SUPPLEMENTARY FIGURES

Figure 1. The symmetric bouncing states for a chain of $N=5$ drops are computed using the procedure described in $\S 3.2$ of the Main Text. The gray and green curves in the figure denote the zero-contours of the the functions $F_{1}\left(d_{1}, d_{2}\right)$ and $F_{2}\left(d_{1}, d_{2}\right)$, respectively, defined in Eq. (8) in the Main Text. Here, d_{1} is the distance between the first and second drop, which equals that between the fourth and fifth drop; d_{2} is the distance between the second and third drop, which equals that between the third and fourth drop. The intersections of the contours correspond to bouncing states, which are color-coded on the basis of the linear stability analysis presented in $\$ 3.1$ of the Main Text. Specifically, blue (red) dots denote stable (unstable) solutions at the lowest memory considered, $\gamma / \gamma_{F}=0.66$. The stable states are labeled n_{11}, n_{12}, n_{21} and n_{22}. The Faraday wavelength is denoted by λ_{F}.

Figure 2. Stability analysis of symmetric bouncing states of a five-droplet chain, performed using the procedure described in $\S 3.1$ of the Main Text. Specifically, s^{*} denotes the nontrivial eigenvalue of the matrix Q with the largest real part, where Q is defined in Eq. (7) in the Main Text. Colors denote the different bouncing states n_{11}, n_{12}, n_{21} and n_{22}, as shown in the legend of panel (a). The dimensionless forcing acceleration of the bath is denoted γ / γ_{F}. (a) Real part of s^{*}, which determines the stability of the bouncing state, $\operatorname{Re}\left(s^{*}\right)<0\left(\operatorname{Re}\left(s^{*}\right)>0\right)$ corresponding to stable (unstable) states. (b) Imaginary part of s^{*}. (c) The dimensional oscillation frequency $\operatorname{Im}\left(s^{*}\right) /\left(2 \pi T_{M}\right)$ of the chain, T_{M} being the memory time defined in Eq. (2) in the Main Text.

Figure 3. The figures show the dependence of the oscillation amplitude $\left|A_{i}\right|$ on the dimensionless forcing frequency f for a periodically-forced chain of five drops, as computed using the linear theory presented in $\S 4.1$ of the Main Text. The procedure described in the caption of Fig. 3 in the Main Text is repeated for droplet chains initialized in the n_{12} (panels (a)-(c)), n_{21} (panels (d)-(f)), and n_{22} (panels (g)-(i)) bouncing states. Three values of the bath's forcing acceleration are shown: $\gamma / \gamma_{F}=0.66$ (left panels), $\gamma / \gamma_{F}=0.7$ (middle panels) and $\gamma / \gamma_{F}=0.74$ (right panels).

Figure 4. The figures show the dependence of the oscillation amplitude A_{i} on the dimensionless forcing frequency f for a periodically-forced chain of five drops. The amplitudes are computed using numerical simulations of the trajectory equation (3) in the Main Text. Specifically, the procedure described in the caption of Fig. 5 in the Main Text is repeated for droplet chains initialized in the n_{12} (panels (a)-(c)), n_{21} (panels (d)-(f)), and n_{22} (panels (g)-(i)) bouncing states. Three values of the bath's forcing acceleration are shown: $\gamma / \gamma_{F}=0.66$ (left panels), $\gamma / \gamma_{F}=0.7$ (middle panels) and $\gamma / \gamma_{F}=0.74$ (right panels).

Figure 5. Bouncing states of a chain of five drops obtained in the limit of high forcing frequency, $f \rightarrow \infty$. The procedure in Fig. 8 of the Main Text is repeated for chains initialized in the bouncing states n_{12} (panels (a)-(d)), n_{21} (panels (e)-(h)), and n_{22} (panels (i)-(l)).

