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Abstract. We introduce the three-dimensional Eringen system of equations for the nematodynamics of liquid
crystals, announce the short time existence and uniqueness of strong solutions for the one-dimensional
problem in the periodic case, and show the continuous dependence of the solution on the initial data.

Résumé. Nous présentons le système tridimensionnel d’équations d’Eringen pour la nématodynamique
des cristaux liquides, annonçons l’existence en temps et l’unicité de solutions fortes pour le problème
unidimensionnel dans le cas périodique et montrons la dépendance continue de la solution sur les données
initiales.
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1. Introduction

In papers [1–4] and [5], we considered the Ericksen–Leslie system of equations for nematody-
namics and proved the existence and uniqueness theorems. But the Ericksen–Leslie equations
do not take into account micromomentum of molecules. In this paper, we write down the right
Eringen system of equations (see [6] and [7]), which takes into account the micromomentum of
molecules, and study the same question of unique solvability.

In the present paper, we consider the simplest form of Eringen’s system for the nematodynam-
ics of liquid crystals (see Figure 1 for example) and prove the local solvability of the corresponding
initial–boundary value problem.

The existence of global solutions of the general Eringen system is still an open question. One
can highlight two different cases: the existence of strong and weak solutions. For the strong
solutions, it is natural to expect local solvability and for the weak solutions, global solvability.

2. The full system of Eringen equations

To describe the Eringen system for micropolar liquid crystals [6] in a domainΩ⊂R3 we define the
unknowns:ρ : (0, t0)×Ω→R+ is the mass density of the material; u = (u1,u2,u3) : (0, t0)×Ω→R3 is
the velocity;ν= (ν1,ν2,ν3) : (0, t0)×Ω→R3 is the gyration vector, or, equivalently represented as a
matrix ν := ν̂ :=ν×· = [−εkl

mν
m] : (0, t0)×Ω→ so(3), is the gyration tensor; j : (0, t0)×Ω→ gl(3,R)

is the microinertia tensor, a symmetric positive definite 3×3 matrix;γl = (γ1
l ,γ2

l ,γ3
l ) : (0, t0)×Ω→

R3, l = 1,2,3, where γa
l : (0, t0)×Ω → R, a = 1,2,3, or, equivalently represented as a matrix by

γ̂l :=γl ×· = [−εk
r aγ

a
l ] : (0, t0)×Ω→ so(3), is the wryness tensor (in our convention, taken from [8]

which is based on geometrical considerations,γl corresponds to −γl in Eringen’s notation [6,7]);
T : (0, t0)×Ω→ R+ is the absolute temperature. The free energy is denoted by Ψ=Ψ(ρ−1, j ,γ,T )
and the dissipation potential by Φ=Φ(ρ−1, j ,γ,T ; a,b,∇T /T, Ṫ ), where

al
k := ∂k ul −εl

akν
a , ba

l := ∂lν
a , Ṫ := ∂t T, Txk := ∂k T, (1)

∇T := (Tx1 ,Tx2 ,Tx3 ), and ∂k := ∂xk := ∂/∂xk . Explicit formulae for Ψ and Φ are given below. De-
note the internal energy density by E =Ψ+Tη and the entropy by η=−(∂Ψ/∂T )−(1/ρ)(∂Ψ/∂Ṫ ).
Thus, in the absence of external forces, the total energy of the liquid crystal is

1

2

∫
Ω
ρ‖u‖2 d3x + 1

2

∫
Ω
ρ( jν) ·νd3x +

∫
Ω
ρE d3x. (2)

With these notations and conventions, Eringen’s equations for micropolar liquid crystals are
given by the following system.

Conservation of mass
∂tρ+div(ρu) = 0. (3)

Balance of momentum for macromotion

ρ∂t u+ρ(u ·∇)u =∇
(
∂Ψ

∂ρ−1

)
−∂l

(
ρ
∂Ψ

∂γa
l

γa

)
+∂l

∂Φ

∂al
, (4)

where al := (a1
l , a2

l , a3
l ) = ∂l u− (

ε1
alν

a ,ε2
alν

a ,ε3
alν

a
)
, γa := (γa

1 ,γa
2 ,γa

3 ).
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Figure 1. Schlieren texture of a nematic liquid crystal.

Balance of moment of momentum for micromotion

ρ∂t ( jν)+ρ(u ·∇)( jν) = −div

(
ρ
∂Ψ

∂γ

)
+ργb × ∂Ψ

∂γb
+div

(
∂Φ

∂b

)
+

(
εn

1m
∂Φ

∂an
m

,εn
2m

∂Φ

∂an
m

,εn
3m

∂Φ

∂an
m

)
, (5)

where ba := (ba
1 ,ba

2 ,ba
3 ) = (∂1ν

a ,∂2ν
a ,∂3ν

a).

Conservation of the microinertia tensor

∂t jab +ui∂i jab + (εp
ca jbp +εp

cb jap )νc = 0 ⇐⇒ ∂t j + (u ·∇) j + [ j , ν̂] = 0. (6)

Equations (5) and (6) yield the equation for the gyration vector ν, namely

j∂tν+ j (u ·∇)ν− ( jν)×ν = − 1

ρ
div

(
ρ
∂Ψ

∂γ

)
+γa × ∂Ψ

∂γa + 1

ρ
div

(
∂Φ

∂b

)
+ 1

ρ

(
εn

1m
∂Φ

∂an
m

,εn
2m

∂Φ

∂an
m

,εn
3m

∂Φ

∂an
m

)
. (7)

Conversely, this equation and (6) implies (5).

Wryness tensor equation

∂tγ
a
l +ui∂iγ

a
l +γa

i ∂l ui +∂lν
a +εa

bcγ
b
l ν

c = 0 ⇔ ∂tγ+£uγ+dν̂+ [γ, ν̂] = 0, (8)

where γ := γ̂ is a so(3)-valued one-form on Ω for each t ∈ (0, t0), that is, γ = γ̂l dx l and γ̂l :
(0, t0)×Ω→ so(3) are given by (γ̂l )k

r = −εk
r aγ

a
l , γl = (γ1

l ,γ2
l ,γ3

l ) : (0, t0)×Ω→ R3; £uγ is the Lie
derivative of γ in the direction of the vector field u, and dν̂ is the differential of the so(3)-valued
function ν̂. Thus, this equation is for so(3)-valued one-forms on Ω; γ is a connection one-form
on the trivial bundle Ω×SO(3) and the last two terms are the γ-covariant derivative of ν̂. See [8]
for details.

Balance of energy

ρ∂t E +ρ(u ·∇)E = (divu)
∂Ψ

∂ρ−1 −ρ
((
∂Ψ

∂γa ·∇
)

u
)
·γa −ρν ·

(
γa × ∂Ψ

∂γa

)
−ρ

(
∂Ψ

∂γa ·∇
)
νa +∂k

(
∂Φ

∂(Txk /T )

)
+an

k

∂Φ

∂an
k

+ba
k

∂Φ

∂ba
k

. (9)
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Second law of thermodynamics

ρ∂tη+ρ(u ·∇)η≥ ∂k

(
T −1 ∂Φ

∂(Txk /T )

)
. (10)

Based on physical considerations for micropolar liquid crystals, Eringen [6, 7] proposed the
following expressions for the free energy Ψ and the dissipation potential Φ:

Ψ= 1

2ρ
Akm

ab γ
a
kγ

b
m , (11)

Φ= 1

2
αkm

l n al
k an

m + 1

2
βkl

abba
k bb

l + 1

T
d kl

a ba
l ∂k T + 1

2T
κkl∂k T∂l T, (12)

where

d kl
a = (d1 +d2tr j )ε kl

a +d3ε
km

a jmnδ
ln , κkl = (κ1 +κ2tr j )δkl +κ3 jmnδ

mkδnl ,

the coefficients Akm
ab , αkm

ln , βkl
ab are symmetric (i.e., Akm

ab = Amk
ba , etc.) and are represented as

Akl
ab = (A1 + A2 jcpδ

cp )δk
aδ

l
b +

A5

2
( jbpδ

plδk
a + japδ

pkδl
b)

+ 1

2
(A4 + A3 + (A5 + A8) jpqδ

pq )δk
bδ

l
a +

1

4
(A6 + A9)( japδ

plδk
b + jbpδ

pkδl
a)

+ 1

2
(A4 − A7 + (A5 − A8) jcpδ

cp )δabδ
kl + 1

4
(A6 − A9)( jpcδ

plδckδab + jabδ
kl )

+ A10

4
( jabδ

kl − jpqδ
plδqkδab), (13)

with identical expressions for αkm
ln and βkl

ab , except that the coefficients Ai are replaced by differ-
ent coefficients αi and βi , respectively. Ai , di , κi , αi , βi are some given functions, depending on
j , T , and ρ.

3. Initial–boundary value problem for the simplest Eringen system

3.1. Assumptions and auxiliary propositions

From now on, we shall assume that the following conditions hold.

Condition 1. Ψ, ∂Φ/∂an
m , ∂Φ/∂ba

m do not depend on temperature T and its gradient ∇T . This
means that the functions Ai , αi , βi do not depend on T and that di ≡ 0.

Under this condition, system (3)–(8) has all coefficients independent of T and is therefore self-
consistent; neither energy, nor temperature appear in this system. Hence, we can exclude (9) and
(10) from consideration and we are left with system (3)–(8). Equations (9) and (10) can be solved
separately.

Condition 2. jab = J (t ,x)δab .

In this case, Equation (6) states that the function J (t ,x) is frozen in the flow. Since the
microinertia tensor [ jab] is a symmetric positive definite 3×3 matrix, the function J is positive.
Due to (6) it is sufficient to suppose that J > 0 at the initial time.

Condition 3. All unknown variables depend only on time t and the first spatial coordinate x.

Even though this is a restrictive hypothesis requiring a one-dimensional spatial domain,
compressibility of the liquid crystal ensures that the solutions of the system (3)–(8) are not
necessarily trivial.

Condition 4. u = (u,0,0), ν= (ν,0,0), γ1 = (γ,0,0), γ2 =γ3 = 0.
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This assumption puts conditions on the form of the solution. If it holds, Equation (8) is
automatically satisfied for a 6= 1 or k 6= 1.

Condition 5. Akl
ab , βkl

ab , αmn
kl are constants.

Let us denote α = α11
11 > 0, λ = α12

13 −α13
12, A = A11

11 > 0, β = β11
11 > 0. Note that we assume the

positivity of the constants α,β, A. Then, under the five conditions stated above, Equations (3)–(8)
can be written in the following form:

ρt + (ρu)x = 0, (14)

ρut +ρuux = ∂x

(
αux +λν− A

2
γ2

)
, (15)

ρ Jνt +ρ Juνx = ∂x (βνx − Aγ), (16)

(ρ J )t + (uρ J )x = 0, (17)

γt +∂x (uγ+ν) = 0, (18)

where the functions ρ > 0, J > 0.
Let Ω=T, Qt0 =Ω× (0, t0), where T= R/Z, that is, all functions are 1-periodic with respect to

x. In this paper, we study the system (14)–(18).
For simplicity, we use the notation V = (u,ν,ρ,ρ J ,γ). The vector V is prescribed at t = 0,

namely,

V |t=0 =V0. (19)

Notation 6. If µ is a measure on Ω, we denote by Lp (Ω,µ) the Banach space of real-valued
functions onΩwhose p power of the absolute value is integrable relative to µ. If µ is the Lebesgue
measure, we omit µ in the notation above. If E is a Banach space, Lp (0,T ;E) denotes the Banach
space of E-valued Lp -functions on (0,T ) (relative to the Lebesgue measure). W a

p (Ω) is the Banach
space of real-valued Lp -functions onΩ that have all derivatives up to and including order a in Lp .
W r ;a

p (QT ) is the Banach space of all real-valued Lp -functions on QT that have all derivatives up to
and including order r on (0,T ) and up to and including order a onΩ in Lp . If E is a Hilbert space
and p = 2, all these spaces are Hilbert spaces.

Definition 7. The vector V is a solution to the problem (14)–(18), (19) if

• V ∈ Wt0 , where Wt0 := W2 ×W2 ×W1 ×W1 ×W1, W1 := W 1;1
2 (Qt0 )∩L∞(0, t0;L2(Ω)), W2 :=

W 2;1
2 (Qt0 )∩L∞(0, t0;W 1

2 (Ω));
• Equations (14)–(18) hold almost everywhere in Qt0 ;
• V0 ∈W0 :=W 2

2 (Ω)×W 2
2 (Ω)×W 1

2 (Ω)×W 1
2 (Ω)×W 1

2 (Ω);
• ‖V (x, t )−V0(x)‖L2 → 0 if t → 0.

Another useful space is W [
t0

:= W [
2 × W [

2 × W [
1 × W [

1 × W [
1 , where W [

1 := W 1;0
2 (Qt0 ) ∩

L∞(0, t0;L2(Ω)), W [
2 =W 2;0

2 (Qt0 )∩L∞(0, t0;W 1
2 (Ω)).

In ensuing analysis we use the following results.

Lemma 8. Let V be a strong solution of the problem (14)–(18), (19). Then

I1(V ; t ) ≤I1(V ;0)exp

{
λ2α−1

∫ t

0
sup
x∈Ω

(ρ(t , x)J (t , x))−1 dt

}
, (20)

where

I1(V ; t ) = sup
(0,t )

(
‖ρ 1

2 u‖2
L2(Ω) +‖(ρ J )

1
2 ν‖2

L2(Ω) + A‖γ‖2
L2(Ω)

)
+

∫
Qt

(αu2
x +βν2

x )dx dt .
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Lemma 9. Let V be a smooth strong solution to the problem (14)–(18), (19). Then there exist t1 > 0
and C > 0 depending on the coefficients and the W0-norm of the initial data such that

‖V ‖Wt ≤C for all t ∈ (0, t1).

Let us consider a regularization of the system (14)–(18). Let ε be a small parameter. The
regularized system is

ρt + (ρu)x = ερxx , (21)

ρut +ρuux = ∂x

(
αux +λν− A

2
γ2

)
, (22)

ρ Jνt +ρ Juνx = ∂x (βνx − Aγ), (23)

(ρ J )t + (ρu J )x = ε(ρ J )xx , (24)

γt +∂x (uγ+ν) = εγxx . (25)

Let V ε be a solution of the regularized system satisfying the initial conditions

V ε|t=0 =V ε
0 . (26)

Lemma 10. Let V ε
0 ∈ C 2+2δ(Ω), δ > 0. Then for any ε > 0 there exists a unique solution V ε ∈

C 2+δ,1+δ(Qt ).

The proof is based on [9, Ch. VII, Theorem 7.1].

Lemma 11. Let limε→0 V ε
0 =V0 ∈W0, the limit taken in the W0-norm. Then there exists t0 > 0 such

that V ε are uniformly bounded in Wt0 -norm.

3.2. Existence theorem

Theorem 12. Let V0 ∈W0. Then for some t0 > 0 there exists a strong solution V ∈Wt0 .

Proof. Let us consider a family of regularized problems (21)–(25), (26), V ε
0 ∈ C 2+2δ(Ω), W0-

limε→0 V ε
0 =V0. By Lemma 11, there exists t0 > 0 such that this family of solutions V ε is uniformly

bounded in the Wt0 -norm. Hence, we can choose a sequence V εn such that V εn →V *-weakly in
Wt0 and, in particular,

• (uεn ,νεn )* (u,ν) weakly in W 2,1
2 (Qt0 );

• (ρεn , (ρ J )εn ,γεn )* (ρ,ρ J ,γ) weakly in W 1,0
2 (Qt0 );

• (uεn ,νεn ) â (u,ν), that is, converges uniformly on Q t0
.

�

So, for any Ξ := (ψ,η,ϕ,ζ,θ) ∈C∞
0 (Qt0 ), we have

(A (V εn ),Ξ) → (A (V ),Ξ),

where

(A (V ),Ξ) ≡
∫

QT

ρ(ϕt +uϕx )dx dt

+
∫

QT

[
ρu(ψt +uψx )−αuxψx −λνψx + A

2
γ2ψx

]
dx dt

+
∫

QT

[ρ Jν(ηt +uηx )−βνxηx + Aγηx ]dx dt

+
∫

QT

ρ J (ζt +uζx )dx dt

+
∫

QT

γθt + (uγ+ν)θx dx dt = 0, (27)
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where Ξ := (ψ,η,ϕ,ζ,θ) ∈ C∞
0 (Qt0 ) (smooth functions on Qt0 with compact support) is a test

vector. By the definition, we have

(A (V ε),Ξ) =−ε
∫

Qt

(ρεxϕx + (ρ J )εxζx +γεxθx )dx dt . (28)

The right-hand side of (28) tends to be zero if ε→ 0, since the norm of (ρεx , (ρ J )εx ,γεx ) is uniformly
bounded in L2(Qt0 ) and Ξ is fixed smooth vector. Hence

(A (V ),Ξ) = 0,

which proves that V is a weak solution of the system (14)–(18) (in the sense of integral identity).
Since V ∈ Wt0 it is easy to prove, that it is also a strong solution. Let us check that the initial
conditions hold. By Lemma 11 and the compact embedding Wt0 ,→ C (0,T ;L2(Ω)), the solution
V (t ) is a continuous map from [0, t0] to L2(Ω) and

max
t∈[0,t0]

‖V ε(t )−V (t )‖L2(Ω) → 0.

In particular, V (0) = (L2)-limε→0 V ε. On the other hand, V ε(0) →V0. The theorem is proved.

3.3. Continuous dependence on initial data and uniqueness

Define V0 :=W 1
2 (Ω)×W 1

2 (Ω)×L2(Ω)×L2(Ω)×L2(Ω), Vt0 :=W [
1 ×W [

1 ×L∞,2 ×L∞,2 ×L∞,2, where
L∞,2 := L∞(0, t0;L2(Ω)). The following theorem holds.

Theorem 13. Let V1, V2 be two strong solutions to the system (14)–(18) in the domain Qt0 . Then,
for any T > 0, there exists C > 0 depending on ‖Vi‖Wt0

, infρ1 > 0, inf(Jρ)1 > 0, α,β, A, and λ such
that

‖V1 −V2‖VT ≤C‖V1(0)−V2(0)‖V0 .

In particular, problem (14)–(18), (19) has unique strong solution.
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