Kebekus
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mathematical concepts accessible, and I cherished our discussions on a wide range of topics,
from free software to the intricacies of French labour laws2.
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Since the late 1980s I had an invaluable close scientific and personal contact with Jean-Pierre,
with various mutual joint visits in Bayreuth and Grenoble. I will always commemorate Jean-
Pierre’s scientific wisdom and his great personality.
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After finishing the paper we were informed by Haidong Liu that, using the recent preprint
“Kawamata–Miyaoka type inequality for canonical Q-Fano varieties” [31], instead of Ou’s result
cited in Proposition 4.19, Theorem 4.21 can be shown to hold also in dimensions 6 and 7.

2. Mostow Rigidity for singular quotients of symmetric domains

Consider a compact Kähler manifold X whose universal cover is a bounded symmetric domain.
Siu has shown in [40, Thm. 4] and [41, Main Theorem] that any compact Kähler manifold M which
is homotopy equivalent to X is biholomorphic or conjugate-biholomorphic3 to X . We show an
analogous result for homeomorphisms between singular varieties M and X . The following notion
will be used.

Definition 7 (Quasi-étale cover). A finite, surjective morphism between normal, irreducible
complex spaces is called quasi-étale cover if it is unbranched in codimension one.

Definition 8 (Singular quotient of bounded symmetric domtain). Let Ω be an irreducible
bounded symmetric domain. A normal projective variety X is called a singular quotient of Ω if
there exists a quasi-étale cover X̂ → X , where X̂ is a smooth variety whose universal cover is Ω.

Remark 9 (Singular quotients are quotients). Let X be a singular quotient of an irreducible
bounded symmetric domainΩ. Passing to a suitable Galois closure, one finds a quasi-étale Galois
cover X̂ → X , where X̂ is a smooth variety whose universal cover is Ω. In particular, it follows
that X is a quotient variety and that it has quotient singularities. Moreover, it can be shown as
in [22, §9] that X is actually a quotient ofΩ by the fundamental group of Xreg, which acts properly
discontinously on Ω. In addition, the action is free in codimension one.

Theorem 10 (Mostow rigidity in the klt setting). Let X be a singular quotient of an irreducible
bounded symmetric domain and let M be a normal projective variety that is homeomorphic to X .
If dim X ≥ 2, then, M is biholomorphic or conjugate-biholomorphic to X .

Remark 11 (Varieties conjugate-biholomorphic to ball quotients). We are particularly inter-
ested in the case where the bounded symmetric domain of Theorem 10 is the unit ball. For this,
observe that the set of (singular) ball quotients is invariant under conjugation. It follows that if
the variety M of Theorem 10 is biholomorphic or conjugate-biholomorphic to a (singular) ball
quotient X , then M is itself a (singular) ball quotient.

2Solidarity strike = no food on campus because train drivers demand better working conditions
3See also [7, §7] and [1, Chapt. 5 and 6] as general references for the main ideas behind Siu’s results and for related

topics.
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Before proving Theorem 10 in Sections 2.1–2.3 below, we note a first application: the Miyaoka–
Yau Equality is a topological property. The symbols ĉ•(X ) in Corollary 12 are theQ-Chern classes
of the klt space X , as defined and discussed for instance [22, §3.7].

Corollary 12 (Topological invariance of the Miyaoka–Yau equality). Let X be a projective klt
variety with KX ample. Assume that the Miyaoka–Yau equality holds:

(
2(n +1) · ĉ2(TX )−n · ĉ1(TX )2) · [KX ]n−2 = 0.

Let M be a normal projective variety homeomorphic to X . Then M is klt, KM is ample and
(
2(n +1) · ĉ2(TM )−n · ĉ1(TM )2) · [KM ]n−2 = 0.

Proof. Since the Miyaoka–Yau Equality holds on X , there is a quasi-étale cover X̃ → X such that
the universal cover of X̃ is the ball, [22]. By Theorem 10, there is a quasi-étale cover M̃ → M
such that M̃ ∼= X̃ biholomorphically or conjugate-biholomorphically. Hence, the universal cover
of M̃ is the ball. It follows that M is klt, KM is ample, and that the Miyaoka–Yau Equality holds
on M . □

2.1. Preparation for the proof of Theorem 10

The following lemma of independent interest might be well-known. We include a full proof for
lack of a good reference.

Lemma 13. Let X be a normal complex space. Then, the set Xsing,top ⊂ X of topological singulari-
ties is a complex-analytic set.

Proof. Recall from [16, Thm. on p. 43] that X admits a Whitney stratification where all strata
are locally closed complex-analytic submanifolds of X . Recall from [32, Chapt. IV.8] that the
closures of the strata are complex-analytic subsets of X . Since Whitney stratifications are locally
topologically trivial along the strata4, it follows that Xsing,top is locally the union of finitely many
strata. The additional observation that the set of topologically smooth points, X \Xsing,top, is open
in the Euclidean topology implies that Xsing,top is locally the union of the closures of finitely many
strata, hence analytic. □

2.2. Proof of Theorem 10 if X is smooth

We maintain the notation of Theorem 10 in this section and assume additionally that X is
smooth. To begin, fix a homeomorphism f : M → X and choose a resolution of singularities,
say π : M̃ → M . The composed map g = f ◦π is continuous and induces an isomorphism

g∗ : H2n
(
M̃ , Z

)→ H2n
(
X , Z

)
. (1)

Hence, by Siu’s general rigidity result [40, Thm. 6] in combination with the curvature compu-
tations for the classical, respectively exceptional Hermitian symmetric domains done in [40, 41],
the continuous map g is homotopic to a holomorphic or conjugate-holomorphic map g̃ : M̃ → X .
Replacing the complex structure on X by the conjugate complex structure, if necessary, we may
assume without loss of generality that g̃ is holomorphic and hence in particular algebraic. The
isomorphism (1) maps the fundamental class of M̃ to the fundamental class of X , and g̃ is hence
birational.

We claim that the bimeromorphic morphism g̃ factors via π. To begin, observe that since g
contracts the fibres of π and since g̃ is homotopic to g , the map g̃ contracts the fibres of π as well.

4See [16, Part I, §1.4] for a detailed discussion.
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In fact, given any curve C̃ ⊂ M̃ with π(C̃ ) a point, consider its fundamental class [C̃ ] ∈ H2
(
M̃ , R

)
.

By assumption, we find that

g̃∗
(
[C̃ ]

)= g∗
(
[C̃ ]

)= 0 ∈ H2
(
X , R

)
.

Given that X is projective, this is only possible if g̃ (C̃ ) is a point. Since M is normal and since g̃
contracts the (connected) fibres of the resolution map π, we obtain the desired factorisation of g̃ ,
as follows

M̃ M X .π

g̃

∃! f̃

We claim that the birational map f̃ is biholomorphic.5 By Zariski’s Main Theorem, [25,
V Thm. 5.2], it suffices to verify that it does not contract any curve C ⊂ M . Aiming for a
contradiction, assume that there exists a curve C̃ ⊂ M̃ whose image C := π(C̃ ) is a curve in M ,
while g̃ (C̃ ) = f̃ (C ) = (∗) is a point in X . Let d > 0 be the degree of the restricted map π|C̃ : C̃ →C .
Then, on the one hand,

f∗
(
d · [C ]

)= f∗
(
π∗[C̃ ]

)= g∗[C̃ ] = g̃∗[C̃ ] = 0 ∈ H2
(
X , R

)
.

On the other hand, projectivity of M implies that d · [C ] is a non-trivial element of H2
(
M , R

)
,

which therefore must be mapped to a non-trivial element of H2
(
X , R

)
, since f is assumed to be a

homeomorphism. This finishes the proof of Theorem 10 in the case where X is smooth.

2.3. Proof of Theorem 10 in general

Maintain the setting of Theorem 10.

Step 1: Setup

By assumption, there exists a bounded symmetric domain Ω and a quasi-étale cover τX :
X̂ → X such that the universal cover of X̂ is Ω. Choose a homeomorphism f : M → X and let
M̂ := X̂ ×X M be the topological fibre product. The situation is summarized in the following
commutative diagram,

M̂ M

X̂ X ,

τM

≃ f≃

τX , quasi-étale

(2)

in which the vertical maps are homeomorphisms and the horizontal maps are surjective with
finite fibres.

Step 2: A complex structure on M̂

The spaces M , X̂ and X all carry complex structures. We aim to equip M̂ with a structure so
that all horizontal arrows in (2) become holomorphic.

Claim 14. There exists a normal complex structure on M̂ that makes τM a finite, holomorphic,
and quasi-étale cover.

Proof of Claim 14. Let X0 be the smooth locus of X , set M0 := f −1(X0) and M̂0 := τ−1
M (M0). The

map τM |M̂0
being a local homeomorphism, there is a uniquely determined complex structure on

M̂0 such that τM |M̂0
: M̂0 → M0 is a finite holomorphic cover. Since X has quotient singularities,

5Cf. [7, Rem. 86(2)]
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the topological and holomorphic singularities agree, Xsing,top = Xsing. Hence, f being a homeo-
morphism, we note that

Msing,top = f −1 (
Xsing

)
and M \ M0 = Msing,top.

We have seen in Lemma 13 that Msing,top is an analytic set. Therefore, by [9, Thm. 3.4] and [42,
Satz 1], the complex structure on M̂0 uniquely extends to a normal complex structure on the
topological manifold M̂ , making τM holomorphic and finite. The branch locus of τM has the
same topological dimension as the branch locus of τX , so that τM is quasi-étale, as claimed. □

Note that as a finite cover of the projective variety M , the normal complex space M̂ is again
projective.

Step 3: M̂ as a quotient of Ω

The homeomorphic varieties X̂ and M̂ reproduce the assumptions of Theorem 10. The partial
results of Section 2.2 therefore apply to show that the complex spaces M̂ and X̂ are biholomorphic
or conjugate-biholomorphic. Replacing the complex structures on M and M̂ by their conjugates,
if necessary, we assume without loss of generality for the remainder of this proof that M̂ and X̂
are biholomorphic. This has two consequences.

(1) The projective variety M̂ is smooth. The universal cover of M̂ is biholomorphic to Ω.
(2) Its quotient M is a singular quotient of Ω and has only quotient singularities.

Recalling that quotient singularities are not topologically smooth, Item (2) implies that the
homeomorphism f : M → X restricts to a homeomorphism between the smooth loci, Xreg and
Mreg. The situation is summarized in the following commutative diagram,

Ω M̂ M Mreg

Ω X̂ X Xreg,

uX , univ. cover

≃

τM , quasi-étale

≃ f≃

inclusion

f |Xreg≃

uM , univ. cover τX , quasi-étale inclusion

where all horizontal maps are holomorphic, and all vertical maps are homeomorphic.
The description of M as a singular quotient of Ω can be made precise. The argument in [22,

§9.1] shows that the fundamental groupπ1(Mreg) acts properly discontinously onΩwith quotient
M . In particular, we have an injective homomorphism from π1(Mreg) into the holomorphic
automorphism group Aut(Ω) of Ω, with image a discrete cocompact subgroup ΓM ⊆ Aut(Ω).

The same reasoning also applies to X and presents X as a quotient X = Ω/π1(Xreg), where
π1(Xreg) again acts via an injective homomorphism π1(Xreg) ,→ Aut(Ω), with image a cocompact,
discrete subgroup ΓX of Aut(Ω).

As we have seen above, f induces a homeomorphism from Mreg to Xred, from which we obtain
an abstract group isomorphism θ : ΓM → ΓX .

Step 4: End of proof

In the remainder of the proof we will show that not only M̂ and X̂ are (conjugate-)-
biholomorphic, but that this actually holds for M and X . This will be a consequence of Mostow’s
rigidity theorem for lattices in connected semisimple real Lie groups. As the groups appearing in
our situation are not necessarily connected, we have to do some work to reduce to the connected
case6.

Given that Ω is an irreducible Hermitian symmetric domain of dimension greater than one,
the identity component Aut◦(Ω) ⊆ Aut(Ω) coincides with the identity component I ◦(Ω) of the

6Alternatively, one could trace the finite group actions through the proof of the results used in Section 2.2.
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isometry group I (Ω) of the Riemannian symmetric space Ω, [26, VIII.Lem. 4.3]7, which is a non-
compact simple Lie group without non-trivial proper compact normal subgroups and with trivial
centre, [10, Prop. 2.1.1 and bottom of p. 379]. We also note that a Bergman-metric argument
shows that Aut(Ω) is contained in I (Ω). Furthermore, both Lie groups have only finitely many
connected components.

Claim 15. There exists an isometry F ∈ I (Ω) such that

F ◦γ= θ(γ)◦F, for every γ ∈ ΓM . (3)

Proof of Claim 15. If the rank of Ω is equal to one, then Ω ∼= Bn , the unit ball in Bn , see [26,
§X.6.3/4]. Consequently, the group Aut(Ω) is connected, and we may apply [34, Thm. A′ on p. 4]
to obtain an automorphism of real Lie groups, Θ : Aut(Ω) → Aut(Ω) such that Θ|ΓM = θ. The
desired isometry is then produced by an application of [10, Prop. 3.9.11].

We consider the case rank(Ω) ≥ 2 for the remainder of the present proof, where the automor-
phism group may be non-connected. To deal with this slight difficulty, we proceed as in [10,
p. 379]: as Aut(Ω) has finitely many connected components, we may assume that the subgroups
ΓM̂ ⊆ ΓM and ΓX̂ ⊆ ΓX corresponding to the deck transformation groups of uM and uX , respec-
tively, are contained in the identity component I ◦(Ω) = Aut◦(Ω). Again, apply [34, Thm. A′ on
p. 4] to obtain an automorphism of real Lie groups Θ : I ◦(Ω) → I ◦(Ω) such that Θ|ΓM̂

= θ|ΓM̂
and

then [10, Prop. 3.9.11] to obtain an isometry F ∈ I (Ω) such that

F ◦ g =Θ(g )◦F, for every g ∈ I ◦(Ω).

This in particular yields (3) for all γ contained in the finite index subgroup ΓM̂ of ΓM . This is not
yet enough.

However, noticing that for any finite index subgroup Γ′M < ΓM , every Γ′M -periodic vector in the
sense of [10, Def. 4.5.13] by definition is also ΓM -periodic, we see with the argument given in [10,
p. 379], which uses essentially the same notation as we have introduced here, that the set of ΓM -
periodic vectors is dense in the unit sphere bundle SΩ of Ω. The subsequent argument in [10,
bottom of p. 379 and upper part of p. 380] then applies verbatim to yield the desired relation (3)
for all γ ∈ ΓM ; this is [10, equation (5) on p. 380]. □

Now, since the Hermitian symmetric domainΩ is assumed to be irreducible, the Γ-equivariant
isometry F ∈ I (Ω) is either holomorphic or conjugate-holomorphic, as follows for example
from [5] together with [26, VIII.Prop. 4.2]. By the universal property of the quotient map π with
respect to Γ-invariant holomorphic maps, F hence descends to a holomorphic or conjugate-
holomorphic isomorphism from M to X . This completes the proof of Theorem 10.

3. Topological characterization of torus quotients

In line with the results of Section 2, we show that a Kähler space with klt singularities is a singular
torus quotient if and only if it is homeomorphic to a singular torus quotient. In the smooth
case, this was shown by Catanese [6], but see also [3, Thm. 2.2]. The following notion is a direct
analogue of Definition 8 above.

Definition 16 (Singular torus quotient). A normal complex space X is called a singular torus
quotient if there exists a quasi-étale cover X̂ → X , where X̂ is a compact complex torus.

Remark 17 (Singular torus quotients are quotients). Let X be a singular torus quotient. Passing
to a suitable Galois closure, one finds a quasi-étale Galois cover X̂ → X , where X̂ is a compact
torus.

7As Ω is irreducible, the compatible Riemannian metric on Ω is unique up to a positive real multiple that does not
change the isometry group.
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Theorem 18 (Varieties homeomorphic to torus quotients). Let M be a compact complex space
with klt singularities. Assume that M is bimeromorphic to a Kähler manifold. If M is homeomor-
phic to a singular torus quotient, then M is a singular torus quotient.

Theorem 18 will be shown in Sections 3.1–3.2 below. In analogy to Corollary 12 above, we note
that vanishing of Q-Chern classes is a topological property among compact Kähler spaces with
klt singularities.

Corollary 19 (Topological invariance of vanishing Chern classes). Let X be a compact Kähler
space with klt singularities. Assume that the canonical class vanishes numerically, KX ≡ 0, and
that the secondQ-Chern class of TX satisfies

ĉ2(TX ) ·α1 . . .αdim X−2 = 0,

for every (dim X − 2)-tuple of Kähler classes on X . If M is any compact Kähler space with klt
singularities that is homeomorphic to X , then KM ≡ 0, and the secondQ-Chern class of TM satisfies

ĉ2(TM ) ·β1 . . .βdim M−2 = 0,

for every (dim X −2)-tuple of Kähler classes on M.

Proof. The characterization of singular torus quotients in terms of Chern classes by Claudon,
Graf and Guenancia, [8, Cor. 1.7], guarantees that X is a torus quotient8. By Theorem 18, then so
is M . □

3.1. Proof of Theorem 18 if M is homeomorphic to a torus

As before, we prove Theorem 18 first in case where the (potentially singular) space M is home-
omorphic to a torus. Recalling that klt singularities are rational, see [30, Thm. 5.22] for the al-
gebraic case and [11, Thm. 3.12] (together with the vanishing theorems proven in [12]) for the
analytic case, we show the following, slightly stronger statement.

Proposition 20. Let M be a compact complex space with rational singularities. Assume that M is
bimeromorphic to a Kähler manifold. If M is homotopy equivalent to a compact torus, then M is a
compact torus.

Proof. We follow the arguments of Catanese, [6, Thm. 4.8], and choose a resolution of singular-
ities, π : M̃ → M , which owing to the assumptions on M we may assume to be a compact Kähler
manifold. Using the assumption that M has rational singularities together with the push-forward
of the exponential sequence, we observe that the pull-back map H 1

(
M , Z

)→ H 1
(
M̃ , Z

)
is an iso-

morphism. In particular, first Betti numbers of M and M̃ agree. As a next step, consider the Al-
banese map of M̃ , observing that M̃ is bimeromorphic to a Kähler manifold since M is. Again
using that M has rational singularities, recall from [38, Prop. 2.3] that the Albanese factors via M ,

M̃ Alb.

M

alb

π, resolution
α

Since the pull-back morphisms

alb∗ = π∗ ◦α∗ : H 1
(
Alb, Z

) → H 1
(
M̃ , Z

)

π∗ : H 1
(
M , Z

) → H 1
(
M̃ , Z

)

8See [33, Thm. 1.2] for the projective case and see [19, Thm. 1.17] for the case where X is projective and smooth in
codimension two.
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are both isomorphic, we find that α∗ : H 1
(
Alb, Z

)→ H 1
(
M , Z

)
must likewise be an isomorphism.

There is more that we can say. Since the topological cohomology ring of a torus is an exterior
algebra,

H∗(
Alb, Z

)=∧∗H 1(Alb, Z
)

and H∗(
M , Z

)=∧∗H 1(M , Z
)
,

we find that all pull-back morphisms are isomorphisms,

α∗ : H q (
Alb, Z

) ∼=−→ H q (
M , Z

)
, for every 0 ≤ q ≤ 2 ·dim M .

Applying this to q = 2 ·dim M , we see α is surjective of degree one, hence birational. Again, more
is true: if α failed to be isomorphic, Zariski’s Main Theorem would guarantee that α contracts a
positive-dimensional subvariety, so b2(M) > b2(Alb). But we have seen above that equality holds
and hence reached a contradiction. □

3.2. Proof of Theorem 18 in general

By assumption, there exists a homeomorphism f : M → X , where X is a singular torus quotient.
Choose a quasi-étale cover τX : X̂ → X , where X̂ is a complex torus, and proceed as in the proof of
Theorem 10, in order to construct a diagram of continuous mappings between normal complex
spaces,

M̂ M

X̂ X ,

τM , quasi-étale

∼= f∼=

τX , quasi-étale

where

• the vertical maps are homeomorphisms, and
• the horizontal maps are holomorphic, surjective, and finite.

Since M is bimeromorphic to a Kähler manifold, so is M̂ . Recalling from [30, Prop. 5.20] that also
M̂ has no worse than klt singularities, Proposition 20 will then guarantee that M̂ is a complex
torus, as claimed.

4. Rigidity results for projective spaces

Recall the classical theorem of Hirzebruch–Kodaira, which asserts that the projective space
carries a unique structure as a Kähler manifold.

Theorem 21 (Rigidity of the projective space, [27, p. 367]). Let X be a compact Kähler manifold.
If X is homeomorphic to Pn , then X is biholomorphic to Pn .

Remark 22. Strictly speaking, Hirzebruch–Kodaira proved a somewhat weaker result: X is
biholomorphic toPn if either n is odd, or if n is even and c1(X ) ̸= −(n+1)·g , where g is a generator
of H 2

(
X , Z

)
and the fundamental class of a Kähler metric on X . The second case was later ruled

out by Yau’s solution to the Calabi conjecture, which implies that then the universal cover of X is
the ball, contradicting π1(X ) = 0.

Since the topological invariance of the Pontrjagin classes, [35], was not known at that time,
Hirzebruch–Kodaira also had to assume that X is diffeomorphic to Pn rather than merely home-
omorphic.

We ask whether an analogue of Hirzebruch–Kodaira’s theorem remains true in the context of
minimal model theory.

Question 23. Let X be a projective variety with klt singularities. Assume that X is homeomorphic
to Pn . Is X then biholomorphic to Pn?
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4.1. Varieties homeomorphic to projective space

We do not have a full answer to Question 23. The following proposition will, however, restrict
the geometry of potential varieties substantially. It will later be used to answer Question 23 in a
number of special settings.

Proposition 24 (Varieties homeomorphic to Pn ). Let X be a projective klt variety. If X is
homeomorphic to Pn , then the following holds.

(1) We have H q
(
X , OX

)= 0 for every 1 ≤ q.
(2) The Chern class map c1 : Pic(X ) → H 2(X ,Z) ∼=Z is an isomorphism.
(3) The variety X is smooth in codimension two.
(4) The maps rq : H q

(
X , Z

) → H q
(
Xreg, Z

)
are isomorphic, for every 0 ≤ q ≤ 4. The same

statement holds for Z2 coefficients.
(5) Every Weil divisor on X is Cartier, i.e., X is factorial. In particular, X is Gorenstein.
(6) The canonical divisor KX is ample or anti-ample.

Proof. We prove the items of Proposition 24 separately.

Item (1). This is a consequence of the rationality of the singularities of X and the isomorphisms
H q

(
X , C

)≃ H q
(
Pn , C

)
. In fact, since X has rational singularities, the morphisms

ϕq : H q (
X , C

)→ H q (
X , OX

)

induced by the canonical inclusionC→OX , are surjective, [29, Thm. 12.3]. If q is odd, this already
implies that H q (X ,OX ) = 0. If q is even, it suffices to note that ϕq has a non-trivial kernel. For
this, choose an ample line bundle L ∈ Pic(X ) and observe that

ϕq
(
c1(L )q/2)= 0 ∈ H q (

X , OX
)
.

To prove the observation, pass to a desingularisation and use the Hodge decomposition there.

Item (2). The description of c1 follows from (1) and the exponential sequence.

Item (3). Recall that klt varieties have quotient singularities in codimension two, [18, Prop. 9.3].
Smoothness follows because quotient singularities have non-trivial local fundamental groups
and are hence not topologically smooth.

Item (4). We describe the relevant cohomology groups in terms of Borel-Moore homology, [4],
and also refer to the reader to [15, §19.1] for a summary of the relevant facts (over Z). The
assumption that X is homeomorphic to an oriented, connected, real manifold implies that
singular cohomology and Borel-Moore homology agree, [4, Thm. 7.6] and [15, p. 371]. The same
holds for the non-compact manifold Xreg, i.e., for R =Z,Z2 we have

H q (
X , R

)= H B M
2·n−q

(
X , R

)
and H q (

Xreg, R
)= H B M

2·n−q

(
Xreg, R

)
, for every q.

The isomorphisms identify the restriction maps rq with the pull-back maps for Borel-Moore
homology. These feature in the localization sequence for Borel-Moore homology, [4, Thm.3.8],

· · ·→ H B M
2·n−q

(
Xsing, R

)→ H B M
2·n−q

(
X , R

) rq−→ H B M
2·n−q

(
Xreg, R

)→ H B M
2·n−q−1

(
Xsing, R

)→ . . .

Recalling from [15, Lem. 19.1.1] that H B M
i

(
Xsing, Z

) = 0 for every i > 2 ·dimC Xsing and noticing
that the inductive argument employed in the proof also works for Z2-coefficients, the claim of
Item (4) thus follows from smoothness in codimension two, Item (3).
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Item (5). Remaining in the analytic category, writing down the exponential sequences for X and
Xreg,

H 1
(
X , Z

)
H 1

(
X , OX

)
Pic(X ) H 2

(
X , Z

)
H 2

(
X , OX

)

H 1
(
Xreg, Z

)
H 1

(
Xreg, OXreg

)
Pic

(
Xreg

)
H 2

(
Xreg, Z

)
H 2

(
Xreg, OXreg

)
,

r1

c1

r2

c1

and filling in what we already know, we find a commutative diagram with exact rows, as follows,

0 0 Pic(X ) H 2
(
X , Z

)
0

0 H 1
(
Xreg, OXreg

)
Pic(Xreg) H 2

(
Xreg, Z

)
0.

c1, iso.

r2, iso.

c1

The snake lemma now asserts that

H 1(Xreg, OXreg

)∼= Pic(Xreg)
/

Pic(X ). (4)

We claim that H 1
(
Xreg, OXreg

)
vanishes. For this, recall that the singularities of X are rational, so

every local ring OX ,x of the (holomorphic) structure sheaf has depth equal to n. Since the singular
set of X has codimension at least 3 in X by Item (3), we may apply [39, §5, Korollar after Satz III]
or alternatively [2, Chap. II, Cor. 3.9 and Thm. 3.6] to see that the restriction homomorphism

H 1(X , OX
)→ H 1(Xreg, OXreg

)

is bijective. However, the cohomology group on the left side was shown to vanish in Item (1)
above.

In summary, we find that every invertible sheaf on Xreg extends to an invertible sheaf on X . If
D ∈ Div(X ) is any Weil divisor, the invertible sheaf OXreg (D) will therefore extend to an invertible
sheaf on X , which necessarily equals the (reflexive) Weil divisorial sheaf OX (D). It follows that D
is Cartier. This applies in particular to the canonical divisor, so X is Q-Gorenstein of index one.
Since X is Cohen–Macaulay, we conclude that X is Gorenstein.

Item (6). Given that Pic(X ) = Z, every line bundle is ample, anti-ample, or trivial; we need to
exclude the case that KX is trivial. But if KX were trivial, use that X is Gorenstein and apply Serre
duality to find

hn(
X , OX

)= h0(X ,ωX
)= h0(X , OX

)= 1.

This contradicts Item (1) above. □

Notation 25 (Line bundles on varieties homeomorphic to Pn ). If X is a projective klt variety
that is homeomorphic to Pn , Item (2) shows the existence of a unique ample line bundle that
generates Pic(X ) ∼= Z. We refer to this line bundle as OX (1). Item (5) equips us with a unique
number r ∈N and such that ωX

∼=OX (r ). Item (6) guarantees that r ̸= 0.

Remark 26 (Pull-back of line bundles). The cohomology rings of X and Pn are isomorphic.
If φ : X → Pn is any homeomorphism, then φ∗c1

(
OPn (1)

) = c1
(
OX (±1)

)
. The cup products

c1
(
OX (1)

)q generate the groups H 2q
(
X , Z

)∼=Z.

4.2. Characteristic classes

We have seen in Proposition 24 that X is smooth away from a closed set of codimension ≥ 3. This
allows defining a number of characteristic classes.
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Notation 27 (Chern classes on varieties homeomorphic to Pn ). If X is a projective klt variety
that is homeomorphic to Pn , Item (4) allows defining first and second Chern classes, as well as a
first Pontrjagin class and a second Stiefel–Whitney class

c1(X ) = r−1
2 c1(Xreg) ∈ H 2(X , Z

)

c2(X ) = r−1
4 c2(Xreg) ∈ H 4(X , Z

)

p1(X ) = r−1
4 p1(Xreg) ∈ H 4(X , Z

)

w2(X ) = r−1
2 w2(Xreg) ∈ H 2(X , Z2

)
.

Remark 28 (Pontrjagin and Chern classes). If X be a projective klt variety that is homeomorphic
to Pn , the restriction maps r• : H•(X , Z

)→ H•(Xreg, Z
)

commute with the cup products on X and
Xreg, which implies in particular that

p1(X ) = r−1
4 p1(Xreg) = r−1

4

(
c1(Xreg)2 −2 · c2(Xreg)

)
= c1(X )2 −2 · c2(X ) ∈ H 4(X , Z

)
.

Remark 29 (Stiefel–Whitney class and first Chern class). By definition and the well-known
relation in the smooth case, we have

w2(X ) = c1(X ) mod 2.

Novikov’s result on the topological invariance of Pontrjagin classes extends to the generalized
Pontrjagin class defined in Notation 27.

Proposition 30 (Topological invariance of Pontrjagin classes). Let X be a projective klt variety.
If φ : X →Pn is any homeomorphism, then φ∗p1(Pn) = p1(X ) in H 4

(
X , Z

)
.

Proof. Consider the open set Pn
reg := φ(Xreg) and the restricted homeomorphism φreg : Xreg →

Pn
reg. Recalling from Item (4) of Propositions 24 that the restriction maps

r4 : H 4(X , Z
)→ H 4(Xreg, Z

)
and r4 : H 4(Pn , Z

)→ H 4(Pn
reg, Z

)

are isomorphic, it suffices to show that the restricted classes in rational cohomology agree. More
precisely,

φ∗p1(Pn) = p1(X ) in H 4(X , Z
)

⇐⇒ r4φ
∗p1(Pn) = r4p1(X ) in H 4(Xreg, Z

)
, since r4’s are iso.

⇐⇒ φ∗
regp1(Pn

reg) = p1(Xreg) in H 4(Xreg, Z
)
, definition, functoriality

⇐⇒ φ∗
regp1(Pn

reg) = p1(Xreg) in H 4(Xreg,Q
)
, since H 4(Xreg, Z

)=Z
The last equation is Novikov’s famous topological invariance of Pontrjagin classes, [35]9. □
Corollary 31 (Relation between Chern classes on varieties homeomorphic to Pn ). If X is a
projective klt variety that is homeomorphic to Pn , then

2 · c2(X ) = [
r 2 − (n +1)

] · c1
(
OX (1)

)2 in H 4(X , Z
)
.

Proof. Choose a homeomorphism φ : X → Pn , in order to compare the Pontrjagin class of Pn

with that of X .

p1(Pn) = (n +1) · c1
(
OPn (1)

)2 in H 4(Pn , Z
)

⇐⇒ φ∗p1(Pn) = (n +1) ·φ∗c1
(
OPn (1)

)2 in H 4(X , Z
)

⇐⇒ p1(X ) = (n +1) · c1
(
OX (±1)

)2 Prop. 30 and Rem. 26

⇐⇒ c1
(
OX (r )

)2 −2 · c2(X ) = (n +1) · c1
(
OX (1)

)2 Rem. 28

The claim thus follows. □
9See [17, Thm. 0] for the precise result used here and see [37, Appendix] for a history of the result. Igor Belegradek

explains on MathOverflow (https://mathoverflow.net/q/442025) why compactness assumptions are not required.

https://mathoverflow.net/q/442025
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Corollary 31 allows reformulating the Q-Miyaoka–Yau inequality and Q-Bogomolov–Gieseker
inequality as inequalities between the index r and the dimension n. The first remark will be
relevant for varieties of general type, whereas the second one will be used for Fano varieties.

Remark 32 (Reformulation of theQ-Miyaoka–Yau inequality). Let X be a projective klt variety
that is homeomorphic to Pn . Since X is smooth in codimension two, the Miyaoka–Yau inequality
forQ-Chern classes,

(
2(n +1) · ĉ2(X )−n · ĉ1(X )2) · [H ]n−2 ≥ 0, for one ample H ,

is equivalent to the assertion that there exists a non-negative constant c ∈R≥0 such that
(
2(n +1) · c2(X )−n · c1(X )2)≥ c · c1

(
OX (1)

)2 in H 4(X , Z
)

⇐⇒ (
(n +1)(r 2 − (n +1))−n · r 2) · c1

(
OX (1)

)2 ≥ c · c1
(
OX (1)

)2 Cor. 31

⇐⇒ (
r 2 − (n +1)2) · c1

(
OX (1)

)2 ≥ c · c1
(
OX (1)

)2

⇐⇒ |r | ≥ n +1.

The Miyaoka–Yau inequality is an equality if and only if |r | = n +1.

Remark 33 (Reformulation of theQ-Bogomolov–Gieseker inequality). Let X be a projective klt
variety that is homeomorphic to Pn . Since X is smooth in codimension two, the Bogomolov–
Gieseker inequality forQ-Chern classes,

(
2n · ĉ2(X )− (n −1) · ĉ1(X )2) · [H ]n−2 ≥ 0, for one (equiv. every) ample H ,

is equivalent to the assertion that |r | > n.

We will also need the topological invariance of the second Stiefel–Whitney class w2.

Proposition 34 (Topological invariance of the second Stiefel–Whitney class). Let X be a projec-
tive klt variety. If φ : X →Pn is any homeomorphism, then φ∗w2(Pn) = w2(X ) in H 2

(
X , Z/2Z

)
.

Proof. We can argue as in the proof of Proposition 30, replacing Novikov’s Theorem by the
corresponding invariance result for Stiefel–Whitney classes due to Thom, [43, Thm. III.8]. □
Corollary 35 (Parity of the first Chern class of varieties homeomorphic to Pn ). If X is a
projective klt variety that is homeomorphic to Pn , then r − (n +1) is even.

Proof. This follows from the topological invariance established just above together with Re-
mark 29 and the relation ϕ∗(c1(OPn (1))) = c1(OX (±1)). □

4.3. Partial answers to Question 23

We conclude the present Section 4 with three partial answers to Question 23: for threefolds, we
answer Question 23 in the affirmative. In dimension four and five, we give an affirmative answer
for Fano manifolds. In higher dimensions, we can at least describe and restrict the geometry of
potential exotic klt varieties homeomorphic to Pn .

Proposition 36 (Topological Pn with ample canonical bundle). Let X be a projective klt variety
that is homeomorphic to Pn . If KX is ample, then r > n +1.

Proof. Recall from [22, Thm. 1.1] that X satisfies the Q-Miyaoka–Yau inequality. We have seen
in Remark 32 that this implies r = |r | ≥ n + 1, with r = n + 1 if and only if equality holds in Q-
Miyaoka–Yau inequality. In the latter case, recall from [22, Thm. 1.2] that X has no worse than
quotient singularities. Since quotient singularities are not topologically smooth, it turns out that
X cannot have any singularities at all. By Yau’s theorem (or again by [22, Thm. 1.2]), X must then
be a smooth ball quotient, contradicting π1(X ) =π1(Pn) = {1}. □
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Proposition 37 (Topological Pn with ample anti-canonical bundle). Let X be a projective klt
variety that is homeomorphic to Pn . If −KX is ample, then either X ∼=Pn or TX is unstable.

Remark 38. Recall from [28, Cor. 32] that Fano varieties with unstable tangent bundles admit
natural sequences of rationally connected foliations. These might be used to study their geome-
try further. If in the situation of Proposition 37 we additionally assume that the index is one, i.e.,
that r =−1, thenΩ[1]

X is always semistable: if S ⊊Ω[1]
X was destabilizing, then detS ⊆Ω[rankS ]

X is
either trivial (hence violating the non-existence of reflexive forms, [45, Thm. 1] and [18, Thm. 5.1])
or ample (hence violating the Bogomolov–Sommese vanishing theorem for klt varieties, [18,
Thm. 7.2]).

Proof of Proposition 37. If TX is semistable, then the Q-Bogomolov–Gieseker inequality holds,
and we have seen in Remark 33 that −r = |r | > n. Fujita’s singular version of the Kobayashi–Ochiai
theorem, [13, Thm. 1], will then apply to show that X ∼=Pn . □

While the Bogomolov–Gieseker inequality does not necessarily hold on a Fano variety with
unstable tangent sheaf, we still get some restriction on the index from the following result.

Proposition 39. Let X be a projective klt variety that is homeomorphic to Pn . If −KX is ample,
then r 2 ≥ n +1. In particular, if n ≥ 4, then r ≥ 3.

Proof. Since X is factorial by Proposition 24(5) and non-singular in codimension two by Propo-
sition 24(3), we may apply [36, Cor. 1.5] to obtain the bound c2(X ) · c1(OX (1))n−2 ≥ 0. Then, we
conclude by Corollary 31. □

In dimension three we can now fully answer Question 23.

Theorem 40 (TopologicalP3). Let X be a projective klt variety that is homeomorphic to P3. Then,
X ∼=P3.

Proof. Since X is a threefold with isolated, rational Gorenstein singularities, Riemann–Roch
takes a particularly simple form:

1
Prop. 24(1)= χ(OX ) = 1

24
· [−KX ] · c2(X ).

With Corollary 31, this reads
−48 = r · (r 2 −4).

This equation has only one real solution: r = −4; in particular, −KX is ample. As before, Fujita’s
theorem [13, Thm. 1] applies to show that X ∼=Pn . □

Finally, in dimensions four and five we show the following.

Theorem 41 (Q-Fano 4- and 5-folds homeomorphic to projective spaces). Let X be a projective
klt variety homeomorphic to Pn , with n = 4 or 5. Assume that KX is not ample. Then, X ∼=Pn .

Proof. Recall that X is a Gorenstein Fano variety of index i = −r , with canonical singularities,
smooth in codimension two. By [13, Thm. 1 and 2], we may assume that i ≤ dim X −1. Further,
from Proposition 39, we see that i ≥ 3. These cases have to be excluded.

If i = dim X − 1, then by [14], X is a hypersurface of weighted degree 6 embedded in the
smooth part of the weighted projective space P(3,2,1n). Smooth such hypersurfaces have
semistable tangent bundle by [21, Prop. 6.15]; in particular, they satisfy the Bogomolov–Gieseker
inequality. Since X is smooth in codimension two, the “principle of conservation of numbers”,
[15, Thm. 10.2], implies that X satisfies the Bogomolov–Gieseker inequality as well, which in turn
contradicts Remark 33.

The remaining case, n = 5 and i = 3, is ruled out by Corollary 35, which implies that i =−r has
to be even. □
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We will consider deformation theory over non-commutative (NC) base algebras. Such a
theory is interesting because there are more deformations than the usual deformations over
commutative bases. The deformations over commutative base can possibly be regarded as the
“first order” approximation of more general “higher order” deformations. The formal theories of
deformations over commutative and non-commutative bases are parallel and the extension to
the non-commutative case is simple, but some new phenomena and invariants appear.

We make some remarks on NC deformations. The first remark is that the deformations over
NC base is natural. This is because the differential graded algebras (DGA) which govern the de-
formations of sheaves are naturally non-commutative. Hence it is natural to consider deforma-
tions parametrized by NC base algebras. We will also consider the problem of convergence of for-
mal NC deformations and the moduli space. The second remark is that we obtain “higher order
invariants” because there are more NC deformations than commutative ones by slightly gener-
alizing results of [12] and [4]. The last remark is that a description of the base algebra using the
tangent space T 1 and the obstruction space T 2 is possible.

We use the abbreviation NC for “not necessarily commutative”. In Section 1, we recall
the definition of NC deformations, and explain how the base algebra of semi-universal NC
deformations is described by a minimal A∞-algebra arising from DGA in the case of deformations
of coherent sheaves. In Section 2, we consider the problem of convergence and the existence of
moduli space by taking an example of deformations of linear subspaces in a linear space. In
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Section 3, we consider another example of flopping contractions of 3-dimensional manifolds,
and show how invariants appear beyond those obtained by commutative deformations. We will
give a description of the base algebra of the semi-universal NC deformation by using the tangent
space and the obstruction space in Section 4.
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1. Multi-pointed non-commutative deformations

We recall the non-commutative deformation theory developed by [9] (see also [3], [6]). We
use NC as “not necessarily commutative”. This is a generalization of the formal commutative
deformation theory of [10] to the case where the base algebras are allowed to be NC.

Let kr be the direct product ring of a field k, and let (Artr ) be the category of augmented
associative kr -algebras R which are finite dimensional as k-modules and such that the two-
sided ideal M = Ker(R → kr ) is nilpotent. We assume that the composition of the structure
homomorphisms kr → R → kr is the identity. (Artr ) is the category of the base spaces for r -
pointed NC deformations.

Let ki
∼= k be the i -th direct factor of the product ring kr for 1 ≤ i ≤ r . ki is generated by

ei = (0, . . . ,1, . . . ,0) ∈ kr , where 1 is placed at the i -th entry. A left kr -module F has a direct
sum decomposition F = ⊕r

i=1 Fi as k-modules by Fi = ei F , and kr -bimodule has a further
decomposition F =⊕r

i , j=1 Fi j by Fi j = ei Fe j .
R ∈ (Artr ) is an NC Artin semi-local algebra with maximal two-sided ideals Mi = Ker(R → ki ).

NC deformation is multi-pointed because an NC semi-local algebra is not necessarily a direct
product of local algebras unlike the case of a commutative algebra.

The model case is a deformation of a direct sum of coherent sheaves F = ⊕r
i=1 Fi (r -pointed

sheaf). The sheaves Fi interact each other and there are more NC deformations of F than those
of the individual sheaves Fi .

Let F be something defined over kr which will be deformed over R ∈ (Artr ). An NC deformation
of F over R is a pair (F̃ ,φ) where F̃ is “flat” over R and φ : F → R/M ⊗R F̃ is an isomorphism.
The definition depends on the cases what kind of F we are considering. The set of isomorphism
classes of deformations of F over R gives an NC deformation functor Φ= DefF : (Artr ) → (Set).

More concretely, an r -pointed NC deformation functor Φ : (Artr ) → (Set) in this paper is a
covariant functor which satisfies the conditions (H0), (H f ), (He ), (H̃) stated below following [10]
(see also [11, Chapter 2]).

We define an object Re ∈ (Artr ) as a generalization of the ring of dual numbers k[ϵ]/(ϵ2).
Let Re be the trivial extension kr ⊕ End(kr ), where End(kr ) is a square zero two-sided ideal,
and the multiplication of kr and End(kr ) is induced from the embedding to diagonal matrices
kr → End(kr ). As a k-module,

Re = kr ⊕
r⊕

i , j=1
kei j .

The multiplication is defined by ei e j k = δi j e j k , ei j ek = δ j k ei j and ei j ekl = 0 for all i , j ,k, l . The
augmentation Re → kr is given by ei j 7→ 0.
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Now we state the conditions (H0), (H f ), (He ), (H̃). For ring homomorphisms R ′ → R and
R ′′ → R in (Artr ), let α :Φ(R ′×R R ′′) →Φ(R ′)×Φ(R)Φ(R ′′) be the map naturally defined byΦ.

(H0) Φ(kr ) consists of one element.
(H f ) Φ(Re ) is finite dimensional as a k-module.
(He ) The natural map α is bijective if R = kr and R ′′ = Re .
(H̃) The natural map α is surjective if R ′′ → R is surjective.

The tangent space T 1 of the functor Φ is defined by T 1 =Φ(Re ). The kr -bimodule structure of
the ideal End(kr ) ⊂ Re induces a kr -bimodule structure on T 1, so we can write T 1 = ⊕r

i , j=1 T 1
i j .

We have T 1
i j =Φ(kr ⊕kei j ). Indeed T 1

i j = ei T 1e j =Φ(ei Re e j ) =Φ(kr ⊕kei j ).
An element ξ ∈Φ(R) for R ∈ (Artr ) is called an r -pointed NC deformation over R of the unique

element ofΦ(kr ).
Let TR = (M/M 2)∗ be the Zariski tangent space of R. It is a kr -bimodule. The Kodaira–Spencer

map K Sξ : TR → T 1 associated to the deformation ξ is defined as follows. A tangent vector
v ∈ (TR )i j = (M/M 2)∗i j induces a ring homomorphism v∗ : R → kr ⊕kei j , hence Φ(v∗) : Φ(R) →
Φ(kr ⊕kei j ) = T 1

i j . Then we define K Sξ(v) =Φ(v∗)(ξ).

Let R̂ := lim←−−Ri ∈ (Ârtr ) be a pro-object of (Artr ), and let ξ̂ := lim←−−ξi ∈ Φ̂(R̂) := lim←−−Φ(Ri ) be an

element of a projective limit. Then ξ̂ is called a formal r -pointed NC deformation over R̂. The
Kodaira–Spencer map K Sξ̂ : TR̂ → T 1 is similarly defined.

A formal deformation ξ̂ ∈ Φ̂(R̂) is called a versal NC deformation if the following holds: for any
NC deformation ξ′ ∈Φ(R ′), there exists a morphism h : R̂ → R ′ such that ξ′ = Φ̂(h)(ξ̂).

In this case, the Kodaira–Spencer map K Sξ̂ : TR̂ → T 1 is surjective. Indeed, let v ′ ∈ T 1
i j =

Φ(kr ⊕kei j ) be any element. Then there is a morphism h : R̂ → kr ⊕kei j such that v ′ = Φ̂(h)(ξ̂).
Let v : (M̂/M̂ 2)i j → kei j be the homomorphism induced from h. Then v∗ = h and K Sξ̂(v) = v ′.

A versal NC deformation is said to be semi-universal if the Kodaira–Spencer map is bijective.
In this case, we have M̂/M̂ 2 ∼= (T 1)∗. We note that it is called “versal” in some literatures. The
existence of the semi-universal NC deformation is proved in a similar way to [10] from the
conditions (H0), (H f ), (He ), (H̃).

In the case r = 1, if we take the abelianization R̂ab = R̂/[R̂, R̂] of the base ring of the semi-
universal deformation, then we obtain a usual semi-universal commutative deformation ξ̂ab over
R̂ab given by ξ̂ab =Φ(q)(ξ̂), where q : R̂ → R̂ab is the quotient map.

We recall a description of the semi-universal NC deformation in the case of deformations of
a coherent sheaf using an A∞-algebra formalism ([8]). Let X be an algebraic variety over k and
let F =⊕r

i=1 Fi be a coherent sheaf with proper support. Then the infinitesimal deformations of
F are controlled by a differential graded algebra (DGA) RHomX (F,F ). The tangent space and the
obstruction space are given by kr -bimodules T i = Exti

X (F,F ) for i = 1,2 (cf. Section 4).
It is also controlled by an A∞-algebra structure {md }d≥2 of the cohomology group A =⊕

p≥0 Ap :=⊕
p≥0 Extp (F,F ) =⊕

p,i , j Extp (Fi ,F j );

md : T d
kr A := A⊗kr · · ·⊗kr A −→ A(2−d)

are the higher multiplications of degree 2−d , where the left hand side is a tensor product with d
factors over kr and the right hand side has degree shift 2−d . In particular, we have

md : T d
kr A1 := A1 ⊗kr · · ·⊗kr A1 −→ A2

for d ≥ 2.
In general, for a kr -bimodule E , we have E = ⊕r

i , j=1 Ei j with Ei j = ei Ee j . We define a

completed tensor algebra T̂ kr E =∏
d≥0 T d

kr E by

T d
kr E = E ⊗kr E ⊗kr · · ·⊗kr E
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where there are d-times E on the right hand side. We apply this construction to E = (T 1)∗. If
{xs

i j }s is a basis of Ei j , then we have

T̂ kr E = kr 〈〈xs
i j 〉〉/(ei xs

i ′ j , xs
i j e j ′ , xs

i ′ j ′x
s′
i ′′ j ′′ | i ̸= i ′, j ̸= j ′, j ′ ̸= i ′′).

Thus the set of monomials
xs1

i0i1
xs2

i1i2
. . . xsd

id−1id

with i = i0 and j = id is a k-basis of (T̂ kr E)i j .
Let

m∗ =
∑

d≥2
m∗

d : Ext2(F,F )∗ −→ T̂ kr (Ext1(F,F )∗)

be the formal sum of dual maps of md . Then the base algebra R̂ of the semi-universal NC
deformation F̂ is determined as an augmented kr -algebra to be

R̂ = T̂ kr (Ext1(X , X )∗)/(m∗(Ext2(X , X )∗))

([8]). Thus the Taylor coefficients of the equations of the formal NC moduli space are determined
by A∞-multiplications.

There is another way of describing a semi-universal r -pointed NC deformation of a direct sum
of coherent sheaves with proper support F =⊕r

i=1 Fi . The semi-universal NC deformation F̂ of F
is given by a tower {F (n)} of universal extensions (cf. [6]):

0 −→ Ext1(F (n),F )∗⊗kr F −→ F (n+1) −→ F (n) −→ 0

with F (0) = F and F̂ = lim←−−F (n). We have direct sum decompositions F (n) = ⊕
i F (n)

i , and we can
write

0 −→
⊕
i , j

Ext1(F (n)
i ,F j )∗⊗k F j −→

⊕
i

F (n+1)
i −→

⊕
i

F (n)
i −→ 0.

If End(F ) ∼= kr , i.e., if End(Fi ) ∼= k and Hom(Fi ,F j ) ∼= 0 for i ̸= j , then F is called a simple
collection ([6]). The deformation theory of a simple collection is particularly nice. In this case,
F (n) is flat over R(n) = End(F (n)), and the parameter algebra R̂ of the semi-universal deformation
F̂ is given by R̂ = lim←−−R(n) ([6, Theorem 4.8]).

Remarks 1.

(1) We do not consider deformation theory of varieties over non-commutative base in this
paper, because such a theory seems to be difficult by the following reason. Suppose
that there is an infinitesimal deformation XR of a variety X over an NC ring R. Then
the structure sheaf OXR should be NC too. When we consider a base change over a ring
homomorphism R → R ′, it seems necessary that the base rings should be commutative in
order for the tensor product OXR ⊗R R ′ to have a ring structure. Indeed the DGLie algebra
which controls the deformations of X is NC but its non-commutativity is restricted.

But when X is a subvariety of an ambient variety Y , then we can consider a deforma-
tion of X inside Y over an NC base as a deformation of the structure sheaf OX as a sheaf
on Y (see Section 2).

(2) The deformation functor is pro-representable when there is a universal deformation. But
a universal deformation does not exist in general (see [6, Remark 4.10]).

2. Convergence and moduli

The above described semi-universal NC deformation is a formal deformation, and the question
on the convergence is important. We will make some remarks on the convergence of the formal
NC deformations and the relationship with the moduli space of commutative deformations. We
consider only 1-pointed NC deformations, and we take an example of the moduli space of linear
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subspaces in a fixed linear space. We consider NC deformations of the structure sheaves of linear
subspaces.

We would like to say that the formal semi-universal NC deformation is convergent if the
corresponding semi-universal commutative deformation is convergent. This is because the
numbers of commutative monomials and non-commutative ones on n variables of degree d grow
similarly to nd . Maybe we should require that the growth of the Taylor coefficients of the non-
commutative power series are bounded in a similar way as the commutative power series.

Any k-algebra homomorphism R → k for any associative k-algebra R factors through the
abelianization R → Rab . Therefore we can think that the set of closed points of the moduli spaces
are the same for commutative and NC deformation problems. In other words, when we observe
points, then the moduli space of NC deformations is reduced to the usual moduli space. We can
say that the NC deformations give an additional infinitesimal or formal structure at each point
of the commutative moduli space. And the formal structure is usually convergent. However, a
compactification is another problem, and it seems that it does not exists.

As an example, we consider NC deformations of linear subspaces in a finite dimensional vector
space. As explained in Remark 1.1, we consider the NC deformations of the structure sheaf of
the subspace instead of the subspace as a variety. The following is a slight generalization of [8,
Example 7.8]. The commutative deformations are unobstructed and yield a compact moduli
space, a Grassmann variety. But we will see that NC deformations are obstructed.

Let V ∼= kn be an n-dimensional linear space with coordinate linear functions x1, . . . , xn , and let
W be an m-dimensional linear subspace defined by an ideal I = (xm+1, . . . , xn). The commutative
moduli space G(m,n) has an affine open subset Hom(W,V /W ) ∼= km(n−m) with coordinates ai , j

(1 ≤ i ≤ m, m +1 ≤ j ≤ n). We consider NC deformations of W as a linear subspace of V , i.e., the
NC deformations of the ideal sheaves generated by linear functions.

Proposition 2. Let V ∼= kn with coordinate linear functions x1, . . . , xn , and let W ∼= km be defined
by xm+1 = ·· · = xn = 0. Then the formal semi-universal NC deformation of W as a linear subspace
of V has the parameter algebra R̂ and the ideal Î given as follows:

R̂ = k〈〈ai j | 1 ≤ i ≤ m < j ≤ n〉〉/ Ĵ

Ĵ = (
ai j1 ai j2 −ai j2 ai j1 , ai1 j1 ai2 j2 −ai2 j2 ai1 j1 +ai1 j2 ai2 j1 −ai2 j1 ai1 j2∣∣ 0 ≤ i ≤ m,1 ≤ i1 < i2 ≤ m < j1 < j2 ≤ n

)

Î =
(

x j +
m∑

i=1
ai j xi

∣∣∣∣ m +1 ≤ j ≤ n

)
.

Proof. This is almost the same as [8, Example 7.8]. Let Y = P(W ∗) ⊂ X = P(V ∗) be the corre-
sponding projective spaces. We consider NC deformations of a coherent sheaf F =OY on X . The
normal bundle of Y in X is given by NY /X

∼= OY (1)⊕n−m . Hence T 1 = Ext1(F,F ) ∼= H 0(Y , NY /X ) ∼=
k⊕m(n−m) and T 2 = Ext2(F,F ) ∼= H 0(Y ,

∧2 NY /X ) ∼= k⊕(m+1
2

)(n−m
2

)
.

Let I ′ = OX (−Y ) be the ideal sheaf of Y ⊂ X generated by the homogeneous coordinates
xm+1, . . . , xn . By [8, Lemma 7.6], the semi-universal NC deformation of F is given in the form

F̂ = lim←−−(Rn ⊗OX )/I ′n

where (Rn , Mn) ∈ (Art1) such that M n+1
n = 0. By the flatness, the ideal sheaf I ′n is generated by

linear forms x j +
∑m

i=1 ai j xi for m +1 ≤ j ≤ n, where ai j ∈ Mn .
Since the xi are commutative variables in Rn ⊗OX , we have x j xl = xl x j for m + 1 ≤ j , l ≤ n.

Hence equalities
m∑

i ,k=1
ai j akl xi xk =

m∑
i ,k=1

akl ai j xi xk
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hold in Fn = (Rn ⊗OX )/I ′n for such j , l . It follows that

ai j ai l −ai l ai j = 0 (1 ≤ i ≤ m < j < l ≤ n),

ai j akl −akl ai j +ak j ai l −ai l ak j = 0 (1 ≤ i < k ≤ m < j < l ≤ n)

in R̂ = lim←−−Rn . The above relations are non-commutative polynomials which are linearly inde-
pendent quadratic forms, and their number is equal to

m

(
n −m

2

)
+

(
m

2

)(
n −m

2

)
=

(
m +1

2

)(
n −m

2

)
.

This is equal to the dimension of the obstruction space. Therefore there are no more independent
relations contained in Ĵ . □

The above deformation is “algebraizable”. There is an NC deformation of ideals Ĩ over a
parameter algebra R̃ which is a quotient algebra of an NC polynomial algebra:

R̃ = k〈ai j | 1 ≤ i ≤ m < j ≤ n〉/ J̃

J̃ = (
ai j1 ai j2 −ai j2 ai j1 , ai1 j1 ai2 j2 −ai2 j2 ai1 j1 +ai1 j2 ai2 j1 −ai2 j1 ai1 j2∣∣ 1 ≤ i ≤ m,1 ≤ i1 < i2 ≤ m < j1 < j2 ≤ n

)

Ĩ =
(

x j +
m∑

i=1
ai j xi

∣∣∣∣ m +1 ≤ j ≤ n

)

The meaning of this formula is that it induces a semi-universal NC deformation at every closed
point of an affine open subset Spec(R̃ab) ⊂ G(m +1,n +1) with R̃ab = k[ai j | 0 ≤ i ≤ m < j ≤ n].
Indeed we have

(ai j −a0
i j )(bkl −b0

kl )− (bkl −b0
kl )(ai j −a0

i j ) = ai j bkl −bkl ai j

for NC variables ai j ,bkl and a0
i j ,b0

kl ∈ k.
Hilbert schemes and Quot schemes are constructed from Grassmann varieties. We wonder if

their NC deformations are also semi-globalizable.

Examples 3.

(1) n = 3 and m = 1. We have G(1,3) ∼= P2. Then R̃ ∼= k〈a,b〉/(ab −ba) = k[a,b].
(2) n = 3 and m = 2. We have G(2,3) ∼= P2. Then R̃ = k〈a,b〉 is not Noetherian. Indeed a

two-sided ideal (abk a | k > 0) is not finitely generated.
R̃ has a following quotient algebra, which corresponds to an NC deformation which is

not semi-universal:

Rϵ = k〈a,b〉/(ab −ba −ϵ)

where ϵ ∈ k. For example, if ϵ= 1, then R1
∼= k[t ,d/d t ].

(3) n = 4 and m = 2. We have G(2,4). Then we have

R̃ = k〈a,b,c,d〉/(ab −ba, cd −dc, ad −d a −bc + cb).

R̃ has a following quotient algebra:

Rϵ1,ϵ2 = k〈a,b,c,d〉/(ab −ba, cd −dc, ad −d a −1, bc − cb −1, ac − ca −ϵ1, bd −db −ϵ2)

where ϵi ∈ k. For example, if ϵi = 0, then R1
∼= k[t1, t2,∂/∂t1,∂/∂t2].
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3. Flopping contractions of 3-folds

As a typical example of multi-pointed NC deformations, we will consider NC deformations of
exceptional curves of a flopping contraction from a smooth 3-fold f : Y → X over k = C. [2]
observed that there are more NC deformations than commutative ones, and the base algebra of
NC deformations gives an important invariant of the flopping contraction called the contraction
algebra. Indeed Donovan and Wemyss conjectured that the contraction algebra, which is a finite
dimensional associative algebra, determines the complex analytic type of the singularity of X .
[12] and [4] proved that the dimension count of the contraction algebra yields Gopakumar-Vafa
invariants of rational curves defined in [5]. We will consider slight generalizations where there
are more than one exceptional curves.

Let f : Y → X = Spec(B) be a projective birational morphism defined over k = C from a
smooth 3-dimensional variety Y whose exceptional locus C is 1-dimensional. Let C = ⋃r

i=1 Ci

be a decomposition into irreducible components. We assume that f is crepant, i.e., (KY ,Ci ) = 0
for all i . It is known that Ci

∼= P1, the dual graph of the Ci is a tree, and X has only isolated
hypersurface singularities of multiplicity 2.

The contraction algebra R for f is defined to be the base algebra of the semi-universal r -
pointed NC deformation of the sheaf F =⊕r

i=1 OCi (−1).
We consider commutative one parameter deformation of the contraction morphism f : Y →

X , and investigate the behavior of the contraction algebras under deformation. Let p : X →∆ be
a one parameter flat deformation of X over a disk ∆, and assume that there is a flat deformation
f̃ : Y → X of the flopping contraction f : Y → X . We assume that there are Cartier divisors
L1, . . . ,Lr on Y such that (Li ,C j ) = δi , j . This is always achieved when we replace X by its
complex analytic germ containing f (C ) and ∆ by a smaller disk.

Let C t =⋃st
j=1 C t

j be the exceptional curves with decomposition to irreducible components for

the flopping contraction ft : Yt → X t for t ̸= 0, where Yt = (p f̃ )−1(t ) and X t = p−1(t ). It is not
necessarily connected even if C is connected. We may assume that s = st is constant on t ̸= 0. We
define integers m j ,i by the degeneration of 1-cycles C t

j →
∑

m j ,i Ci when t → 0. This means that

OC t
j

degenerates in a flat family to O∑
i m j ,i Ci . We have (Li ,C t

j ) = m j ,i .

If the deformation f̃ is generic, then C t is a disjoint union of (−1,−1)-curves, i.e., smooth
rational curves whose normal bundles are isomorphic to OP1 (−1)⊕2. In this case, we denote

m j =
∑

i
m j ,i , nd = #{ j | m j = d}.

The numbers nd should be called the Gopakumar-Vafa invariants ([5] for the case r = 1). In the
case r = 1, [12] proved that n1 is equal to the dimension of the abelianization of the contraction
algebra n1 = dimRab , while higher terms nd for d ≥ 2 contribute to dimR (see Theorem 4(3)).

We consider NC deformations of F = ⊕r
i=1 Fi for Fi = OCi (−1) on Y and Y . The set {Fi } is

called a simple collection on Y and Y in the terminology of [6] in the sense that HomY (F,F ) ∼=
HomY (F,F ) ∼= kr . The NC deformations of a simple collection behave particularly nice.

Let ∆̂ = Spec(k�t�) be the completion of ∆ at the origin. By the flat base change ∆̂→ ∆, we
define X̂ =X ×∆ ∆̂ and Ŷ =Y ×∆ ∆̂. Let f̂ : Ŷ → X̂ and p̂ : X̂ → ∆̂ be natural morphisms.

Let F̂ = ⊕r
i=1 Fi and F̃ 0 = ⊕r

i=1 F̃ 0
i be the semi-universal NC deformations of F on Ŷ and Y ,

respectively, and let R̂ and R be the base algebras of these semi-universal deformations. We note
that F̃ 0 is obtained by finite number of extensions of the Fi while F̂ may not. This is because C is
isolated in Y while C may move inside Y . Hence we have dimR <∞ as k-modules. We will see
that dimR̂ =∞ (see Theorem 4(1)).

F̂ is also a semi-universal NC deformation of F on Y . We will see that there is also a
“convergent version” F on Y , and F̂ is its completion.
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By [6, Theorem 4.8], the base algebras coincide with the endomorphism algebras:

R̂ = EndŶ (F̂ ), R = EndY (F̃ ).

F̂ and F̃ 0 can be described explicitly in the following way ([2, 6, 7]). In particular, there exists
a sheaf F on Y such that

F̂ ∼=F ⊗OY
OŶ (1)

i.e., the semi-universal NC deformation F̂ is convergent when we replace ∆ by a smaller disk if
necessary.

By [13], we construct extensions of locally free sheaves on Y :

0 −→O
si
Y

−→ Mi −→Li −→ 0

with some integers si such that R1 f̃ ∗M∗
i = 0, where M∗

i is the dual sheaf. Let M = ⊕r
i=1 Mi and

M 0 = M ⊗OY
OY . We also denote M̂ = M ⊗OY

OŶ . We have an exact sequence

0 −→ M∗ −→ M∗ −→ (M 0)∗ −→ 0.

Since the dimensions of fibers of f̃ are at most 1, we obtain R1 f∗(M 0)∗ = 0 from R1 f̃ ∗M∗
i = 0.

Then semi-universal NC deformations F̂ = ⊕
F̂ i and F̃ 0 are given as the kernels of natural

homomorphisms ([7, Theorem 1.2]):

0 −→ F̂ −→ f̂ ∗ f̂ ∗M̂ −→ M̂ −→ 0,

0 −→ F̃ 0 −→ f ∗ f∗M 0 −→ M 0 −→ 0.

We define F by an exact sequence

0 −→F −→ f̃ ∗ f̃ ∗M −→ M −→ 0

and let R = EndY (F ). By the flat base change, we obtain (1) and

R̂ ∼=R⊗OY
OŶ .

We denote F̃ t =F ⊗OY
OYt and R t =R⊗O∆ kt , where Yt = (p f̃ )−1(t ) and kt is the residue field at

t ∈∆.
The following is a slight generalization of results in [4] and [12]:

Theorem 4.

(1) F is flat over ∆, and F̃ 0 =F ⊗OY
OY .

(2) ([4, Conjecture 4.3]). R is a flat O∆-module, and R ∼= R⊗O∆ k, where k is the residue field
of O∆ at 0.

(3) Assume in addition that C t is a disjoint union of (−1,−1)-curves C t
j for t ̸= 0. Then

F̃ t ∼=
⊕

j
OC t

j
(−1)m j ,

R t ∼=
∏

j
Mat(m j ×m j ),

dimR =
∑

j
m2

j =
∑
d

nd d 2.

Proof. (1). We have an exact sequence

0 −→ M −→ M −→ M 0 −→ 0

where the first arrow is the multiplication by t . Because R1 f̃ ∗M = 0, there is an exact sequence

0 −→ f̃ ∗M −→ f̃ ∗M −→ f̃ ∗M 0 −→ 0.



Yujiro Kawamata 167

Because L1 f̃ ∗ f̃ ∗M 0 = 0 by [1] Lemma 3.4, we obtain the first row of the following commutative
diagram

0 −−−−−→ f̃ ∗ f̃ ∗M −−−−−→ f̃ ∗ f̃ ∗M −−−−−→ f̃ ∗ f̃ ∗M 0 −−−−−→ 0
y

y
y

0 −−−−−→ M −−−−−→ M −−−−−→ M 0 −−−−−→ 0.
By snake lemma, we obtain

0 −→F −→F −→ F̃ 0 −→ 0

hence the flatness.

(2). Since t : F →F is injective, R has no t-torsion. Thus it is sufficient to prove that the natural
homomorphism HomY (F ,F ) → HomY (F̃ 0, F̃ 0) is surjective. By the flat base change, it is also
sufficient to prove that HomŶ (F̂ ,F̂ ) → HomY (F̃ 0, F̃ 0) is surjective, i.e., R̂ → R is surjective.
Then the assertion follows from the fact that R̂ and R are the base algebras of NC semi-universal
deformations of the same sheaf F with Y ⊂Y .

(3). This is proved in [4] and [12] when r = 1. Let x t
j = f̃ (C t

j ) ∈ X t = p−1(t ) for t ̸= 0. Since C t
j

is a (−1,−1)-curve, x t
j is an ordinary double point on a 3-fold. We take a small complex analytic

neighborhood x t
j ∈U t

j ⊂ X t , and let V t
j = f̃ −1(U t

j ).

Let Lt
j be a Cartier divisor on V t

j such that (Lt
j ,C t

j ) = 1. We know that (Li ,C t
j ) = m j ,i and

R1 f̃ ∗M∗
i = 0. Since C t

j
∼= P1 and Mi is relatively generated, Mi |V t

j
is a direct sum of line bundles

whose degrees are non-negative but at most 1. Since the total degree is equal to m j ,i , it follows

that Mi |V t
j
= (Lt

j )⊕m j ,i ⊕O
⊕(rank(Mi )−m j ,i )

V t
j

.

We will prove that Ker( f̃ ∗ f̃ ∗Lt
j → Lt

j ) ∼=OC t
j
(−1). Indeed there is a commutative diagram

f̃ ∗ f̃ ∗(Lt
j )∗ −−−−−→ O⊕2

V t
j

−−−−−→ f̃ ∗ f̃ ∗Lt
j −−−−−→ 0

h1

y ∼=
y h2

y

0 −−−−−→ (Lt
j )∗ −−−−−→ O⊕2

V t
j

−−−−−→ Lt
j −−−−−→ 0.

Hence Ker(h2) ∼= Coker(h1). Since (Lt
j )∗⊗OV t

j
IC t

j
for the ideal sheaf IC t

j
of C t

j ⊂V t
j is generated by

global sections, we have Coker(h1) ∼= (Lt
j )∗⊗OC t

j

∼=OC t
j
(−1).

Therefore Fi |V t
j
= OC t

j
(−1)⊕m j ,i . Hence F |V t

j
= OC t

j
(−1)⊕m j , and F̃ t ∼= ⊕

j OC t
j
(−1)m j . Thus

EndYt (F̃ t ) ∼=∏
j Mat(m j ×m j ), and the assertion is proved. □

4. Abstract description using T 1 and T 2

We will describe the base algebra of the semi-universal NC deformation of a deformation functor
Φwhich has the tangent space T 1 and the obstruction space T 2, which is defined below.

Let Φ : (Artr ) → (Set) be an NC deformation functor which has a formal semi-universal
deformation ξ̂ ∈ Φ̂(R̂). A kr -bimodule T 2 = ⊕r

i , j=1 T 2
i j is said to be the obstruction space if the

following condition is satisfied. Let ξ ∈ Φ(R) be an NC deformation over (R, M) ∈ (Artr ), and let
(R ′, M ′) ∈ (Artr ) be an extension of R by a two-sided ideal J :

0 −→ J −→ R ′ −→ R −→ 0

such that M ′ J = 0, so that J is a left kr -module. Then there is an obstruction class oξ ∈ T 2 ⊗kr J
such that ξ extends to an NC deformation ξ′ ∈Φ(R ′) if and only if oξ = 0.
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We assume that the obstruction class is functorial in the following sense. Let

0 −−−−−→ J −−−−−→ R ′ −−−−−→ R −−−−−→ 0

g
y f ′

y f

y

0 −−−−−→ J1 −−−−−→ R ′
1 −−−−−→ R1 −−−−−→ 0

(2)

be a commutative diagram of such extensions. Let ξ ∈ Φ(R) be an NC deformation, and let
ξ1 =Φ( f )(ξ) ∈Φ(R1). Let oξ ∈ T 2⊗kr J and oξ1 ∈ T 2⊗kr J1 be the obstructions classes of extending
ξ and ξ1 over R ′ and R ′

1, respectively. Then oξ1 = g (oξ).

Theorem 5. Let Φ : (Artr ) → (Set) be an NC deformation functor. Assume that the obstruction
space T 2 is finite dimensional. Then there is a kr -linear map m : (T 2)∗ → T̂ kr (T 1)∗ such that
R̂ ∼= T̂ kr (T 1)∗/(m((T 2)∗)), a quotient algebra of the completed tensor algebra by a two-sided ideal
generated by the image of m.

Proof. Denote Â = T̂ kr (T 1)∗ = kr ⊕M̂ . Then the base algebra of the semi-universal NC deforma-
tion R̂ is a quotient algebra Â/Î by some two-sided ideal Î . Let {zl }N

l=1 be a k-basis of T 2.
Let Rk = Â/(Î + M̂ k+1). We define a sequence of two-sided ideals Ik ⊂ Â/M̂ k+1 by Rk = Â/(Ik +

M̂ k+1). By definition of the semi-universal deformation, there is an NC deformation ξk ∈Φ(Rk ).
We will prove that Ik is generated by elements {sk,l }N

l=1 ∈ Â/M̂ k+1 such that sk+1,l 7→ sk,l by the
natural map Â/M̂ k+2 → Â/M̂ k+1 inductively as follows.

We set s1,l = 0 for all l , because I1 = 0 and R1 = Â/M̂ 2.
Let k be an arbitrary integer, and let R = Rk , R ′ = Â/(M̂ Î + M̂ k+1) and J = (Î + M̂ k+1)/(M̂ Î +

M̂ k+1). Then R = R ′/J and M ′ J = 0 for M ′ = M̂/(M̂ Î + M̂ k+1). We write the obstruction of
extending ξk to R ′ as oξk

=∑
l zl ⊗ sk,l ∈ T 2 ⊗kr J , where sk,l ∈ J .

We have a commutative diagram

0 −−−−−→ J −−−−−→ R ′ −−−−−→ R −−−−−→ 0
y

y =
y

0 −−−−−→ J/(sk,l ) −−−−−→ R ′/(sk,l ) −−−−−→ R −−−−−→ 0

By the functoriality of the obstruction class, the obstruction class of the lower sequence vanishes,
and ξk is extendible to R ′/(sk,l ). By the semi-universality, it follows that

Î + M̂ k+1 = (sk,l )+ M̂ Î + M̂ k+1.

By Nakayama’s lemma, we have Î + M̂ k+1 = (sk,l )+ M̂ k+1. Thus we can write Ik = (sk,l )N
l=1 as a

two-sided ideal in Â/M̂ k+1.
Here we use a following version of Nakayama’s lemma. Let (A, M) ∈ (Artr ) and I a two-sided

ideal. Assume that there are elements hi ∈ I such that I = M I + (hi ). Then I = (hi ). Indeed let
I = I /(hi ) ⊂ A = A/(hi ). Then I = M I . Since M is nilpotent, I = M I = ·· · = M m I = 0 for some m.

Now we have a commutative diagram

Â/(M̂ Î + M̂ k+2) −−−−−→ Â/(Î + M̂ k+2)
y

y

Â/(M̂ Î + M̂ k+1) −−−−−→ Â/(Î + M̂ k+1)

Then the obstruction for the extension on the first line oξk+1
= ∑

zl ⊗ sk+1,l for sk+1,l ∈ (Î +
M̂ k+2)/(M̂ Î + M̂ k+2) is mapped to oξk

= ∑
zl ⊗ sk,l . Hence we have sk+1,l + M̂ k+1 = sk,l + M̂ k+1.

Thus we can define sl ∈ Î such that sl + M̂ k+1 = sk,l + M̂ k+1 for all k. Then the sl generate Î . □
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1. Introduction

Let X 2n be a hyperkähler manifold, so X is a simply connected compact Kähler manifold with a
holomorphic symplectic 2-form Ω such that H 2,0(X ) = CΩ. By Yau’s Theorem every Kähler class
on X contains a unique Ricci-flat Kähler metric. It was later realized by Beauville [5] that these
metrics are hyperkähler, which means that they have holonomy equal to Sp(n).

Suppose that B is an irreducible normal complex analytic space with 0 < dimB < 2n, and
f : X → B is a holomorphic surjective map with connected fibers. Then work of Matsushita [38]
shows that necessarily dimB = n, that all irreducible components of the fibers of f are Lagrangian
with respect to Ω, and the smooth fibers are tori. We call such f a holomorphic Lagrangian
fibration. The following basic conjecture is widely expected to hold:

Conjecture 1. If X is a hyperkähler manifold and f : X → B is a holomorphic Lagrangian
fibration, then B ∼=Pn .

This conjecture is clearly true when n = 1. The most striking result about this Conjecture is
due to Hwang [28]:

Theorem 2 (Hwang [28]). Conjecture 1 holds if X is projective and B is smooth.

Theorem 2 was later extended to X Kähler and B smooth by Greb–Lehn [17]. Assuming X
projective and n = 2, it was proved by Ou [49] that either B is smooth (hence P2) or else it has
just one very specific singular point. This case was later ruled out independently by Bogomolov–
Kurnosov [6] and Huybrechts–Xu [26], so the conjecture is known in this case. It is also known for
some families of hyperkähler manifolds [4, 10, 37, 42, 63], but it remains open in general.

There are also a number of partial results towards Conjecture 1 in general, see [25] for an
excellent recent overview. It is known that B must be a Kähler space (see e.g. [17, Proposition 2.2])
and Moishezon [39, Section 2.3], and that B isQ-factorial and has at worst klt singularities (by [39,
Theorem 2.1]). It follows that B has at worst rational singularities, and hence it is projective
by [47, Corollary 1.7]. Again thanks to [39, Theorem 2.1] we see that B is a Fano variety with
Picard number one, and in particular it is uniruled [43] and simply connected [55]. The rational
cohomology of B is isomorphic to the one of Pn [51]. It is also known that the map f is locally
projective [9], so the smooth fibers are abelian varieties, and if B is smooth then the discriminant
locus D ⊂ B of f has pure codimension 1 by [30, Proposition 3.1].

Our main result forms part of a new proof of Hwang’s theorem, as well as Greb–Lehn’s
extension. In order to describe this, suppose B is not Pn . Then from a result of Cho–Miyaoka–
Shepherd–Barron [10], which uses Mori theory, it follows that there is a rational curve in B (not
contained in D) with anticanonical degree at most n. We show that such a curve is free, and
together these imply that the Grothendieck decomposition of the pullback of T B to this rational
curve has some degree zero factors. Taking such rational curves with minimal anticanonical
degree, we can consider the universal family U with evaluation map µ : U → B , which we may
assume is a submersion over a Zariski open set B◦ ⊂ B (which we may assume is equal to B\D
up to enlarging D), and the positive degree factors in the Grothendieck decomposition define a
nontrivial holomorphic subbundle V ⊂ µ∗T B◦, whose rank is strictly less than n. At the same
time, classical work of Freed [13] shows that on B◦ there is a “special Kähler metric” gSK, whose
Kähler form ωSK is parallel with respect to a “special Kähler connection” ∇SK on T RB◦, which is
torsion-free, flat, and d∇SK

J = 0 (where J is the complex structure of B). Our main result is then:

Theorem 3. In this setting, V is preserved by the pullback of the Chern connection of gSK.

We also show that the corresponding real subbundle VR ⊂ µ∗T RB◦ is also preserved by the
pullback of the special Kähler connection ∇SK. This in turn can be interpreted as giving a
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nontrivial splitting of a real variation of Hodge structures (which naturally exists on B◦) when
pulled back via µ. As we will discuss below, by combining Theorem 3 with work of Voisin [60],
Hwang [27, 28] and Bakker–Schnell [2], one can deduce Hwang’s Theorem 2.

Let us first give some intuition for our approach. One of the key features of the rich geometry
of special Kähler metrics is that they have nonnegative bisectional curvature. Recall here the
fundamental theorem of Mori [45] and Siu–Yau [53] which states that a compact Kähler manifold
with positive bisectional curvature must be isomorphic to Pn . This was generalized by Mok [44]
to classify compact Kähler manifolds with nonnegative bisectional curvature: their universal
cover splits as a product of a Euclidean factor, of projective space, and of compact Hermitian
symmetric spaces of rank ⩾ 2. A large part of our arguments are motivated by trying to extend
Mok’s techniques to our noncompact manifold B\D with an incomplete metric with nonnegative
bisectional curvature, making essential use of the special features of special Kähler metrics, which
are summarized in Section 2.

To prove Theorem 3, thanks to a recent result of Bakker [1] we need to consider two cases:
either f has maximal variation or f is isotrivial. In the first case, we prove in Section 4 a crucial
rigidity result (Theorem 16) which shows that the bisectional curvature of ωSK vanishes when
evaluated on a vector in V and a vector in its orthogonal complement. For this, we use results of
Zhang and the second-named author [59] on the asymptotic behavior of ωSK near D , as well as
a strictly positive lower bound for ωSK near D obtained by Gross, Zhang and the second-named
author in [18, 19, 57]. These are explained in Section 3. In Section 5 we then supplement the
rigidity result by showing that the rough Laplacian of the bisectional curvature of ωSK evaluated
on the same vectors vanishes as well. This result is analogous to a statement in Mok [44],
although our proof is quite different. Equipped with these rigidity results, in Section 6 we adapt
an argument of Mok [44] and conclude. In the isotrivial case the rigidity results are trivial because
ωSK is flat, but this flatness can be effectively exploited to show again that V is preserved by the
Chern connection of gSK.

In Section 7 we sketch how Theorem 2 follows by combining Theorem 3 with a number of
recent results in the literature. As mentioned above, we first show that the real subbundle
VR ⊂ µ∗T RB◦ which corresponds to V is preserved also by the pullback of the special Kähler
connection ∇SK. This uses again our rigidity theorem. Then we invoke an important result of
Hwang [27, 28], which also has a recent proof by Bakker–Schnell [2] (Theorem 27 below), which
gives that the map µ must have connected fibers. Thus, our splitting descends to a parallel
splitting of T RB◦, from which we obtain a parallel real (1,1)-form on B◦ which is not proportional
to ωSK, which is contradiction to a result of Voisin [60].

Lastly, in Section 8 we make some comments on the obstacles that we faced when trying to
extend our approach to the case when B is singular.

Remark 4. In the first draft of our paper, our original argument in Section 7 to construct the
parallel form on B◦ turned out to be incomplete. After our first draft was posted to arXiv, Bakker
and Schnell sent us their paper [2] with a new proof of Hwang’s theorem. As mentioned above,
to deduce Theorem 2 from Theorem 3 we now rely on their paper. On the other hand, without
using [2], what our arguments show is that B must be Pn provided that µ has connected fibers.
As pointed out to us by Hwang, this result was implictly proved by Cho–Miyaoka–Shepherd–
Barron [10, Section 7] using a different method (under the extra assumption that f has a section,
which was removed by Nagai [46]).
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2. Special Kähler metrics

2.1. Notation

Let us first fix some notation. For a complex manifold B we will denote by T RB its real tangent
bundle, and with T B ⊂ T CB = T RB ⊗C its holomorphic tangent bundle (of complex tangent
vectors of type (1,0)). The dual of T B will be denoted by Ω1

B . The complex structure will be
denoted by J : T RB → T RB . We will also denote B◦ := B\D and X ◦ := f −1(B◦).

2.2. Existence of special Kähler metrics

The paper by Freed [13], following work of Donagi–Witten [12], shows that the base of an algebraic
integrable system (which in our case is B◦) admits a geometric structure called “special Kähler
metric”, ωSK. This means that (B◦, J ,ωSK) is a Kähler manifold and there is a torsion-free flat
connection ∇SK on T RB◦ which makes ωSK parallel and d∇SK

J = 0 (however, in general ∇SK J ̸= 0),
where d∇SK

:Ω1(T RB◦) →Ω2(T RB◦) is the usual extension of ∇SK (cf. [13, p. 33]). The Riemannian
metric associated to ωSK will be denoted by gSK and its Levi-Civita/Chern connection, which in
general is different from ∇SK, will be denoted simply by ∇ (see (56) below for an explicit formula
relating ∇ and ∇SK). On every sufficiently small open set U ⊂ B◦ we can find special holomorphic
local coordinates {z j }n

j=1 (whose real parts are flat Darboux coordinates) and a holomorphic map
Z : U →Hn into the Siegel upper half space

Hn = {A ∈ gl(n,C) | A = At , Im A > 0},

such that Z (y) are the periods of the torus fiber f −1(y), and we can write

ωSK = 1

2

∑
i , j

Im Zi j dzi ∧dz j .

It is also worth noting that special Kähler manifolds can only be complete if they are flat, by a
result of Lu [36]. See [59] for a description of the metric completion of (B◦,ωSK) and of its metric
singularities.

Special Kähler metrics have a Hodge-theoretic origin (see [24, 40]): as mentioned earlier there
is a natural weight-one polarized real variation of Hodge structures R1 f∗RX ◦ on B◦, whose Hodge
bundle of type (1,0) is isomorphic to T B◦ (by contracting with the holomorphic symplectic form),
and its Hodge metric is exactly the special Kähler metric.

In [18, 19, 57] it is also shown that ωSK can be written as ωB + i∂∂ϕ for some Kähler metric ωB

on B and some function ϕ ∈ C∞(B◦)∩L∞(B). In fact, a priori there is a different special Kähler
metric on B◦ for each chosen Kähler class [ωB ] on B , but since B is smooth Fano and of Picard
number one, it follows that b2(B) = 1 so there is a unique choice of Kähler class up to scaling. In
the following, we fix one such ωB once and for all. This way, we can unambiguously talk about
“the” special Kähler metric ωSK in the following.
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2.3. Curvature properties

Following Freed [13], there is a holomorphic symmetric cubic form Ξ ∈ H 0(B◦,Sym3 T ∗B◦) such
that, in any local holomorphic coordinate system, the curvature tensor of ωSK can be written as

Ri j kℓ = g pq
SK Ξi kpΞ jℓq , (1)

and on any sufficiently small U as above we can find a holomorphic function F : U → C such
that, in special holomorphic coordinates, the period matrix and the cubic form can be written as

Zi j =
∂2F

∂zi∂z j
, Ξi pk = ∂3F

∂zi∂zk∂zp
. (2)

From the curvature formula (1) we see in particular that ωSK has nonnegative bisectional curva-
ture on B◦: given any v, w ∈ T 1,0B◦ we have

Rm(v, v , w, w) = Ri j kℓv i v j wk wℓ =
∑
p

∣∣Ξ(v, w,ep )
∣∣2 ⩾ 0,

where {ep } is any gSK-unitary frame.
We will also use the following dichotomy, which was conjectured by Matsushita, and after

progress by van Geemen–Voisin [14] it was recently proved by Bakker [1]:

Theorem 5. Either f is isotrivial, or else f has maximal variation.

This dichotomy is then reflected in the curvature properties of ωSK:

Corollary 6. Either ωSK is flat on B◦, or else ωSK has positive Ricci curvature on a Zariski open
subset of B◦.

In the second case, up to replacing D with a larger closed analytic subvariety we will always
assume that RicgSK > 0 on B◦.

Proof. We use Bakker’s Theorem 5. If f is isotrivial, then the local period map Z is constant, so
from (2) we see that Ξ ≡ 0 on B◦, and (1) shows that ωSK is flat. If f has maximal variation, then
the period map Z is generically of maximal rank (equal to n), so Z is an immersion on a Zariski
open subset of B◦ (which, up to enlarging D , we may assume is equal to B◦). Given any v ∈ T 1,0

x B◦,
the Ricci curvature of ωSK in the direction of v is given by

Ric(v, v) =
∑
p,q

∣∣Ξ(v,ep ,eq )
∣∣2 ⩾ 0,

and if this vanishes for some v ̸= 0 then in special holomorphic coordinates we have that for all
p, q

0 =Ξ(v,ep ,eq ) = ∂3F

∂v∂ep∂eq
= ∂

∂v
Zpq ,

so the period map is not an immersion at x, a contradiction. □
Remark 7. The holomorphic sectional curvature of ωSK is given by

HSC(v) = Ri j kℓv i v j vk vℓ =
∑
p

∣∣∣∣
∂3F

∂v∂v∂ep

∣∣∣∣
2

⩾ 0,

where v ∈ T 1,0B◦ is a unit vector (and in the last equality we use special holomorphic coordi-
nates). The condition that ωSK has (strictly) positive holomorphic sectional curvature on B◦ thus
means that none of the “diagonal” entries of the period matrix Z

Zi j v i v j = ∂2F

∂v∂v
is locally constant. We expect that this always holds (up to enlarging D) when f has maximal
variation.
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Remark 8. We are grateful to B. Bakker for the following observation. Let f : S →P1 be an elliptic
fibration of a K 3 surface S. For n ⩾ 2 let X = S[n] be the Hilbert scheme parametrizing length n
subschemes of S. We obtain an induced holomorphic Lagrangian fibration f̃ : X → (P1)[n] = Pn

whose general fiber is isomorphic to the product of n general fibers of f , and if f has maximal
variation then so does f̃ . Since the period matrix of such a torus is diagonal, we see that the
period map Z of f̃ has Zi j = 0 for i ̸= j . It follows that for these examples the special Kähler
metric, which is not flat if f has maximal variation, nevertheless does not have strictly positive
bisectional curvature on Pn\D , since in local special coordinates we have

Rm(ei ,ei ,e j ,e j ) = Ri i j j = 0,

for all i ̸= j . Thus, to prove our main theorem, it would not be sufficient to prove a suitable
noncompact version of the Mori–Siu–Yau theorem [45, 53], but we must instead generalize the
work of Mok [44].

3. Estimates on the special Kähler metric

We collect in this section two crucial estimates for the special Kähler metric ωSK, which are
contained or follow from earlier work of the second-named author and coauthors [57–59]. See
also [8, 22] for a study of the asymptotics of special Kähler metrics on Riemann surfaces.

3.1. Strict positivity

The first estimate, taken from [18, 19, 57, 58], says that the positivity ofωSK does not degenerate as
we approach D . Since this statement is valid even if B is singular, we present it in this generality.

Proposition 9. Let X be a hyperkähler manifold, f : X → B a holomorphic Lagrangian fibration
with B a normal analytic variety. Let ωB be a smooth Kähler metric on B (in the sense of analytic
spaces) andωSK the special Kähler metric on B◦ cohomologous toωB . Then there is C > 0 such that
on B◦ we have

ωSK ⩾C−1ωB . (3)

Proof. Fix a Kähler metric ωX on X and for t ⩾ 0 let ωt be the hyperkähler metric on X
cohomologous to f ∗ωB + e−tωX . Then the Schwarz Lemma [57, Lemma 3.1] (using also [58,
Proof of Theorem 3.2] in the case when B is singular) gives

ωt ⩾C−1 f ∗ωB ,

on X ◦ (with C independent of t ⩾ 0), and thanks to [18, Theorem 1.1], [23] and [19, Theorem 1.2]
we know that as t →∞ we have

ωt → f ∗ωSK,

locally uniformly on X ◦ (and even locally smoothly), so we conclude that

f ∗ωSK ⩾C−1 f ∗ωB ,

on X ◦, and since f is a submersion over B◦ this is equivalent to

ωSK ⩾C−1ωB ,

on B◦. □
Remark 10. If B has quotient singularities (which is expected to hold in general [25, Re-
mark 1.11]) then we can replace ωB with an orbifold Kähler metric ωorb, and a similar argument
gives the stronger bound

ωSK ⩾C−1ωorb,

on B◦.
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3.2. Ricci curvature bounds near D

From now on, we return to our standing assumption that B is smooth. The second crucial
estimate is a bound for the Ricci curvature of ωSK. We have seen in the previous section that ωSK

has nonnegative Ricci curvature on B◦. In fact, as shown in [54, 57] (see also [59, Proposition 4.1]),
we have

RicgSK =ωWP ⩾ 0,

where ωWP is the Weil–Petersson form of the family of abelian varieties f : X ◦ → B◦ (pullback of
the Weil–Petersson metric on the moduli space via the moduli map). Concretely, on B◦ we have

ωn
SK = c(−1)

n2
2 f∗(σn ∧σn), (4)

where c > 0 and σ is a holomorphic symplectic form on X , and to obtain ωWP it suffices to take
−i∂∂ log of the fiber integral in (4) divided by the local Euclidean volume form.

Recall that the discriminant locus D ⊂ B is a closed analytic subvariety of pure codimension 1,
see [30, Proposition 3.1]. Let x ∈ D be any smooth point of D , and choose an open neighborhood
U of x with local holomorphic coordinates centered at x such that D ∩U = {z1 = 0}. Thus, at
points of D ∩U , the vectors ∂

∂z2
, . . . , ∂

∂zn
are tangent to D , while ∂

∂z1
is transversal. The main claim

is the following:

Proposition 11. On {z1 ̸= 0} the Ricci curvature tensor Ri j = RicgSK

(
∂
∂zi

, ∂
∂z j

)
of ωSK satisfies

0⩽Ri i ⩽C , 2⩽ i ⩽ n, (5)

0⩽R11 ⩽
C

|z1|2
, (6)

for some constant C > 0.

Proof. We will use freely the arguments in [59, Section 4.3] (these are stated for X projective
hyperkähler, but all arguments there go through for general X hyperkähler using that Lagrangian
fibrations are locally projective [9]). By the Monodromy Theorem, there is m ∈ N>0 such that
the eigenvalues of the monodromy operator T (acting on H 1( f −1(y),Z) for some fixed basepoint
y ∈U \D) are mth roots of unity. We may assume without loss that in our coordinates U is the unit
polydisc, and letting Ũ be the unit polydisc with coordinates (t1, . . . , tn), we define the branched
covering

q : Ũ →U , q(t1, . . . , tn) = (t m
1 , t2, . . . , tn).

Then after pulling back to Ũ , the monodromy operator T becomes unipotent, with

(T − Id)2 = 0.

Thanks to the argument in [59, p. 774], we can find holomorphic functions w1, . . . , wn on Ũ , which
are special holomorphic coordinates on Ũ ∩ {t1 ̸= 0} (but need not form a coordinate system at
points on {t1 = 0}, and they may even vanish there), such that, on Ũ ∩ {t1 ̸= 0}, we can write

q∗ωSK = i

2

∑
j ,k

Im Z j k (t )dw j ∧dwk = i

2

∑
j ,k,p,q

Im Z j k (t )
∂w j

∂tp

∂wk

∂tq
dtp ∧dtq ,

where Z j k (t ) is the local period map pulled back to Ũ . Thus, if we denote by dVE the Euclidean
volume form on Ũ given by the coordinates t1, . . . tn , we have

log
q∗ωn

SK

dVE
= logdetIm Z + log

∣∣∣∣det

(
∂w j

∂tp

)∣∣∣∣
2

,

and since det
(
∂w j

∂tp

)
is holomorphic and nonzero on Ũ ∩ {t1 ̸= 0}, we get

Ricq∗gSK

(
∂

∂t j
,
∂

∂tk

)
=− ∂

∂t j

∂

∂tk
log

q∗ωn
SK

dVE
=− ∂

∂t j

∂

∂tk
logdetIm Z . (7)
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To estimate this, following [59, Lemma 4.3] we use Schmid’s Nilpotent Orbit Theorem [50] and
see there are b j k ∈Q and a holomorphic map Q from Ũ to the space of symmetric n ×n complex
matrices, such that on Ũ ∩ {t1 ̸= 0} we have

Z j k (t ) =Q j k (t )+ log t1

2πi
b j k , 1⩽ j ,k ⩽ n,

for some branch of log. Thus,

Im Z j k (t ) = ImQ j k (t )−
b j k

2π
log |t1|, (8)

and furthermore (see [59, Lemma 4.3]) there is C > 0 such that on Ũ ∩ {t1 ̸= 0} we have

Im Z (t )⩾C−1 Id, (9)

and so the inverse matrix of Im Z (t ), whose entries will be denoted by (Im Z (t ))pq , satisfies

0 < (Im Z (t ))−1 ⩽C Id. (10)

Differentiating the determinant gives

− ∂

∂t j

∂

∂tk
logdetIm Z (t ) =−(Im Z (t ))pq ∂

∂t j

∂

∂tk
Im Zpq (t )

+ (Im Z (t ))pq (Im Z (t ))r s ∂

∂t j
Im Zpr (t )

∂

∂tk
Im Zqs (t ).

First we take j ⩾ 2, and differentiating (8) gives

− ∂

∂t j

∂

∂t j
logdetIm Z (t ) = (Im Z (t ))pq (Im Z (t ))r s ∂

∂t j
ImQpr (t )

∂

∂t j
ImQqs (t )⩽C ,

using (10) and the fact that Q is holomorphic on all of Ũ . As for the t1 direction, differentiating (8)
we have

− ∂

∂t1

∂

∂t1
logdetIm Z (t )

= (Im Z (t ))pq (Im Z (t ))r s ∂

∂t1

(
ImQpr (t )− bpr

2π
log |t1|

)
∂

∂t1

(
ImQqs (t )− bqs

2π
log |t1|

)

⩽C
∑
p,r

∣∣∣∣
∂

∂t1

(
ImQpr (t )− bpr

2π
log |t1|

)∣∣∣∣
2

⩽C +C

∣∣∣∣
∂

∂t1
log |t1|

∣∣∣∣
2

⩽ C

|t1|2
.

Going back to (7), this shows that on Ũ ∩ {t1 ̸= 0}) we have

0⩽Ricq∗gSK

(
∂

∂t j
,
∂

∂t j

)
⩽C , j ⩾ 2,

0⩽Ricq∗gSK

(
∂

∂t1
,
∂

∂t1

)
⩽ C

|t1|2
,

and so on U ∩ {z1 ̸= 0} we have for j ⩾ 2,

0⩽R j j = RicgSK

(
∂

∂z j
,
∂

∂z j

)
= Ricq∗gSK

(
∂

∂t j
,
∂

∂t j

)
⩽C ,
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and

0⩽R11 = RicgSK

(
∂

∂z1
,
∂

∂z1

)
= 1

m2|t1|2m−2 Ricq∗gSK

(
∂

∂t1
,
∂

∂t1

)
⩽ C

m2|t1|2m ⩽ C

|z1|2
,

as desired. □

Remark 12. We expect that the sharp bound in (6) in general is of the form C
|z1|2 log2 |z1|

, cf. [62]

when dimB = 1. One may be able to show this by proving an asymptotic expansion for the fiber
integral in (4) which can be differentiated term-by-term, as in [3, 56].

4. Rational curves and rigidity

Recall that B is a Fano manifold, hence uniruled. Let ν : P1 → B be a rational curve (i.e. a
nonconstant holomorphic map) whose image is not contained in D . Our first result of this section
shows that ν is a free rational curve, in the terminology of Mori Theory, cf. [35].

4.1. Freeness of the rational curve

By Grothendieck’s Theorem, the vector bundle ν∗T B splits and so we can write

ν∗T B ∼=
n⊕

i=1
O (ai ), (11)

for some integers ai , which we order by a1 ⩾ · · ·⩾ an . Dualizing, we have

ν∗Ω1
B
∼=

n⊕
i=1

O (−ai ), (12)

and

q :=−KB ·ν(P1) =
n∑

i=1
ai > 0, (13)

since B is Fano.
On B◦ we equip Ω1

B with the Hermitian metric hSK induced by the special Kähler metric ωSK.

Lemma 13. We have an ⩾ 0.

Proof. This argument was suggested to us by M. Păun. Consider the nontrivial section v ∈
H 0(P1,ν∗Ω1

B ⊗ O (an)) which corresponds to the quotient morphism ν∗T B → O (an). Equip
L := O (an) with a smooth metric hL on P1, and equip ν∗Ω1

B with the smooth metric ν∗hSK on
P1\ν−1(D) which is the pullback of the metric induced by ωSK. Thus, the curvature of ν∗hSK

is Griffiths nonpositive on P1\ν−1(D), since ωSK has nonnegative bisectional curvature on B◦

and dualization reverses the sign of Griffiths positivity (see e.g. [11, Section VII.6]). Equip then
ν∗Ω1

B ⊗O (an) with the metric h = ν∗hSK ⊗hL on P1\ν−1(D).
Differentiating log |v |2h on P1\ν−1(D) we have the well-known identity of (1,1)-forms on

P1\ν−1(D)

i∂∂ log |v |2h =
|∇v |2h
|v |2h

− |〈∇v, v〉h |2
|v |4h

−RhL −
〈Rν∗hSK (v), v〉h

|v |2h
,

where ∇v is an ν∗Ω1
B ⊗O (an)-valued (1,0)-form, so |∇v |2h is a (1,1)-form, and similarly for the

other terms. Using Cauchy–Schwarz we have

|〈∇v, v〉h |2
|v |4h

⩽
|∇v |2h
|v |2h

,
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and since on P1\ν−1(D) the curvature of ν∗hSK is Griffiths nonpositive, we can estimate

i∂∂ log |v |2h ⩾−RhL −
〈Rν∗hSK (v), v〉h

|v |2h
⩾−RhL ,

(14)

Since RhL is a smooth form on P1, we see that log |v |2h is quasi-psh on P1\ν−1(D), and using (3)
we see that

sup
P1\ν−1(D)

log |v |2h ⩽C + sup
P1\ν−1(D)

log |v |2ν∗hB⊗hL
<∞,

where hB is the smooth metric on Ω1
B induced by ωB . Thus log |v |2h is bounded above, hence by

the Grauert–Remmert extension theorem [15] the inequality RhL + i∂∂ log |v |2h ⩾ 0 extends over
the singularities to all of P1 (in the weak sense). Integrating this over P1 and using Stokes thus
gives

an =
∫

P1
RhL =

∫

P1
(RhL + i∂∂ log |v |2h)⩾ 0,

as desired. □

Lemma 13 says that every rational curve in B which is not contained in D is free, and by Mori
Theory it deforms to cover a Zariski dense subset of B (see e.g. [35]).

The pullback morphism ν∗Ω1
B → Ω1

P1 dualizes to a nontrivial morphism O (2) → ν∗T B , and
hence a1 ⩾ 2. Using this observation and Lemma 13 we can write the splittings in (11) and (12) as

ν∗T B ∼=O (a1)⊕·· ·⊕O (an−ℓ)⊕O⊕ℓ, (15)

ν∗Ω1
B
∼=O (−a1)⊕·· ·⊕O (−an−ℓ)⊕O⊕ℓ, (16)

for some 0⩽ ℓ⩽ n −1, where a1 ⩾ a2 ⩾ · · ·⩾ an−ℓ⩾ 1, a1 ⩾ 2, and

q =
n−ℓ∑
i=1

ai .

Recall now a result by Cho–Miyaoka–Shepherd–Barron [10, Corollary 0.4(11)], which uses
Mori theory:

Theorem 14. Let B be a uniruled projective manifold, D an effective divisor, and suppose that, for
any rational curve ν :P1 → B which is not contained in D, we have the inequality

−KB ·ν(P1)⩾ n +1. (17)

Then B ∼=Pn .

If, in our setting, for all rational curves ν : P1 → B not contained in D we have ℓ= 0, i.e. ai > 0
for all i , then since a1 ⩾ 2 it would follow that −KB ·ν(P1) = ∑n

i=1 ai ⩾ n +1 and so B would be
isomorphic to Pn . In other words, if B ̸∼= Pn then there exists a rational curve ν0 : P1 → B not
contained in D which has ℓ⩾ 1, i.e. there are some trivial factors O⊕ℓ in the splitting (11). We
may also assume that the anticanonical degree q :=−KB ·ν0(P1) is as small as possible among all
rational curves not contained in D (and satisfies 2⩽ q ⩽ n), and we will call these minimal degree
rational curves, which is consistent with the standard terminology, e.g. in [29]. By Lemma 13, this
rational curve ν0 is free and so it deforms to cover a Zariski dense subset of B . Let K be the
irreducible component of the space of rational curves in B (see [35, Section II.2]) which contains
ν0, which we fix once and for all. From Mori Theory (see [35] and [29, Section 3]) we have that K

is a quasiprojective variety equipped with a universal P1-bundle ρ : U → K and an evaluation
map µ : U → B . For any t ∈K we will also write

Ut := ρ−1(t ) ⊂U ,



Yang Li and Valentino Tosatti 181

so Ut
∼=P1 is the rational curve corresponding to t , and

νt :=µ|Ut : Ut → B ,

will denote the morphism to B .
Furthermore, the generic rational curve in K is free and not contained in D , K is smooth at

such curves, and the integers ai ,ℓ in the decomposition (15) are the same for all generic such
curves. Given x ∈ B◦ there is some minimal degree rational curve ν in K that passes through x
and is smooth at x. Thanks to [35, Proposition II.3.7], we can also assume that ν(P1) intersects
D only at the regular points of D (since the singularities of D have codimension at least 2 in B),
and that these intersections are transverse. The evaluation morphism µ : U → B is a submersion
over a Zariski open subset of B , which up to enlarging D we may assume equals B◦. Thus, if we
define U ◦ := µ−1(B◦), then U ◦ is smooth and µ : U ◦ → B◦ is a submersion. The metric gSK on
T B◦ induces by pullback a metric µ∗T B◦ over U ◦, which we will denote by the same symbol, and
similarly for the connections ∇ and ∇SK, which induce pullback connections denoted in the same
way.

Lemma 15. There is a locally free sheaf V ♯ on U such that for every t ∈K , the restriction V ♯
∣∣
Ut

of

V ♯ to the rational curve Ut equals the factor O⊕ℓ in the splitting (16) for ν∗t Ω
1
B .

Proof. For the sake of clarity, we first define the fiber V ♯ at any point on Ut
∼= P1. For this, we

consider ν∗t Ω
1
B , which from the splitting (16) is isomorphic to O (−a1)⊕·· ·⊕O (−an−ℓ)⊕O⊕ℓ. Its

space of global sections H 0(Ut ,ν∗t Ω
1
B ) is then ℓ-dimensional, and we can find a basis of such

sections which are linearly independent at all points of P1. The fiber of V ♯ at any point on Ut is
then defined as the linear span of any given basis of H 0(Ut ,ν∗t Ω

1
B ).

To prove that this collection of ℓ-dimensional vector spaces form a locally free sheaf, con-
sider first the locally free sheaf µ∗Ω1

B on U , and take its direct image sheaf ρ∗µ∗Ω1
B . Since

h0(Ut ,µ∗Ω1
B |Ut ) = ℓ is independent of t , Grauert’s Theorem on direct images [21, Corol-

lary III.12.9] shows that ρ∗µ∗Ω1
B is a locally free sheaf on K . We then set V ♯ = ρ∗ρ∗µ∗Ω1

B , which
is a locally free sheaf over U whose fibers agree with our previous description. □

Our main interest will be with the restriction of V ♯ to U ◦, which will be denoted with the same
notation. This is a holomorphic vector bundle over U ◦, which is naturally a subbundle of µ∗Ω1

B◦ .
We then define a holomorphic subbundle V ⊂µ∗T B◦ over U ◦ as the annihilator of V ♯, namely

V = {v ∈µ∗T B◦ | γ(v) = 0, for all γ ∈ V ♯}.

For any t ∈ K we have that the restriction of V to Ut equals the factor O (a1)⊕ ·· · ⊕O (an−ℓ) in
the splitting (15) for ν∗t T B . Observe that since the pullback morphism ν∗t Ω

1
B →Ω1

P1 dualizes to a
nontrivial morphism O (2) → ν∗t T B , it follows that the tangent direction to the image of νt at any
point on this curve (which is a line in T B◦) when pulled back via µ lies in the fiber of V over Ut .

We then define a smooth complex subbundle N ⊂ µ∗T B◦ over U ◦ as the gSK-orthogonal
complement of V , and N ♯ ⊂ µ∗Ω1

B◦ as its annihilator (or equivalently as the gSK-orthogonal
complement of V ♯), so that over U ◦ we have the splittings

µ∗T B◦ = V ⊕N , µ∗Ω1
B◦ = V ♯⊕N ♯. (18)

The bundles N ,N ♯ are not yet known to be holomorphic (we will prove this later on). Note also
that the (complex antilinear) smooth isomorphism

µ∗T B◦ →µ∗Ω1
B◦ , (19)

defined by the metric gSK (by “lowering the index” and conjugating) maps N isomorphically
onto V ♯.
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4.2. The rigidity theorem

We have the following rigidity statement:

Theorem 16. Given a rational curve Ut for some t ∈K , with morphism νt :P1 → B, and given a
section u ∈ H 0(P1,V ♯

∣∣
Ut

), let ν∗t hSK be the smooth metric on ν∗t Ω
1
B over P1\ν−1

t (D) induced by gSK,
and let Rν∗t hSK be its curvature. Then we have:

(a) On P1\ν−1
t (D) we have

〈Rν∗t hSK (u),u〉ν∗t hSK = 0. (20)

(b) Let ζ be the smooth section of N
∣∣
Ut

over P1\ν−1
t (D) which corresponds to u under (19),

and let α be a tangent vector to νt (P1). Then at any point on νt (P1)∩B◦ the curvature
tensor of gSK satisfies

R
ααζζ

= 0, (21)

and hence

Ξ(α,ζ,β) = 0, for all β ∈ T B◦. (22)

(c) For ζ as in (b), and for any section v ∈ H 0(P1,V
∣∣
Ut

), at any point on νt (P1)∩B◦ we have

Rv vζζ = 0, (23)

as well as

Ξ(v,ζ,β) = 0, for all β ∈ T B◦. (24)

(d) Every section u ∈ H 0(P1,V ♯
∣∣
Ut

) is parallel on P1\ν−1
t (D) with respect to the Chern connec-

tion ∇ induced by ωSK.
(e) The splitting ν∗t Ω

1
B = V ♯

∣∣
Ut

⊕N ♯
∣∣
Ut

is preserved by ∇.

Proof.

(a). Equip V ♯
∣∣
Ut

with the smooth metric h on P1\ν−1
t (D) induced by ωSK via V ♯

∣∣
Ut

,→ ν∗t Ω
1
B →

Ω1
B . Since ωSK has nonnegative bisectional curvature, the induced metric on Ω1

B (and hence also
the one on ν∗t Ω

1
B ) is Griffiths nonpositively curved, and since curvature decreases in subbundles,

the metric h is also Griffiths nonpositively curved.
As in (14), on P1\ν−1

t (D) we have

i∂∂ log |u|2h =
|∇u|2h
|u|2h

− |〈∇u,u〉h |2
|u|4h

− 〈Rh(u),u〉h

|u|2h
⩾−〈Rh(u),u〉h

|u|2h
⩾ 0.

(25)

Thus log |u|2h is psh on P1\ν−1
t (D), and again using (3) we see that

sup
P1\ν−1

t (D)

log |u|2h ⩽C + sup
P1\ν−1

t (D)

log |u|2ν∗t hB
<∞,

where hB is the smooth metric on Ω1
B induced by ωB . Thus log |u|2h is bounded above, and by

the Grauert–Remmert extension theorem [15] it extends to a global psh function on P1, which is
therefore constant.

Thus |u|2h is a nonzero constant, and from (25) we deduce that

〈Rh(u),u〉h = 0, (26)

on P1\ν−1
t (D). But using again the curvature decreasing property, we have

0 = 〈Rh(u),u〉h ⩽ 〈Rν∗t hSK (u),u〉ν∗t hSK ⩽ 0,
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and so

〈Rν∗t hSK (u),u〉ν∗t hSK = 0, (27)

on P1\ν−1
t (D), which proves (20).

(b). Since α ∈ T B◦ is a tangent vector to νt (P1) and since u is equal to the image of ζ under (19),
we have

0 = 〈Rν∗t hSK (u),u〉ν∗t hSK =−R
ααζζ

,

which proves (21). The identity (22) is then a consequence of (1).

(c). Given v ∈ H 0(P1,V
∣∣
Ut

) and a point x ∈ νt (P1)∩B◦, we can find a holomorphic family {νs }s∈∆
of rational curves in K that pass through x, with tangent vectorsαs at x (with∆⊂K a small disc
in some chart centered at our original point t ∈K ), and such that d

ds

∣∣
s=tαs = v(x). Let w = d

dsνs

be the first-order deformation (holomorphic) vector field on this family. When restricted to each
Us , w is a section of

ν∗s T B◦ = V
∣∣
Us

⊕N
∣∣
Us

∼=
⊕

i
O (ai )⊕O⊕ℓ,

and since w(x) = 0, it must be a section of the
⊕

i O (ai ) factors, namely a section of V
∣∣
Us

. Pick
a smooth family U of 1-forms on this family, i.e. a C∞ section of the relative cotangent bundle,
with us :=U |Us ∈ H 0(P1,V ♯

∣∣
Us

), and with ut = u. Then by definition along νs we have

ιwU
∣∣
Us

≡ 0,

for all s ∈∆, and so along νt we have

LwU
∣∣
Ut

= (d ιwU )
∣∣
Ut

+ (ιw dU )
∣∣
Ut

= (ιw dU )
∣∣
Ut

,

which vanishes at x since w(x) = 0.
We now use this to prove (24), which by (1) implies (23). For this, let ζs , s ∈ ∆, be the smooth

section of N
∣∣
Us

over P1\ν−1
s (D) which maps to us under (19), and recall that from (22) at x we

have

Ξx (αs ,ζs ,β) = 0,

for all s ∈∆. Taking d
ds

∣∣
s=t of this, we get

0 =Ξx (v,ζ,β)+Ξx (α,Lwζ,β). (28)

Now at x we have that Lwζ is the vector that maps to LwU under (19), since at x the metric gSK

does not get differentiated as it does not depend on s. Since we have shown that (LwU )(x) = 0,
we deduce that (Lwζ)(x) = 0, and so (24) follows from (28).

(d). Given a section u ∈ H 0(P1,ν∗t V ♯), an analogous computation as in (a) gives

0 = i∂∂|u|2h = |∇u|2h −〈Rh(u),u〉h = |∇u|2h , (29)

and so we conclude that ∇u = 0 on P1\ν−1
t (D).

(e). This is a direct consequence of part (d) and [33, Proposition 1.4.18]. □

Given x ∈U ◦ and v ∈ Vx ,ζ ∈Nx , recall from (18) that

Vx ⊕Nx = Tµ(x)B
◦, (30)

so we can view v and ζ also as tangent vectors in B◦. With this in mind, we have the following
useful corollary:
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Corollary 17. Let x ∈U ◦, and let v ∈ Vx ,ζ ∈Nx . Then at µ(x) ∈ B◦ the curvature of the metric gSK

satisfies

Rv vζζ = 0, (31)

as well as

Ξ(v,ζ,β) = 0, for all β ∈ Tµ(x)B
◦. (32)

Proof. Let t ∈ K be such that the corresponding rational curve Ut contains x, and as usual
denoted by νt : P1 → B the corresponding morphism. Since V

∣∣
Ut

∼=⊕i O (ai ), ai > 0, is a globally
generated vector bundle, we can find a global section V ∈ H 0(P1,V

∣∣
Ut

) such that V (x) = v . Let

then u ∈ V
♯

x be the covector which is the image of ζ under (19). Since V ♯
∣∣
Ut

∼=O⊕ℓ is a trivial vector

bundle, we can find a global section U ∈ H 0(P1,V ♯
∣∣
Ut

) such that U (x) = u. Then Theorem 16(c)
applies to U and V , and (31), (32) follow from (23), (24). □

5. The Ricci curvature in the direction of N

Given x ∈ U ◦ and vectors v ∈ Vx ,ζ ∈ Nx (which we can also view as tangent vectors in Tµ(x)B◦

using (30)), Corollary 17 shows that at µ(x) the Riemann curvature tensor of gSK satisfies

Rv vζζ = 0.

As customary, we define the “rough Laplacian” of the Riemann curvature tensor of gSK, evaluated
on v,ζ by

∆Rv vζζ =
1

2

(∑
i
∇i∇i Rv vζζ+

∑
i
∇i∇i Rv vζζ

)
,

where {ei } is a local unitary frame.
The following is the main result of this section:

Theorem 18. Given x ∈U ◦ and v ∈ Vx ,ζ ∈Nx , then at µ(x) we have

∆Rv vζζ = 0, Rvζβγ = 0, for all β,γ ∈ Tµ(x)B
◦. (33)

Let t ∈K be such that the corresponding rational curve Ut contains x, and as usual denoted
by νt : P1 → B the corresponding morphism. As in the proof of Corollary 17, we can extend v to
a section v ∈ H 0(P1,V

∣∣
Ut

) and we can find a section u ∈ H 0(P1,V ♯
∣∣
Ut

) such that the image of u
under (19) is a smooth section ζ ∈ N |Ut over P1\ν−1

t (D) which extends the given vector ζ. The
Ricci curvature R

ζζ
along this curve and evaluated at ζwill also be denoted by RicgSK (u,u), which

is a smooth function on P1\ν−1
t (D).

We wish to show that RicgSK (u,u) is a constant function on P1\ν−1(D). We will proceed in
steps.

5.1. Subharmonicity of RicgSK (u, ū)

To start, we prove the following:

Proposition 19. The function RicgSK (u,u) on P1\ν−1
t (D) is subharmonic.

Proof. On B◦ define for 0⩽ s ≪ 1

gs = gSK − s RicgSK .

It is clear that given any compact K ⋐ B◦ there is some 0 < sK ≪ 1 such that gs is a Kähler metric
on K for 0⩽ s ⩽ sK .
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Standard direct computations (cf. [44, p. 185]) show that given any x ∈ B◦ and two nonzero
(1,0) tangent vectors v,ζ at x, we have the evolution equation at x and s = 0 for the bisectional
curvature of gs evaluated along v and ζ

∂

∂s

∣∣∣
s=0

R(gs )v vζζ =∆Rv vζζ+F (R)v vζζ, (34)

where, as in Mok [44], we define

F (R)v vζζ =
∑
µ,ν

Rv vµνR
ζζνµ

−
∑
µ,ν

|Rvµζν|2 +
∑
µ,ν

|Rvζµν|
2 −Re

(
RvµR

µvζζ+RζµRv vµζ

)
.

Equation (34) is identical to the corresponding evolution of the bisectional curvature in the
directions v,ζ along the Kähler–Ricci flow, see [44]. Thanks to the crucial Lemma 20 below, we
see that

∂

∂s

∣∣∣
s=0

R(gs )v vζζ(x)⩾ 0. (35)

Equip ν∗t Ω
1
B over the compact set ν−1

t (K ) with the Hermitian metric hs induced by gs . At any
point y ∈ ν−1

t (K ) for 0⩽ s ⩽ sK , using the argument in (25), we have

i∂∂ log |u|2hs
+ 〈Rhs (u),u〉hs

|u|2hs

⩾ 0. (36)

We know from Theorem 16(d), that u is parallel with respect to h0 (the metric induced by gSK),
hence (assuming without loss that u is nontrivial) we can scale and assume without loss that
|u|2h0

≡ 1 on P1\ν−1
t (D). On the other hand, from Theorem 16(a), we know that (20) holds, and so

〈Rh0 (u),u〉h0 = 0.

Thus the LHS of (36) vanishes at y for s = 0 and is nonnegative for 0⩽ s ⩽ sK , hence at y we have

0⩽ ∂

∂s

∣∣∣
s=0

(
i∂∂ log |u|2hs

+ 〈Rhs (u),u〉hs

|u|2hs

)

= i∂∂

(
∂

∂s

∣∣∣
s=0

|u|2hs

)
+ ∂

∂t

∣∣∣
t=0

〈Rhs (u),u〉hs ,

(37)

and writing u = u j dz j and |u|2hs
= ui u j g i j

s , observe that

∂

∂s

∣∣∣
s=0

(
ui u j g i j

s

)
=−ui u j g i s

SKg r j
SK

∂

∂s

∣∣∣
s=0

gs,r s = ui u j g i s
SKg r j

SKRr s = RicgSK (u,u).

Furthermore, we can write

〈Rhs (u),u〉hs =−R(gs )v vi j g i q
s g p j

s up uq ,

so
∂

∂s

∣∣∣
s=0

〈Rhs (u),u〉hs =− ∂

∂s

∣∣∣
s=0

R(gs )v vζζ−Rv viζR
ζi −Rv vζi R

ζi ,

but the last two terms vanish since using (1) and (24), we can write

Rv viζ =Ξvi qΞvζq = 0, Rv vζi =ΞvζqΞvi q = 0,

and putting these all together gives

0⩽ i∂∂
(
RicgSK (u,u)

)− ∂

∂s

∣∣∣
s=0

R(gs )v vζζ

⩽ i∂∂
(
RicgSK (u,u)

)
,

(38)

using (35). Since K ⋐ B◦ is arbitrary, this shows that the function RicgSK (u,u) is subharmonic on
P1\ν−1

t (D). □

We used the following lemma, which is the analog of “condition (♯)” in Mok, but the proof here
is substantially easier:
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Lemma 20. In the setting of Theorem 18, at µ(x) we have

∆Rv vζζ⩾ 0, F (R)v vζζ⩾ 0.

Proof. Recall from (1) that
Ri j kℓ = g pq

SK Ξi kpΞ jℓq .

From (31) we then see that at µ(x) we have

0 = Rv vζζ =
∑
β

|Ξvζβ|2,

and so Ξvζβ(x) = 0 for all β ∈ Tµ(x)B◦, and furthermore for all µ,ν ∈ Tµ(x)B◦

0 =
∑
β

ΞvζβΞµνβ = Rvµζν.

Now take the definition of ∆R and use (1) and the fact that Ξ is holomorphic to get

∆Rv vζζ =
∑
i ,p

|∇iΞvζp |2 +
∑
i ,p

Re(Ξvζp∇i∇iΞvζp ) =
∑
i ,p

|∇iΞvζp |2 ⩾ 0,

since Ξvζp (x) = 0. For the F (R) term, from its definition we see that at µ(x) we have

F (R)v vζζ =
∑
µ,ν

Rv vµνR
ζζνµ

+
∑
µ,ν

|Rvζµν|
2.

As in Mok [44, (7)], if we pick {eµ} a unitary basis of eigenvectors of the Hermitian form Hv (µ,ν) =
Rv vµν, then in this basis we see that

F (R)v vζζ =
∑
µ

Rv vµµR
ζζµµ

+
∑
µ,ν

|Rvζµν|
2 ⩾ 0. (39)

□

5.2. Constancy of RicgSK (u, ū)

The next step is the following:

Proposition 21. The function RicgSK (u,u) on P1\ν−1
t (D) is constant.

Proof. Since the function RicgSK (u,u) on P1\ν−1
t (D) is subharmonic by Proposition 19, it suffices

to show that it is bounded.
Recall that, using (30), our sections v,ζ can be viewed as vector fields along νt (P1)∩B◦. Our

first claim is that for every y ∈ νt (P1)∩B◦ and local sections v of V and ζ of N near y , we have

Rvζ = 0. (40)

Indeed, recall from (1) that
Rvζ =

∑
p,q

Ξv pqΞζpq ,

where {ep } is a gSK-unitary frame at our point y . Since µ∗T B◦ = V ⊕N , we may choose the frame
so that e j ∈ V for 1⩽ j ⩽ n−ℓ, and e j ∈N for n−ℓ+1⩽ j ⩽ n. Recalling from (32) thatΞuv w = 0
whenever u ∈ V and v ∈N , we see that Ξv pq = 0 except possibly when 1⩽ p, q ⩽ n −ℓ, so that

Rvζ =
n−ℓ∑

p,q=1
Ξv pqΞζpq = 0,

since Ξζpq = 0 when 1⩽ p, q ⩽ n −ℓ, proving our claim.
Recall that, as explained earlier, we may assume that νt (P1) intersects D only at regular points

of D and that these intersections are transverse. To prove the boundedness of RicgSK (u,u) it
suffices to prove near any of the finitely many points in ν−1

t (D). Let y be such a point, and choose
an open neighborhood U of z = νt (y) in B with local holomorphic coordinates centered at z such
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that D ∩U = {z1 = 0} and νt (P1)∩U = {z2 = ·· · = zn = 0}, so that ∂1 is tangent to the rational curve
while ∂2, . . . ,∂n are tangent to D . We will work on ν−1

t (U ∩{z1 ̸= 0}) which in our chart is identified
with {z1 ̸= 0, z2 = ·· · = zn = 0} =: V .

Thanks to Proposition 11 we know that on V we have

0⩽Ri i ⩽C , 2⩽ i ⩽ n, (41)

0⩽R11 ⩽
C

|z1|2
. (42)

Using (3), together with the fact that u is a holomorphic section on all of P1, we see that

sup
V

|ζ|2ν∗t gB
⩽C sup

V
|u|2ν∗t gB

<∞. (43)

In our coordinates we can write

ζ= ζ1∂1 +
∑
j⩾2

ζ j∂ j =: ζ1∂1 +ζD ,

and the function ζ1 is equal to 〈dz1,u〉gSK . From (43) we see that

sup
V

|ζD |2ν∗t gB
<∞, (44)

and from this and (41) we see that on V we have

0⩽R
ζDζD

⩽C . (45)

Since ∂1 is the tangent vector to νt (P1), it belongs to V
∣∣
Ut

. On the other hand ζ belongs to
N

∣∣
Ut

, hence (40) (restricted to V ) gives

0 = R1ζ(z1) = ζ1(z1)R11(z1)+R1ζD
(z1),

and since RicgSK ⩾ 0 on {z1 ̸= 0}, Cauchy–Schwarz together with (41) and (45) give

|ζ1(z1)|R11(z1) = |R1ζD
(z1)|⩽R11(z1)

1
2 R

ζDζD
(z1)

1
2 ⩽C R11(z1)

1
2 ,

i.e.

|ζ1(z1)|R11(z1)
1
2 ⩽C ,

and using again that RicgSK ⩾ 0, together with (45) we can estimate

0⩽R
ζζ

(z1)⩽C |ζ1(z1)|2R11(z1)+C R
ζDζD

(z1)⩽C ,

as desired. □

We can now conclude the proof of Theorem 18, by showing that at µ(x) we have

∆Rv vζζ = 0, F (R)v vζζ = 0. (46)

Indeed, Proposition 21 shows that the function RicgSK (u,u) onP1\ν−1
t (D) is constant, hence going

back to (38) and recalling (35) and (34) shows that

0 = ∂

∂s

∣∣∣
s=0

R(gs )v vζζ =∆Rv vζζ+F (R)v vζζ.

Recalling Lemma 20, we see that (46) holds. To finally deduce from (46) that the last equality
in (33) holds, it suffices to plug in the fact that F (R)v vζζ = 0 into (39), and see that

∑
µ,ν

|Rvζµν|
2 = 0,

as desired.
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6. Constructing a parallel subbundle of µ∗T B◦

Recall that above we have constructed a decomposition µ∗T B◦ = V ⊕N over U ◦, where V is a
nontrivial holomorphic subbundle, which is not equal to µ∗T B◦ whenever B ̸∼=Pn .

The following is then our main theorem (Theorem 3):

Theorem 22. The holomorphic subbundle V ⊂ µ∗T B◦ over U ◦ is preserved by ∇, the pullback of
the Levi-Civita connection of ωSK.

Recall that by Theorem 5 f is either of maximal variation or isotrivial. The proof of Theorem 22
will be quite different in these two cases.

Observe that after Theorem 22 is proved, it follows that the orthogonal complement N ⊂
µ∗T B◦ is also a holomorphic subbundle, preserved by ∇, see e.g. [33, Proposition 1.4.18], and
the same holds for their duals V ♯,N ♯ ⊂µ∗Ω1

B◦ .

6.1. Maximal Variation Case

In this section we give the proof of Theorem 22 in the case when f has maximal variation. Recall
from Corollary 6 that in this case gSK has positive Ricci curvature on B◦.

We work at a point x ∈ U ◦. Let v be a local holomorphic section of V near x, and let
γ : (−ε,ε) → U ◦ be a smooth curve with γ(0) = x, γ̇(0) = η ̸= 0. The goal of Theorem 22 is then
to show that ∇ηv ∈ V . Using the decomposition µ∗T B◦ = V ⊕N , we can write

∇ηv =−ξ−ζ, ξ ∈ Vx ,ζ ∈Nx ,

(the minus sign is only to match the notation in Mok [44]), so we wish to show that ζ = 0. The
following argument is a modification of a result of Mok [44, Proposition 3.1′], specifically of
equation (21) on p. 211:

Proposition 23. At µ(x) we have
R
ζζζ′ζ′ = 0, (47)

for all ζ′ ∈Nx .

Here and in the following we are again using (30) to view ζ,ζ′ also as tangent vectors in Tµ(x)B◦.
Also, since ∇ is the pullback connection, when taking ∇v for some v ∈ T U ◦ it is really only
µ∗(v) ∈ T B◦ that enters.

Proof. For t ∈ (−ε,ε), let β(t ) be the parallel transport of v(x) along γ, let v(t ) = v |γ(t ), and define
ξ(t ),ζ(t ) by

β(t ) = v(t )+ tξ(t )+ tζ(t ), ξ(t ) ∈ Vγ(t ),ζ(t ) ∈Nγ(t ),

so that
0 =∇ηβ(0) =∇ηv +ξ(0)+ζ(0),

and so we see that ξ(0) = ξ,ζ(0) = ζ. Given an arbitrary ζ′ ∈Nx , let χ(t ) be the parallel transport of
ζ′ along γ, so that χ(0) = ζ′ and ∇γ̇(t )χ(t ) = 0. We can also write

χ(t ) = ζ′(t )+ tθ(t ), ζ′(t ) ∈Nγ(t ),θ(t ) ∈ Vγ(t ),

and ζ′(0) = ζ′. We can expand at the point γ(t )

R
β(t )β(t )χ(t )χ(t ) = Rv vζ′ζ′ + t

(
2ReRv vζ′θ+2ReRvξζ′ζ′ +2ReRvζζ′ζ′

)

+ t 2
(
Rv vθθ+2ReRvξζ′θ+2ReRvζζ′θ+2ReRvξθζ′ +2ReRvζθζ′

+R
ξξζ′ζ′ +R

ζζζ′ζ′ +2ReR
ξζζ′ζ′

)
+O(t 3),
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where O(t 3) denotes a vector-valued function of length bounded above by C t 3. Recalling (1), we
can express the curvature tensor in terms of Ξ, and since Ξ(v,ζ′,β) =Ξ(ξ,ζ′,β) = 0 for all ζ′ ∈Nx

and all β ∈ Tµ(x)B◦ (by Corollary 17), many terms in this expansion vanish. Using furthermore
that Rvζβδ = 0 for all β,δ ∈ Tµ(x)B◦ (by Theorem 18), the expression finally reduces to

R
β(t )β(t )χ(t )χ(t ) = t 2

(
Rv vθθ+R

ζζζ′ζ′

)
+O(t 3).

Defining (similarly to Mok)

A = Rv vθθ+R
ζζζ′ζ′ ,

and since the bisectional curvature is nonnegative, we have Rv vθθ ⩾ 0, and so

A ⩾R
ζζζ′ζ′ . (48)

At this point notice that

A = 1

2

d2

dt 2

∣∣∣
t=0

R
β(t )β(t )χ(t )χ(t ) =∇2

ηηRv vζ′ζ′ , (49)

using that β(t ),χ(t ) are parallel along γ and that ∇ is a pullback connection. On the other hand
we claim that at x we have

∇2
w w Rv vζ′ζ′ ⩾ 0,

for all real tangent vectors w at x. Indeed, pick a curve in U ◦ passing through x and tangent to
w , and let ṽ(t ), ζ̃′(t ) be the parallel transport of v,ζ′ along this curve, then R

ṽ(t )ṽ(t )ζ̃′(t )ζ̃′(t )
⩾ 0, and

Rv vζ′ζ′ = 0 by Corollary 17, and so

0⩽ d2

dt 2

∣∣∣
t=0

R
ṽ(t )ṽ(t )ζ̃′(t )ζ̃′(t )

=∇2
w w Rv vζ′ζ′ ,

as claimed. But recall that Theorem 18 showed that ∆Rv vζ′ζ′ = 0, and since this is an average of
terms of the form ∇2

w w Rv vζ′ζ′ as µ∗(w) varies among all gSK-unit tangent vectors at µ(x), we see

that necessarily ∇2
w w Rv vζ′ζ′ = 0 for all w . Using (48) and (49) we get

0 =∇2
ηηRv vζ′ζ′ = 2A ⩾R

ζζζ′ζ′ ⩾ 0,

which proves (47). □

Now that (47) is established, we can show that ζ= 0 as follows: combining (47) with (1) gives

Ξ(ζ,ζ′,β) = 0,

for all β ∈ Tµ(x)B◦ and all ζ′ ∈Nx . But thanks to Corollary 17 we also have

Ξ(ζ,µ,β) = 0,

for all β ∈ Tµ(x)B◦ and all µ ∈ Vx , and since Tµ(x)B◦ ∼= Vx ⊕Nx , it follows that

Ξ(ζ,µ,β) = 0,

for all µ,β ∈ Tµ(x)B◦. From the formula for the curvature tensor,

RicgSK (ζ,ζ) =
∑
p,q

|Ξ(ζ,ep ,eq )|2 = 0.

Since we assume f of maximal variation, RicgSK > 0 on B◦, and so ζ= 0. This concludes the proof
of Theorem 22 when f has maximal variation.
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6.2. Isotrivial Case

In this section we give the proof of Theorem 22 in the case when f is isotrivial, and so ωSK is
flat by Corollary 6. We wish to show that the subbundle V ⊂ µ∗T B◦ is parallel under ∇, and by
duality this is equivalent to showing that V ♯ ⊂ µ∗Ω1

B◦ is parallel under ∇. Recall that ρ : U → K

is a P1-bundle. Thus, given x ∈ U ◦ and v ∈ TxU ◦, we can decompose TxU ◦ as the direct sum
of the tangent line to the vertical P1 direction and a complementary subspace, and thus write
v = v1+v2, where v1 is tangent to a rational curve Ut (for some t ∈K ) that contains x (which on
Ut corresponds to a point y ∈ P1) and v2 is transverse to Ut . The rational curve morphism will
be as usual denoted by νt : P1 → B . We may also assume that νt (P1) intersects D only at regular
points of D . Since νt is free, we can deform it in a 1-parameter family π : P1 ×∆→ B , with s ∈ ∆
(where ∆⊂K is a small disc in some chart centered at t ∈K ), such that νs := π(·, s) :P1 → B are
rational curves in K which are also not contained in D and such that the first order deformation
vector ∂

∂s

∣∣
s=tνs ∈ H 0(P1,ν∗t T B) agrees with v2 at x. Up to shrinking∆, we have a natural inclusion

σ : P1 ×∆ ,→ U such that µ◦σ = π. The intersection σ(P1 ×∆)∩U ◦ is Zariski open in σ(P1 ×∆)
and contains the point (y,0).

We then choose a smooth (1,0) vector field V on P1 ×∆ which restricted to P1 × {0} is the first
order deformation vector, and so it satisfies dσ(y,0)(V ) = v2. To prove that V ♯ is preserved by ∇v

at x, it will suffice to construct a smooth frame u1, . . . ,uℓ for σ∗V ♯ over P1 ×∆ such that

(∇V ui )(y,0) ∈σ∗V
♯

x , 1⩽ i ⩽ ℓ, (50)

where ∇ also denotes the pullback connection, since by Theorem 16(d) we have that along νt

(∇v1 ui )(x) = 0.

For every s ∈ ∆, σ∗V ♯
∣∣
P1×{s} is a trivial vector bundle of rank ℓ over νs , which over P1\ν−1

s (D)
is equipped with the metric induced by ωSK. For each s ∈ ∆ we can then choose a global
holomorphic frame u1(s), . . . ,uℓ(s) ∈ H 0(P1,σ∗V ♯

∣∣
P1×{s}), smoothly dependent on s ∈ ∆. Thanks

to Theorem 16(d), each ui (s) is parallel (with respect to the connection induced by ωSK) over
P1\ν−1

s (D). Varying s, these sections define a smooth frame u1, . . . ,uℓ of σ∗V ♯ over P1 ×∆, which
is parallel when restricted to each (P1 × {s})∩π−1(B◦). Fix now any 1⩽ i ⩽ ℓ, and recall that

π∗Ω1
B◦ =σ∗V ♯⊕σ∗N ♯, (51)

where N ♯ is the annihilator of N ⊂ µ∗T B◦. Let P be the gSK-orthogonal projection onto the
σ∗N ♯ factor, which is defined on π−1(B◦) and consider

P (∇V ui ),

a smooth section of σ∗N ♯ ⊂ π∗Ω1
B◦ over π−1(B◦). Let also ι : P1 ,→ P1 ×∆ be the embedding

z 7→ (z,0), so π◦ ι= νt .

Lemma 24. The pullback ι∗(P (∇V ui )) toP1\ν−1
t (D) is a parallel section of N ♯

∣∣
Ut

overP1\ν−1
t (D).

Proof. We work at an arbitrary point in P1\ν−1
t (D), let W be any local holomorphic vector field

near our point which is tangent to the P1 factor. Since the splitting

ν∗s Ω
1
B◦ = V ♯

∣∣
νs
⊕N ♯

∣∣
νs

is preserved by ∇ (by Theorem 16(e)), and since gSK is flat, we have

∇W (ι∗(P (∇V ui ))) = ι∗(∇W (P (∇V ui )))

= ι∗(P (∇W ∇V ui ))

= ι∗(P (∇V ∇W ui +∇[W,V ]ui )).
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Now, since ui is parallel along the rational curve νs (P1)\D for all s ∈ C, we have that ∇W ui

vanishes identically on U ×∆ and so
∇V ∇W ui = 0.

Furthermore, [W,V ] =−LV W is also tangent to νt (P1), so ∇[W,V ]ui = 0 too. □

Since ι∗(P (∇V ui )) is parallel, it is in particular holomorphic over P1\ν−1
t (D). The following

Lemma then implies that ι∗(P (∇V ui )) extends to a holomorphic section of ν∗t Ω
1
B over P1:

Proposition 25. Let w ∈ H 0(P1\ν−1
t (D),ν∗t Ω

1
B ) be a holomorphic section which is parallel with

respect to ∇ (the Chern connection induced by ωSK). Then w extends to a holomorphic section of
ν∗t Ω

1
B over all of P1.

Proof. Since w is parallel, its pointwise length |w |2
ν∗t gSK

is constant on P1\ν−1
t (D). Recall that

from (3) we have that
ωSK ⩾C−1ωB , (52)

on B◦. Since ν−1
t (D) is a finite subset of P1, we consider the extension problem of w across each

of these points, so let y ∈ ν−1
t (D) be one of them. Recall that D is regular at the point x = νt (y),

and we can choose local holomorphic coordinates z1, . . . zn on a chart U centered at x such that
D ∩U = {z1 = 0}. The volume form ωn

SK is given by a fiber integration as in (4), and its asymptotic
behavior near D is studied in [20, Theorem 2.1] (see also [7, 19] for the case when dimB = 1
and [32], [56] for dimB arbitrary) where it is shown that

ωn
SK ⩽ C

|z1|2(1−γ)
(− log |z1|)Cωn

B , (53)

on U ∩ {z1 ̸= 0}, for some C > 0 and γ ∈ (0,1]. Combining (52) and (53) gives the crude bound

ωSK ⩽ C

|z1|2(1−γ)
(− log |z1|)CωB , (54)

see also [59, (2.1) and Theorem 3.4] and [20, Theorem 1.1] for sharper and more general such
bounds. Passing to the dual metric on Ω1

B and pulling back via νt , (54) implies that on the
punctured neighborhood ν−1

t (U ∩ {z1 ̸= 0}) of y in P1 we have

|w |2ν∗t gB
⩽ C

|z1|2(1−γ)
(− log |z1|)C |w |2ν∗t gSK

= C ′

|z1|2(1−γ)
(− log |z1|)C ,

and from this we see that |w |2
ν∗t gB

is L1 in ν−1
t (U ∩ {z1 ̸= 0}). Since ν∗t Ω

1
B is a trivial bundle over

ν−1
t (U ), we can represent w locally as an n-tuple of holomorphic functions on ν−1

t (U ∩ {z1 ̸= 0}),
and since these functions are in L2, they extend holomorphically across the point y (see e.g. [48,
Proposition 1.14]), which gives us the desired extension of w . □

At this point we have shown that ι∗(P (∇V ui )) gives a holomorphic section w ∈ H 0(P1,ν∗t Ω
1
B ).

Recalling the splitting (12), we see that w must be a section of the factor O⊕ℓ, i.e. a section
of V ♯

∣∣
Ut

. Since it is also a section of N ♯
∣∣
Ut

, it must be identically zero. This shows that

ι∗(P (∇V ui )) = 0, and so ι∗(∇V ui ) ∈ V ♯
∣∣
Ut

, and so (50) is established. This concludes the proof
of Theorem 22 when f is isotrivial.

7. Obtaining a parallel (1,1)-form and Hwang’s Theorem

In this section we show how to combine our main theorem 3 with results of Voisin [60],
Hwang [27, 28] and Bakker–Schnell [2] to deduce Theorem 2. The key step is the following:

Theorem 26. Suppose that B ̸∼= Pn . Then there is a nontrivial real (1,1)-form ψ on B◦ with
∇SKψ= 0 and ψ not proportional to ωSK.
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First, we show that Theorem 2 follows from this (we do not need to assume that X is
projective):

Proof of Theorem 2. Suppose for a contradiction that B ̸∼= Pn . Then by Theorem 26 the 2-
forms ωSK and ψ on B◦ are both ∇SK-parallel and not proportional, and thus they give us a 2-
dimensional space of global sections of the local system R2 f∗RX ◦ over B◦. However, as observed
by Voisin [60, Lemma 5.5], a result of Matsushita [41] together with Deligne’s invariant cycles
theorem show that this space of sections is always 1-dimensional, a contradiction. □

Since B ̸∼= Pn , we know that V ⊂ µ∗T B◦ is a nontrivial proper holomorphic subbundle over
U ◦, which by Theorem 22 is preserved by ∇. As mentioned after Theorem 22, the gSK-orthogonal
complement N ⊂µ∗T B◦ of V is also a nontrivial proper holomorphic subbundle over U ◦ which
is preserved by ∇. Define real subbundles VR,NR of µ∗T RB◦ over U ◦ by

VR = {v + v | v ∈ V } ⊂µ∗T RB◦,

and analogously for NR. The bundle VR is isomorphic to V via the usual inverse map T RB → T B
given by u 7→ u−i J (u)

2 (and similarly for NR), and on U ◦ we have a splitting

µ∗T RB◦ = VR⊕NR. (55)

Consider now the Stein factorization of µ : U → B , given by

U → Z
p→ B ,

where U → Z has connected fibers and p : Z → B is finite. Define also Z ◦ := p−1(B◦). To complete
the proof of Theorem 26, we will then need the following theorem which is implicit in the work of
Hwang [28], and also appears in the recent work of Bakker–Schnell ([2, Proposition 3.2 and proof
of Theorem 1.1]) relying on ideas of Hwang [27, 28]:

Theorem 27. Suppose the splitting (55) is preserved by ∇SK, then p : Z → B is an isomorphism.

We can now give the proof of Theorem 26:

Proof of Theorem 26. Since B ̸∼= Pn , we have the nontrivial splitting (55). By definition, VR is
preserved by J , and since V is preserved by ∇ (and ∇J = 0), it follows that VR is also preserved
by ∇.

We claim that VR is preserved by ∇SK. To see this, recall that Freed shows in [13, (1.29)] that the
special Kähler connection on T RB is given by

∇SK =∇+ A+ A, (56)

where as usual ∇ is the Levi-Civita connection of gSK and A ∈Λ1,0 Hom(T B◦,T B◦) is given by

Aℓ
i j =

p
−1g kℓ

SKΞi j k , (57)

and the same holds for the pullback connection on U ◦. Given a local section α of V and a local
(1,0) vector field v ∈ T U , we wish to show that

∇SK
v+v (α+α) ∈ VR.

Since we know that ∇v+v (α+α) ∈ VR, it suffices to check that

(A+ A)v+v (α+α) = Av (α)+ Av (α) ∈ VR,

and so it suffices to see that
Av (α) ∈ V ,

or equivalently that gSK(Av (α),ζ) = 0 for all local sections ζ of N . But from (57) we see that

gSK(Av (α),ζ) =
p
−1Ξ(v,α,ζ),
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which vanishes by Theorem 16(c). This concludes the proof that VR is preserved by ∇SK. An
analogous argument shows that NR is also preserved by ∇SK, and so the splitting (55) is preserved
by ∇SK. Applying Theorem 27 we see that p : Z ◦ → B◦ is an isomorphism, so we may assume that
µ : U ◦ → B◦ has connected fibers. The vector bundle µ∗T RB◦ is trivial when restricted to these
fibers, and its subbundles VR,NR restricted to a fiber are preserved by the pullback connection
∇SK (which when restricted to the fiber is a trivial connection), and so VR and NR are pullbacks of
vector bundles on B◦ (denoted by the same notation), which are subbundles of T RB◦ and are still
preserved by ∇SK.

We then define a (1,1)-form ψ on B◦ by projecting ωSK onto VR. Since ∇SKωSK = 0 and VR is
preserved by ∇SK, it follows that ∇SKψ= 0 (and also ∇ψ= 0 for the same reason), and since VR is a
nontrivial proper subbundle of T RB◦, we see that ψ is nonzero and not proportional to ωSK, and
we are done. □

8. Comments about the case when B is singular

It is tempting to ask whether our method can be used to prove that B ∼= Pn even when B is
singular. As mentioned in the Introduction, this is currently known only for n ⩽ 2 [6, 26, 49]. In
general, it is known that B is a normal projective variety, with at worst klt singularities, which
is Fano with Picard number one. The natural generalization of our approach (following [52],
who generalized Mori’s Theorem [45] to the singular setting) would be to consider a functorial
resolution of singularities π : B̃ → B and to show that we must have B̃ ∼= Pn , which forces B ∼= Pn

as well. In this setting, B̃ is a uniruled projective manifold and D̃ = π−1(D) is a divisor, so many
of our arguments above can be repeated on B̃◦ := B̃\D̃ , which carries a special Kähler metricωSK.
The fact that π is functorial gives us a morphism µ :π∗T B → T B̃ which is an isomorphism on B̃◦,
where T B = Hom(Ω1

B ,OB ) is the reflexive tangent sheaf. Given a rational curve ν : P1 → B̃ , which
is not contained in D̃ , pulling back µ via ν we obtain a sheaf injection

A := (π◦ν)[∗]T B → ν∗T B̃ ,

between these vector bundles on P1 (which both split as a direct sum of line bundles which
should have nonnegative degrees). Here we use the standard reflexive pullback notation
(π ◦ ν)[∗]T B := (ν∗π∗T B)∗∗. Using Theorem 14, if B̃ ̸∼= Pn then ν∗T B̃ contains a nontrivial O

factor, hence so does A . To implement our strategy, one would need a rigidity statement like in
Theorem 16 for either one of these trivial summands, and a crucial ingredient of the proof of the
rigidity statement is that sections of the dual of the relevant bundle should have bounded norm
(with respect to the pullback of ωSK). The first fundamental issue is that it is not clear to us how
to show that sections of ν∗Ω1

B̃
or of A ∗ have bounded norm. The key ingredient for this when

B is smooth was the estimate (3), but when B is singular this by itself is not sufficient to prove
boundedness.

What can be shown using results in [16] is rather that sections of the reflexive pullback
(π ◦ν)[∗]Ω[1]

B have bounded norm, but in general the Grothendieck decomposition of this vec-
tor bundle is different from those of ν∗Ω1

B̃
and A ∗, and it may happen that these have some non-

trivial O factor but (π◦ν)[∗]Ω[1]
B does not, which invalidates our approach. This undesirable phe-

nomenon can only happen when the generic rational curve (of the type that we are considering)
when projected down to B always passes through some singular point of B . This however seems
unavoidable in general, as finding low-degree rational curves in normal Fano varieties that can be
deformed to avoid the singularities is a very delicate problem in algebraic geometry, see e.g. [31,
34, 61].
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