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Abstract. A continuum model of fracture that describes, in principle, the propagation and interaction of ar-
bitrary distributions of cracks and voids with evolving topology without a “fracture criterion” is developed.
It involves a “law of motion” for crack tips, primarily as a kinematical consequence coupled with thermody-
namics. Fundamental kinematics endow the crack tip with a topological charge. This allows the association
of akinematical conservation law for the charge, resulting in a fundamental evolution equation for the crack-
tip field and, in turn, the crack field. The vectorial crack field degrades the elastic modulus in a physically
justified anisotropic manner. The mathematical structure of this conservation law allows an additive “free”
gradient of a scalar field in the evolution of the crack field. We associate this naturally emerging scalar field
with the porosity that arises in the modeling of ductile failure. Thus, porosity-rate gradients affect the evolu-
tion of the crack field, which then naturally degrades the elastic modulus, and it is through this fundamental
mechanism that spatial gradients in porosity growth affect the strain energy density and the stress-carrying
capacity of the material and, as a dimensional consequence related to fundamental kinematics, introduce a
length scale in the model. A key result of this work is that brittle fracture is energy-driven while ductile frac-
ture is stress-driven. Under overall shear loadings where the mean stress vanishes or is compressive, the shear
strain energy can still drive shear fracture in ductile materials.
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Manuscript received 4th April 2020, revised 12th May 2020, accepted 25th May 2020.

1. Introduction

Fracture of brittle and ductile materials is the most common mode of final failure in solids.
Fracture is observed to occur in varying forms—from a single macroscopic crack propagating
from a pre-existing notch and a single crack branching into daughter cracks to a distribution of
smaller cracks forming an evolving swarm. Fracture in brittle materials (e.g. high-strength, low-
weight ceramics) [1, 2] or brittle fracture in metals (e.g., HCP and BCC metals) [3] is observed
to occur along sharp, well-defined cleavage planes, whereas ductile fracture (e.g. in structural
metals) occurs by the nucleation, growth, and coalescence of voids [4-6]. In general, tensile
hydrostatic stress states promote fracture, but fracture in ductile (and brittle) materials has
been observed under imposed shear loading (with no hydrostatic component). Finally, fracture
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Figure 1. Geometry of an idealized crack.

occurs in quasi-static to highly dynamic loading scenarios. The goal of this note is to explore
possible connections between the modeling of brittle and ductile fractures based on fundamental
kinematical and continuum mechanical grounds.

2. The mathematical model

In this section, we briefly reproduce some basic material from [7] to set the stage for its extension
for coupling brittle cracking to the ductile fracture mechanism of void growth.

2.1. Kinematic descriptors of fracture and their physical motivation

With reference to Figure 1, consider the following situation. We consider the region csyp as divided
into a set of disjoint “vertical” neighborhoods as shown by the blue lines, each centered around
a point xs € S. We refer to each such neighborhood as N(xs). We think of measuring the mass
density field p around xs, and we call it the local mass density field in N(xs). We assume this
locally measured mass density field to be continuous in the neighborhood (possibly taking the
value of 0 at some points). At the scale of observation, let it go to 0 on the crack surface S. Assume
that the locally measured density variation at each xs along the normal direction to the surface
S is of the form as shown in Figure 1(b). The macroscopic crack surface of 0 thickness actually is
spread over the region csp, where the density may (or may not) be smooth/differentiable; but we
assume that we are unable to resolve the variation of the measured density gradient in cgp. Thus,
grad p appears discontinuous across the crack surface. However, since g is continuous,

[grad p] = ¢nr necessarily, (1

where n is an arbitrarily chosen orientation for the crack surface, [-] denotes a jump, and ¢ is a
scalar field on S N N(xs), that is, grad p can jump only in the normal direction to the surface.
Assume that we are able to choose the orientation field » for the crack surfaces on the body
at any given time in a continuous way except possibly at points where ¢ = 0. We now define the
crack field as
p(xs)n(xs)
c(x) = Cw
0 for x outside csyp,

for x € N(xs) € Csup
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where ¢, is the width of the region cs,p measured along the direction i, pointwise, and the crack-
tip field as
t:=—curlc, globally on the body )

(with the minus sign for convenience). Assuming n to be oriented in the direction e, in Figure 1,
@(x) = 2a for x € csup\ feore. Thus, by assuming the jump of the local density gradient to be spread
out over the layer, we may interpret the field ¢ as an approximation to the directional derivative
of the local density-gradient field in the direction n.

With the above argument as physical motivation, we now consider ¢ and £ as continuous fields
for the sake of developing the mechanical model (as is customary in mechanics). To justify the
terminology for the crack-tip field, with reference to Figure 1, let the density gradient go from
some constant value in csup, say @o (9o = 2a in the example considered in Figure 1), to 0 over the
length of the region .. Let ¢ vary in-plane for simplicity. Then

c= (28,
@o—0
lccw
and this is non-vanishing only in the region f#qre. Thus curl ¢ identifies the crack-tip region. It is
also important to note that the curl is insensitive to the large gradients in cin the vertical direction
across the horizontal boundaries of the layer.

Furthermore, it is shown in [7, Section 3] that if the crack-tip and crack fields evolve according
to (3) and (4), respectively then the crack tip translates in the direction of V (the crack-tip velocity
field defined below), dragging out the crack-surface layer behind it.

—curle=t=—-e312c,1€3 = es,

2.2. Governing field equations

Keeping extension through the crack-tip motion in mind, we note first that
t=—curlc = t=—curle,

and ¢ should be a function of the crack-tip field ¢ and the crack-tip velocity (with respect to the
material) V, postulated to be a field in this model. The crack tip is identified by the field ¢, and
keeping within the confines of the “local” and simplest theory, it is natural to look for a relation of
the type ¢ = f(t, V). Itis established in [7] on fundamental grounds that the crack-tip field carries a
topological charge and that its evolution is governed by a conservation law for the charge given by

t=—curl(tx V). (3)
Equation (3) implies an evolution equation for the crack field ¢ of the form
c=—curlexV 4)

up to a “free” gradient. If the crack field c is restricted to evolve only by motion of the crack-tip
field ¢ as in brittle fracture, then this gradient vanishes. However, in modeling ductile fracture,
linking this to the gradient of the porosity growth field, the latter typically being the fundamental
ingredient of all ductile fracture models (e.g. the Gurson-Tvergaard—-Needleman [GTN] model),
demonstrates a physical mechanism (as opposed to ad hoc modification) for such porosity growth
to couple to the degradation of elastic moduli through its effect on the growth of the crack field. We
note that our model is discerning enough to not allow a density of voids (a volumetric density of
objects concentrated on points in the singular limit) to instantaneously produce a crack tip (an
areal density of objects concentrated on curves in the singular limit; these objects produce very
different stress concentrations under applied stress). Furthermore, the model also implies that
as long as crack tips are not inserted from outside the whole body under consideration, the crack
tips nucleated must be closed loops (e.g. encircling (non)planar penny-shaped regions) or ensure
that the total topological charge within the whole body does not evolve in time.

C. R. Mécanique — 2020, 348, n° 4, 275-284
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We now detail this physical coupling of “brittle” cracking to “ductile” porosity evolution (de-
noted by a scalar field f), purely on the basis of kinematics in the first instance, and then develop
its thermodynamic consequences. We do so in the context of the GTN model as expounded on
in [8,9]. Based on what has been said above, Equation (4) is modified to

¢=—curlex V+ mgrad f, (5)

where m is a mobility constant with physical dimensions of mass density/length, required on
dimensional grounds (note that based on its physical meaning, ¢ has physical dimensions of
mass density/length? and the porosity f is, of course, dimensionless). With reference to Figure 1,
in all that follows, we use the normalization ¢ = (cyly/2pp) ¢, where pyy is the mass density of
the intact matrix and lyp = pp/ a; we will also define a single length scale | := \/c,,lo/2 and drop
the overline ~ on ¢ for convenience. With this understanding, the evolution equation for the
normalized crack field becomes

) . mi?
¢=—curlex V+pgradf; p:=——0m-. (6)
Pm

In this model of coupled ductile-brittle damage, the porosity f appears as a fundamental kine-
matic field as well.

In this preliminary note, a “geometrically linear” or small deformation theory is considered,
which, nevertheless, is materially nonlinear. There are good reasons, based on our past experi-
ence with theories of similar type [10], to expect crack nucleation, in what would be the purely
brittle case in the present context, to require geometric nonlinearity. We defer this for future work,
especially since ductile damage nucleation can be incorporated (phenomenologically) through
the evolution equation for porosity as in the GTN model. The governing field equations for the

model are
poit=divT +b,

¢=—curlex V+grads, @
where pg is the time-independent mass density field corresponding to the reference configura-
tion of the body from which all displacements are measured, T is the symmetric stress tensor, b is
the body force density per unit volume of the reference configuration, u is the displacement field,
it = vis the material velocity field, and we consider the “source” s = p f. In addition, all differential
operators div and curl are written with respect to the fixed reference configuration.

2.2.1. Reversible response functions and driving forces for dissipation

We consider mechanical effects only. Assume a free-energy density function (per unit volume
of reference configuration) given as
w(e’, ¢,
where £° = € — €” and € = sym(grad u), where u is the displacement field and €7 is the symmetric
plastic strain tensor.
Mechanical dissipation is defined as the power supplied by the external forces (tractions and
body forces) less the rate of change of kinetic energy and the power stored in the body:

d d 1
D=| (Tm-itda+ | b-irdv—— dv—— | =polit/*dv. 8
fav( m-ida fv e dtfvw Y dtfvzpolul ) ®
Using the governing equations (7), the dissipation can be expressed as

D= f (T —0gey) : gradvdy
v
+[ aeeu/:é‘pdv+f {[-0cy + curl 9,1 xt}'Vdv+f div(pdey) f dv
v v v

+[ V-[0sy x n) xt]da—[ p(acw~n)fda. 9)
oV oV
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Following the GTN [8, 9] model, we now assume that the porosity evolution takes the form
f=0-prer) (10)

(where we have not included a nucleation term for ease of exposition). On requiring that classical

hyperelasticity should be recovered in the absence of plasticity and crack evolution and porosity
growth, we obtain the stress relation

T =0gey. (11

We note the driving forces in the bulk for the mechanisms of plasticity and the crack-tip advance
as

&P~ T+ (1— f)div(pday)l,

V ~s [=0cw +curl 0] x E.

Driving forces at the boundary also emerge as

(12)

Vs Oy xm)x t; &P~ (11— f)(pdew - n)l.
2.2.2. Proposed nonlocal, modified GTN model of coupled brittle-ductile damage

Ignoring the boundary dissipation terms for simplicity and motivated by the form of the bulk
driving force for &7, the closed governing equations of the proposed nonlocal, modified GTN
model become [8,9]

w=(e°% ¢ curlo), (13a)
Oeq=\/3T":T; om=3u(T); 0} =0m+0-divpdey), (13b)
o2 3g,0*
O(T, f,divipdey)) = —2 + 24, f* cosh % —(+qsf™), (13¢)
[
f iff<fe
IMGE (L-r)F-f (13d)
ct——————— iff=f,
ff - fc
3Tl * 3 *
o0 =0 L0 G, 3920 m (1)
o
. 3Af* 3 1- div(po
F=0-puE) =a-1 fﬁql 92 Gip 292 m * ( zaf) adlhii2ly (130)
EP = NOTD; ADP=0; ®<0; A=0, (13g)
o =0(¢) given the stress—plastic strain curve in uniaxial tension for matrix material, (13h)
AQ1-AT:01r®
s AZNT:0rP f; . (13i)
poit=divT + b, 13j)
A = curlex M[{—0,9 — curl(Qcyup )} x curl ¢] + pgrad[(1 — f)tr(£P)]
A = curlex M[{—0.1 — curl(0cur )} x curl €] (130)
3Af* 3 1- fdiv(po
+pgrad |(1- ) f_qwz sinh G2lom+( _f) iv(pocy)] ’
o 20
. C
A if—-A>0 )
c= |l irreversibility of cracking-induced damage < |c| =0, (13D

0 otherwise

where €, f, €, and c are the state variables that need to be evolved, and the terms marked in blue
are the proposed modifications to the GTN model (we recall that cis vector-valued). In the above,
M is a symmetric, positive-definite tensor of crack mobility that could take the isotropic form
M = (1/B)I, where B > 0 is a scalar drag coefficient; p is the mobility scalar discussed earlier; T’ is
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the stress deviator; q1, 42, g3, fc, and fr are specified parameters of the GTN model. Furthermore,
we have assumed the plasticity to be rate-independent (but nevertheless the overall model is
generally rate-dependent due to the first term in the expression for A). It can be checked that the
above nonlocal, modified, GTN model results in non-negative dissipation.

A typical candidate for the energy density would be

W(e® ¢ curle) =y’ c) +n(lcl) + ticurl ¢/?, (14)

where g represents the elastic strain energy density of the material with its elastic modulus
degraded to reflect damage due to cracking represented by ¢ but at the same time providing
resistance to interpenetration of crack flanks, n is a non-convex function representing an energy
barrier to damage from an undamaged state, and t is a small parameter regularizing the crack
tip (but not the crack layer). The term |curl cl? may be considered as the lowest-integer-order
approximation of any smooth function that assigns an energy cost to the formation of a crack
tip, the latter being kinematically characterized by a non-vanishing curl ¢. Next, we describe the
modeling of g and 7.

2.3. Elastic strain energy density of cracked material preventing interpenetration of crack
flanks

Let H(x) =0for x = 0and H(x) = 1 for x > 1 be the Heaviside step function. For ease of exposition,
we assume the intact matrix material to be elastically isotropic with the fourth-order tensor of
elastic moduli given by C = AI ® I+ 2ul, where A and p are the Lame parameters and [ is the
identity tensor on the space of symmetric second-order tensors. We assume that A(lc]) and el
are two functions on the space of non-negative scalars representing monotonically decreasing
degradation functions for elastic moduli as a function of magnitude of cracking (our model does
not provide guidance on these choices, just as in phase-field models [11,12], apart from requiring
them to be convex; there does exist an extensive literature based on homogenization to estimate
such effects due to cracking [13, 14]). Define C= X(Icl)l@ I+ 2fi(|e])l. Further, define € = ¢/|c,
e¢=7¢-€°,and €] = &’ —¢(c®¢. Then

2yg(c,e%) = H(lc) [H(e%)e : Ce® + (1 - H(e%)) (e’ :Ce +e%(¢®70) : C(€®0)}]
+(1—-H(lc))e®: Ce®. (15)

In the above, the underlined term can as well be replaced by a contact “stiffness” separate from
the material elasticity if so desired. The physical ideas embodied in (15) are as follows: for any
material point that is considered as cracked,

« if the elastic strain component in the direction normal to the local crack is extensional,
then the elastic response is damaged for all strain modes;

o if the elastic strain component along the local crack normal direction vanishes or is
compressional, then all strain modes except that along ¢ ® ¢ respond in a damaged
manner, whereas along the crack normal direction, the compression is resisted as if the
material were undamaged or according to some prescribed contact stiffness (cf. [15];
either way, crack-flank interpenetration is resisted);

« if the material point is uncracked, then the elastic response of the material is that of an
intact material.

2.4. Crack energy barrier density

The energy density function n represents the energy cost incurred at a material point due to
cracking. Figure 2 represents three different possibilities, corresponding to (i) Griffith-type (local)
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|l le] |e|

(i) (il (i)

Figure 2. Qualitative local crack energy density functions.

surface energy barrier, where the energy cost as a function of cracking intensity stabilizes, (ii)
where the local energy barrier decreases beyond its maximum with increased cracking and then
stabilizes, and (iii) where the local energy barrier decreases to zero beyond its maximum with
increased cracking intensity. The first two functions correspond to models of some surface energy
being assigned to fully cracked neighborhoods, whereas the last function reflects the whole
elastic energy of cracking being dissipated. In purely Mode I situations, the last option has the
possibility of predicting irreversibility of cracking without any added modeling, for example, as
in (13D).

2.4.1. Discussion

We make the following observations regarding the salient characteristics of the model:

1. The cracked elastic energy density (15) we propose is finely and directly adapted, in a
physically transparent manner, to the modeling of resistance to the interpenetration of
crack flanks under compression normal to the crack surface. This is enabled by the fact
that the crack field is a naturally emergent vector field normal to the local crack surface
as opposed to a scalar damage field of ambiguous physical origin in phase-field models
[11,12,16-19]. In all of these cited works related to phase-field models, principal values
and directions of the strain tensor or the hydrostatic part of the strain tensor are used
to approximately achieve the stated goal, “the intent of both models is similar, that is, to
maintain resistance in compression and, in particular, during crack closure,” from [12] in
comparing and contrasting this aspect of crack mechanics in their model (following [17])
with that in [18].

2. Ttis a well-established experimental fact that shear fracture occurs in ductile specimens
under 0 or negative mean stress [8, 20-24]. The most prominent models for modeling
ductile fracture—the Gurson model (later improved to be the GTN model) and the
Johnson-Cook model—emphasize the role of increasing stress triaxiality (0,/0eq) in
reducing fracture strains of ductile materials, with predictions of no fracture for 0 mean
stress, which is not consistent with observations. The fundamental mechanism of shear
fracture of ductile materials, based on the work of McClintock [20] and Teirlinck et al. [4],
is stated by Nahshon and Hutchinson [8] to be “void-sheet formation as the underlying
mechanism wherein it is supposed that under shearing voids increase their effective
collective cross-sectional area parallel to the localization band without an accompanying
increase in void volume. Localization in shear in microbands linking voids is evident in
the model voided materials tested by Weck et al. [5].”

C. R. Mécanique — 2020, 348, n° 4, 275-284
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Against this backdrop, we note that in our model, the “brittle” cracking mechanism
arising from c affecting the elastic modulus results in energy-driven as opposed to stress-
driven fracture. This coupled with the modification to the mean stress o, embodied in
o, (13b) implies that even under 0 mean stress, there is a driving force for the evolution
of porosity (13f) as well as the evolution of ¢ ((13k)-(131)). Moreover, based on what has
been described in Section 2.1, the evolution of c¢is very much adapted to “under shearing
voids increase their effective collective cross-sectional area parallel to the localization
band without an accompanying increasing in void volume.” Thus, the proposed model
needs to be explored in depth to examine its potential for describing the shear fracture of
ductile materials under vanishing or compressional mean stress.

. It is generally believed that the effect of porosity on elastic modulus is small and such

effects are neglected. However, such small effects over small length scales can have order
1 effects on spatial gradients, which is the essential modification in the proposed model
that arises from the presence of div(pd,y) in o;,. As already mentioned, such effects
then permeate into the evolution of porosity f and the crack field c. A physical way to
see this is that a through crack in a body contributes very little to volumetric damage.
Indeed, an idealized crack represented by a two-dimensional (2D) surface contributes to
no volumetric porosity; however, it results in complete loss of stress-carrying capacity.
Thus, the effect of cracking on elastic modulus is a different physical mechanism from
the effect of porosity on elastic modulus degradation; indeed, it is porosity gradients that
affect cracking in this model.

In this regard, we note recent work [25] that shows the effect of elastic modulus
degradation due to porosity as well as well-established ideas and methods (cf. [26])
to estimate elastic strength degradation due to porous microstructures. An additional
dependence of the elastic strain energy density function on f is easily accommodated in
the present formalism, and this results in an additional driving force contribution in o},
(13b).

. When the mobilities M = 0 and p = 0, (13) reduces to the GTN model. For M = 0, we still

have a thermodynamically consistent “nonlocal” generalization of the Gurson model.
Equations (13k) and (131) imply that c has to be a gradient of a scalar field, and along with
(13f), we obtain that this scalar is the porosity f (up to a spatially constant function of
time, which we assume to vanish). Thus ¢ = grad f in this idealization, and in this damage
physics related only to volumetric porosity, we assume 1 = 0 and t = 0. It is instructive at
this point to consider an expansion of (13f) for small p > 0 about 0:

f=a-pn 3Af_q1q2 ( inh 36]21_7m +cosh 672 2 (1= Hdivosyp+ G (p ))
_a- f)SAf_qwh( nh 672 m+p(1 fcosh 672 m[aeecw gradse])
p- 2L 5"1"2 osh "2 =" Occt gradzf] (16)

on formally ignoring the @ (p?) terms. The last line of (16) is particularly illuminating.
With p > 0 and d..y being assumed positive-definite, this is a completely defined diffu-
sive regularization to the GTN porosity evolution with no adjustable parameters once a
commitment to the physically realistic elastic energy density function wg (15) has been
made (we note that the convexity requirement allows degradation of elastic modulus as a
function of | ¢|). A particularly familiar simplification is if 0., were to be a positive scalar
multiple of the second-order identity tensor in which case, we recover the phenomeno-
logically introduced Laplacian regularization for porosity damage [27]. In the present
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rate-independent model, both the yield function and the evolution equations contain
gradient terms even in the “purely ductile” setting (M = 0). Finite-element-based com-
putational methods for such situations, even at finite deformations, are available [27,28].
For a micromechanics-based gradient regularization of damage due to void growth, see
[29].

5. The overall physical mechanism implied by the proposed model can be summarized
as follows. Remark 4 lays bare the role that the proposed theory brings to the physical
regularization of porosity-induced ductile damage. As is well understood by now, due
to the softening in material strength produced by damage, elastic unloading takes place
outside of localizing three-dimensional damage zones, with these zones decreasing in
width to a vanishing thickness around 2D surfaces/regions in the limit—the gradient
regularization produces a damage zone of finite width in the transverse direction to
the thin zones. However, this mechanism by itself does not suggest anything about the
longitudinal propagation of such 2D thin regions as would be required by the void linking
mechanisms of [15, 20,30, 31] (we note that the elastic strain gradient term does provide
a fundamental and interesting nucleation mechanism, whose role needs to be explored).
In the proposed model, once the rate of porosity gradients approach /p in magnitude,
they start to affect the development of ¢, and once c is generated, the evolution of this
field (for M # 0) occurs primarily through the lateral expansion of these thin damage
zones by the motion of the “crack tips” or the terminating boundary of these thin zones.

6. The proposed model coupling “brittle” crack growth and decohesion to ductile damage
through void growth provides a fundamental basis for extending phase-field-like models
for the modeling of ductile fracture, the state of the art of which can be seen in [32]
and [33], the latter involving ad hoc nonlinear modification of the phase-field variable by
the equivalent plastic strain while demonstrating encouraging results. We mention here
the trend toward more physical representation of ductile fracture in phase-field modeling
in the very recent interesting work of [19].

Nevertheless, much further work is necessary to understand the full implications of
the presented model and to compare and contrast its predictions to what is currently
known.
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