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Figure 1. The symmetric bouncing states for a chain of N = 5 drops are computed using the
procedure described in §3.2 of the Main Text. The gray and green curves in the figure denote
the zero-contours of the the functions F1(d1,d2) and F2(d1,d2), respectively, defined in Eq. (8)
in the Main Text. Here, d1 is the distance between the first and second drop, which equals that
between the fourth and fifth drop; d2 is the distance between the second and third drop, which
equals that between the third and fourth drop. The intersections of the contours correspond to
bouncing states, which are color-coded on the basis of the linear stability analysis presented in
§3.1 of the Main Text. Specifically, blue (red) dots denote stable (unstable) solutions at the lowest
memory considered, γ/γF = 0.66. The stable states are labeled n11, n12, n21 and n22. The Faraday
wavelength is denoted by λF .



Lauren Barnes et al.

0.66 0.7 0.74
-0.08

-0.06

-0.04

-0.02

0

0.02

0.66 0.7 0.74
0.06

0.08

0.1

0.12

0.66 0.7 0.74

1.3

1.5

1.7
(a)                                                        (b)                                                          (c) 

Figure 2. Stability analysis of symmetric bouncing states of a five-droplet chain, performed using
the procedure described in §3.1 of the Main Text. Specifically, s∗ denotes the nontrivial eigen-
value of the matrix Q with the largest real part, where Q is defined in Eq. (7) in the Main Text.
Colors denote the different bouncing states n11, n12, n21 and n22, as shown in the legend of panel
(a). The dimensionless forcing acceleration of the bath is denoted γ/γF . (a) Real part of s∗, which
determines the stability of the bouncing state, Re(s∗) < 0 (Re(s∗) > 0) corresponding to stable (un-
stable) states. (b) Imaginary part of s∗. (c) The dimensional oscillation frequency Im(s∗)/(2πTM )
of the chain, TM being the memory time defined in Eq. (2) in the Main Text.
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Figure 3. The figures show the dependence of the oscillation amplitude |Ai | on the dimensionless
forcing frequency f for a periodically-forced chain of five drops, as computed using the linear
theory presented in §4.1 of the Main Text. The procedure described in the caption of Fig. 3 in the
Main Text is repeated for droplet chains initialized in the n12 (panels (a)–(c)), n21 (panels (d)–(f)),
and n22 (panels (g)–(i)) bouncing states. Three values of the bath’s forcing acceleration are shown:
γ/γF = 0.66 (left panels), γ/γF = 0.7 (middle panels) and γ/γF = 0.74 (right panels).
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Figure 4. The figures show the dependence of the oscillation amplitude Ai on the dimensionless
forcing frequency f for a periodically-forced chain of five drops. The amplitudes are computed
using numerical simulations of the trajectory equation (3) in the Main Text. Specifically, the pro-
cedure described in the caption of Fig. 5 in the Main Text is repeated for droplet chains initialized
in the n12 (panels (a)–(c)), n21 (panels (d)–(f)), and n22 (panels (g)–(i)) bouncing states. Three
values of the bath’s forcing acceleration are shown: γ/γF = 0.66 (left panels), γ/γF = 0.7 (middle
panels) and γ/γF = 0.74 (right panels).
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Figure 5. Bouncing states of a chain of five drops obtained in the limit of high forcing frequency,
f →∞. The procedure in Fig. 8 of the Main Text is repeated for chains initialized in the bouncing
states n12 (panels (a)–(d)), n21 (panels (e)–(h)), and n22 (panels (i)–(l)).
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