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Figure 1. The symmetric bouncing states for a chain of N = 5 drops are computed using the
procedure described in §3.2 of the Main Text. The gray and green curves in the figure denote
the zero-contours of the the functions F)(d;, dz) and F»(d;, d,), respectively, defined in Eq. (8)
in the Main Text. Here, d; is the distance between the first and second drop, which equals that
between the fourth and fifth drop; d, is the distance between the second and third drop, which
equals that between the third and fourth drop. The intersections of the contours correspond to
bouncing states, which are color-coded on the basis of the linear stability analysis presented in
§3.1 of the Main Text. Specifically, blue (red) dots denote stable (unstable) solutions at the lowest
memory considered, y/yr = 0.66. The stable states are labeled 7,1, n12, 121 and ny,. The Faraday
wavelength is denoted by Ar.
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Figure 2. Stability analysis of symmetric bouncing states of a five-droplet chain, performed using
the procedure described in §3.1 of the Main Text. Specifically, s* denotes the nontrivial eigen-
value of the matrix Q with the largest real part, where Q is defined in Eq. (7) in the Main Text.
Colors denote the different bouncing states n1;, 112, 121 and ny, as shown in the legend of panel
(a). The dimensionless forcing acceleration of the bath is denoted y/yr. (a) Real part of s*, which
determines the stability of the bouncing state, Re(s*) < 0 (Re(s*) > 0) corresponding to stable (un-
stable) states. (b) Imaginary part of s*. (c) The dimensional oscillation frequency Im(s*)/ (27 Ty)
of the chain, T); being the memory time defined in Eq. (2) in the Main Text.
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Figure 3. The figures show the dependence of the oscillation amplitude | 4;| on the dimensionless
forcing frequency f for a periodically-forced chain of five drops, as computed using the linear
theory presented in §4.1 of the Main Text. The procedure described in the caption of Fig. 3 in the
Main Text is repeated for droplet chains initialized in the n;» (panels (a)-(c)), no; (panels (d)-(f)),
and ny, (panels (g)-(i)) bouncing states. Three values of the bath’s forcing acceleration are shown:
Y/!vFr = 0.66 (left panels), y/yr = 0.7 (middle panels) and y/yr = 0.74 (right panels).
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Figure 4. The figures show the dependence of the oscillation amplitude A; on the dimensionless
forcing frequency f for a periodically-forced chain of five drops. The amplitudes are computed
using numerical simulations of the trajectory equation (3) in the Main Text. Specifically, the pro-
cedure described in the caption of Fig. 5 in the Main Text is repeated for droplet chains initialized
in the n;» (panels (a)-(c)), nz; (panels (d)-(f)), and nyy (panels (g)—(i)) bouncing states. Three
values of the bath’s forcing acceleration are shown: y/yr = 0.66 (left panels), y/yr = 0.7 (middle
panels) and y/yr = 0.74 (right panels).
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Figure 5. Bouncing states of a chain of five drops obtained in the limit of high forcing frequency,
f — oo. The procedure in Fig. 8 of the Main Text is repeated for chains initialized in the bouncing
states 112 (panels (a)-(d)), n2;1 (panels (e)-(h)), and ny» (panels (i)-(1)).
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