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Abstract. We consider the propagation of the piston mode in an acoustic waveguide obstructed by two
screens with small holes. In general, due to the features of the geometry, almost no energy of the incident
wave is transmitted through the structure. The goal of this article is to show that by tuning carefully the
distance between the two screens, which form a resonator, one can get almost complete transmission. We
obtain an explicit criterion, not so obvious to intuit, for this phenomenon to happen. Numerical experiments
illustrate the analysis.
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1. Introduction

We study the propagation of acoustic waves in a 3D waveguide obstructed by two screens with
holes of size ε, where ε > 0 is a small parameter. We work at fixed frequency such that only the
piston mode, constant in the transverse direction, can propagate. In this setting, the scattering
of an incident piston mode is characterized by a reflection coefficient Rε and a transmission
coefficient T ε (see (5) below). Due to conservation of energy, we have

|Rε|2 +|T ε|2 = 1. (1)

In general, that is, for arbitrary positions of the screens, due to the features of the geometry,
almost no energy of the incident wave passes through the small holes and one observes almost
complete reflection: limε→0 Rε = 1 and limε→0 T ε = 0. But by tuning carefully the distance 2Lε

between the screens, we will see that one can get good energy transmission. More precisely, for
certain choices of L0, L′, L′′ in Lε := L0 +εL′+ε2L′′ and for a certain condition (32) on the shape
of the holes, we can obtain limε→0 Rε = 0 and limε→0 T ε = T 0 with |T 0| = 1 (see Section 5).
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10 Lucas Chesnel and Sergei A. Nazarov

Figure 1. Side view of the waveguide Ωε (left) and picture of the left perforated screen
(right).

Propagation of waves in structures with small holes is a classical topic both in physics and
applied mathematics. We refer the reader, for example, to [1, 2] for the analysis of the Extraor-
dinary Optical Transmission phenomenon, to [3, 4] for the Extraordinary Acoustic Transmission
(EAT) phenomenon or to [5, 6] for more mathematical considerations. Closely related but a bit
different are the studies of the propagation of waves through thin slits. One can look, for exam-
ple, at [7, 8] for EAT in acoustic waveguides using Helmholtz Resonators or at [9–14] for articles
of the applied mathematics community. However, the closest works existing in literature seem to
be [15,16] where problems similar to ours have been considered, but with only one hole and with
Dirichlet boundary conditions. In [16] (see also [17]), the authors work with decompositions in
Fourier series which are hard to generalize. In [15], following [18], the authors use techniques of
construction of asymptotic expansions for boundary value problems in singularly perturbed do-
mains. We also adopt this approach. But to the difference of the above-mentioned publications,
we employ a fine tuning procedure of the geometrical shape which allows us to reveal the com-
plete transmission phenomenon. Finally, we mention that the asymptotic approach presented in
this work can be modified according to [18] to consider other boundary conditions and dimen-
sions. According to the case, it leads to either complication or simplification of its realization.

2. Setting

First, we describe in detail the geometry (see Figure 1). Let ω±, ω0 be connected bounded open
sets of R2 such that ω± ⊂ω0. We define the 3D domains

Ωε
± := {x = (y, z) ∈R3 | y ∈ω±, ±z > Lε}, Ωε

0 :=ω0 × (−Lε;Lε),

with, for ε> 0 small,

Lε = L0 +εL′+ε2L′′. (2)

Here the parameters L0 > 0, L′, L′′ ∈ R will be set later to observe interesting phenomena. Pick
some points p j± ∈ ω±, with p j± 6= pk± for j 6= k, and some bounded sets θ j± ⊂ R2, j = 1, . . . , J±,
with J± ∈N∗ := {1,2, . . .}. Then define the small “holes”

Θεj± := {x = (y, z) ∈R3 |ε−1(y −p j±) ∈ θ j±, z =±Lε}

(see Figure 1 right). Finally set

Ωε :=Ωε
−∪

(
J−⋃

j=1
Θεj−

)
∪Ωε

0 ∪
(

J+⋃
j=1

Θεj+

)
∪Ωε

+.

We consider the following problem with Neumann boundary condition{
∆uε+κ2uε = 0 inΩε

∂νuε = 0 on ∂Ωε.
(3)

C. R. Mécanique, 2021, 349, n 1, 9-19



Lucas Chesnel and Sergei A. Nazarov 11

Here, ∆ is the Laplace operator while ∂ν corresponds to the derivative along the exterior normal.
Furthermore, uε is the acoustic pressure in the medium while κ> 0 is the wave number. Denote
κ2
± as the first positive eigenvalue of the Neumann Laplacian in ω±. In (3), we work with κ ∈

(0;min(κ−,κ+)) so that only the piston modes w in
± , wout

± with

w in
± (y, z) = e∓iκz√|ω±|

, wout
± (y, z) = e±iκz√|ω±|

, (4)

can propagate in Ωε
±. Here |ω±| stands for the Lebesgue measure of the set ω±. The above modes

are called piston modes because they are independent of the transverse coordinate. Moreover,
we choose the normalization in (4) so that the relation of conservation of energy (1) holds. We are
interested in the solution to the diffraction problem (3) generated by the incoming wave w in− in
the trunkΩε−. This solution admits the decomposition

uε(y, z) =
{

w in− +Rε wout− (y, z +Lε)+·· · inΩε−
T ε wout+ (y, z −Lε)+·· · inΩε+,

(5)

where Rε ∈C and T ε ∈C are reflection and transmission coefficients, respectively. In this decom-
position, the ellipsis stand for a remainder which decays at infinity with the rate e−(κ2−−κ2)1/2|z| in
Ωε− and e−(κ2+−κ2)1/2|z| in Ωε+. Note that the shifts ±Lε in the decomposition (5) are introduced to
prepare the analysis below. With the normalization (4), Rε and T ε satisfy the relation of conser-
vation of energy (1). Our goal is to compute an asymptotic expansion of Rε, T ε with respect to ε
as ε tends to zero.

3. Ansatz and auxiliary problems

To observe interesting phenomena, we work with L0 in (2) such that

L0 = πq

2κ
where q ∈N∗.

In this case, κ2 is an eigenvalue of the problem{−∆v =λv inΩ0
0 :=ω0 × (−L0;L0)

∂νv = 0 on ∂Ω0
0

(6)

obtained by considering the limit ε→ 0+ in (3) restricted to the resonator Ωε
0. We shall assume

that κ2 is a simple eigenvalue and we denote by v the eigenfunction

v(x) = cos(κ(z +L0)). (7)

Far from the holesΘεj±, for the field uε in (5) we work with the ansätze

uε(x) = w in
− (y, z +Lε)+R0 wout

− (y, z +Lε)+u0
−(y,−(z +Lε))+·· · inΩε

− (8)

uε(x) = T 0 wout
+ (y, z −Lε)+u0

+(y, z −Lε)+·· · inΩε
+ (9)

uε(x) = ε−1a0 v(z)+ε0 v ′
ε(x)+εv ′′(x)+·· · inΩε

0. (10)

Here R0, T 0 and a0 are unknown complex constants and the functions u0
±, v ′

ε and v ′′ have to be
determined. In particular, u0

± decay exponentially at infinity. The term v ′
ε will depend on ε but

this dependence will be rather explicit. In these expansions, the ellipsis stand for higher-order
terms which will be unimportant in the analysis.

In the vicinity of the holes Θεj±, we observe a boundary layer phenomenon. To capture it, we

introduce the rapid variables ξ j± = (ξ1
j±,ξ2

j±,ξ3
j±) := ε−1(x−Pε

j±) with Pε
j± := (p j±,±Lε). We look

for an expansion of uε in a neighbourhood of the holesΘεj± of the form

uε(x) = ε−1Z−1
j± (ξ j±)+ε0Z 0

j±(ξ j±)+·· · , (11)

C. R. Mécanique, 2021, 349, n 1, 9-19



12 Lucas Chesnel and Sergei A. Nazarov

where the functions Z−1
j± , Z 0

j± are to determine. Observing that

(∆x +κ2)uε(ε−1(x −Pε
j±)) = ε−2∆ξ j±uε(ξ j±)+·· · ,

we are led to consider the Neumann problem

−∆ξZ = 0 in Ξ j±, ∂νZ = 0 on ∂Ξ j±, (12)

where Ξ j± := R3−∪R3+∪θ j±(0). Here, by convention, R3− := {ξ = (ξ1,ξ2,ξ3) ∈ R2 × (−∞;0)}, R3+ :=
R2 × (0;+∞) and θ j±(0) := θ j±× {0}.

Introduce P j±, the capacity potential of the set θ j±(0), which is defined as the solution to the
problem

−∆ξP j± = 0 in R3 \θ j±(0), P j± = 1 on θ j±(0),

and decay at infinity. In the sequel, the asymptotic behaviour of P j± at infinity will play a major
role. As |ξ|→+∞, we have (see e.g. [19])

P j±(ξ) = cap(θ j±)

|ξ| +~q j± ·∇Φ(ξ)+O(|ξ|−3),

where Φ := ξ 7→ −1/(4π|ξ|) is the fundamental solution of the Laplace operator in R3 and ~q j± is
some given vector in R3. The term cap(θ j±) corresponds to the harmonic capacity of the planar
crack θ j±(0) and is defined by, see e.g. [20, Section 1.25],

cap(θ j±) := (4π)−1
∫
R3\θ j±(0)

|∇P j±|2 dξ> 0.

Note that since P j± is even in ξ3, we have ~q j± = (~q 1
j±,~q 2

j±,0) and the function W j± defined by

W j±(ξ) =
{

1−P j±(ξ) ξ3 > 0

−1+P j±(ξ) ξ3 < 0

is a smooth bounded solution of (12). Observe that W j± is odd in ξ3. Moreover, for η=±, we have
the expansion

W jη(ξ) =±1±4πcap(θ jη)Φ(ξ)∓~q jη ·∇Φ(ξ)+O(|ξ|−3), |ξ|→+∞, ±ξ3 > 0. (13)

Using classical results of the Kondratiev theory, for example [18, Section 1.6.3], one can check that
any smooth bounded solution of (12) is of the form c0 + c1W j±, where c0 and c1 are constants.

4. Asymptotic expansion of the scattering coefficients

In order to identify the terms in the outer (8), (9), (10) and inner (11) expansions of uε, we will
match the different behaviours in the neighbourhood of the holesΘεj±.
?We start with the expansion (10) of uε inΩε

0. From the Taylor formula and the expression (7)
for v, we have

v(±Lε) = (∓1)q (1−ε2(κL′)2/2+O(ε3)). (14)

On the other hand, we observe that the expansions (8), (9) of uε in Ωε
± remain bounded as ε→ 0.

Therefore, matching the constant behaviours at order ε−1, in the inner expansion (11), we get

Z−1
j± (ξ j±) = a0

2
(∓1)q (1∓W j±(ξ j±)).

Note, in particular, that with this choice, Z−1
j± (ξ) indeed tends to zero as |ξ|→+∞, ±ξ3 > 0.

C. R. Mécanique, 2021, 349, n 1, 9-19
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? Then we introduce the expansion (10) of uε inΩε
0 in the initial problem and look at the terms

of order ε0. This leads us to consider the problem
∆v ′+κ2v ′ = 0 inΩ0

0, ∂νv ′ = 0 on ∂ω0 × (−L0;L0),

±∂z v ′(y,±L) = a0(∓1)qκ2L′−a0π(∓1)q
J±∑

j=1
cap(θ j±)δ(y −p j±) for y ∈ω0.

(15)

To obtain the second boundary condition, we used the Taylor expansion

∂z v(±Lε) = ∂z v(±L0)+ε(L′+εL′′)∂2
z v(±L0)+O(ε3) = (∓1)1+qεκ2(L′+εL′′)+O(ε3). (16)

It shows that the first term ε−1a0 v(z) in (10) generates an error of order ε0 on the lateral sides
ω0 × {±Lε}, which must be compensated. Moreover, the Dirac masses δ(y −p j±) come from

Z−1
j± (ξ) = a0

2
(∓1)q (2+4πcap(θ j±)Φ(ξ)+·· · ), |ξ|→+∞, ∓ξ3 > 0. (17)

SinceΦ(ξ) =−1/(4π|ξ|), note that ε−1Φ(ξ j±) =−1/(4π|x−Pε
j±|) is a term of order ε0. We empha-

size that v must have the singular behaviour of the Green’s function at the points (p j±,±L0). Mul-
tiplying the volume equation of (15) by v and integrating twice by parts, we find that (15) admits
a solution if and only if

∫
∂Ω0

0
v∂νv ′ dσ= 0. For a0 6= 0, this is equivalent to have

L′ = π

2κ2|ω0|
∑
±

J±∑
j=1

cap(θ j±). (18)

We emphasize that if L′ in (2) is chosen different from the above value (18), then we must have
a0 = 0. In this case, there is no term in ε−1 in (10), (11) and we simply get almost complete
reflection when ε tends to zero. Therefore, from now on, we assume that L′ is set as in (18). Then
the solution of (15) is uniquely defined under the condition∫

Ω0
0

v ′vdx = 0.

Since L′ > 0, we need to extend the function v ′ defined in Ω0
0 to Ωε

0. We take v ′
ε in the expansion

(10) by setting

v ′
ε(y, z) =

{
v ′(y, z −εL′−ε2L′′) for z > 0
v ′(y, z +εL′+ε2L′′) for z < 0.

(19)

At z = 0, v ′
ε has the jumps

[v ′
ε](y,0) := v ′

ε(y,0+)− v ′
ε(y,0−) =−2εL′∂z v ′(y,0)+O(ε2)

[∂z v ′
ε](y,0) := ∂z v ′

ε(y,0+)−∂z v ′
ε(y,0−) =−2εL′∂2

z v ′(y,0)+O(ε2).
(20)

These jumps will be compensated with the term v ′′
ε . The important point is that they occur in a

region where v ′ is smooth.
? The next step consists in matching the outer (8), (9) and inner (11) expansions of uε at order

ε0 inΩε
±. In addition to (17), we have

Z−1
j± (ξ) =−a0

2
(∓1)q (4πcap(θ j±)Φ(ξ)+·· · ), |ξ|→+∞, ±ξ3 > 0. (21)

As a consequence, we obtain that the functions u0
± in (8), (9) must solve the following problems

∆u0
±+κ2u0

± = 0 inΩ@
± :=ω±× (0;+∞), ∂νu0

± = 0 on ∂ω±× (0;+∞)

−∂z u0
±(y,0) = iκ|ω±|−1/2S0

±+a0π (∓1)q
J±∑

j=1
cap(θ j±)δ(y −p j±) for y ∈ω±.

(22)

Here S0+ := T 0 and S0− := R0 − 1. Note that the first terms in the right hand side of the second
boundary condition of (22) come, respectively, from the expansions of ∂z (T 0 wout+ (y, z−Lε)) at L0

C. R. Mécanique, 2021, 349, n 1, 9-19



14 Lucas Chesnel and Sergei A. Nazarov

(see (9)) and of −∂z (w in− (y, z +Lε)+R0 wout− (y, z +Lε)) at −L0 (see (8)). As for the second terms,
they come from the matching with (21) similarly to (15). With our choice for the ansätze, u0

± must
be exponentially decaying at infinity. Multiplying (22) by eiκz +e−iκz and integrating by parts, we
have to impose that

∫
∂Ω@

±
(eiκz +e−iκz )∂νu0

± dσ= 0. This leads to the identities

0 = iκ|ω±|+1/2S0
±+a0π (∓1)q

J±∑
j=1

cap(θ j±). (23)

Introduce the generalized Green function G j± which solves{
∆G j±+κ2G j± = 0 inΩ@

± , ∂νG j± = 0 on ∂ω±× (0;+∞)

−∂zG j±(y,0) = δ(y −p j±)−|ω±|−1 for y ∈ω±.
(24)

Note that G j± is exponentially decaying at infinity (to show this, again multiply by eiκz +e−iκz and
integrate by parts). As r j± := ((y −p j±)2 + z2)1/2 tends to zero, we have the decomposition

G j±(x) = 1

2πr j±
+G̃ j±(x),

where the function G̃ j± is smooth. The matrices G± := (G±
j k )1≤ j ,k≤J± with G±

j k = G̃ j±(pk±,0) is real

and symmetric. With this notation, using identity (23), we find that the functions u0
± introduced

in (22) satisfy

u0
± = a0π (∓1)q

J±∑
j=1

cap(θ j±)G j±.

As a consequence, as r j± tends to zero, we have the representation

u0
±(x) = a0π (∓1)q cap(θ j±)

2πr j±
+a0 (∓1)q U 0

j±+O(r j±) with U 0
j± :=π

J±∑
k=1

cap(θk±)G±
k j . (25)

Now we define the terms Z 0
j± in the near field expansions (11). From the expression (19) of v ′

ε, as
r εj± := |x −Pε

j±| tends to zero, we obtain the expansion

v ′
ε(x) =−a0π(∓1)q cap(θ j±)

2πr εj±
+a0(∓1)q V ′

j±+O(r εj±) (26)

for some real constants V ′
j± independent of ε. Owing to (8), (9) and (25), the function Z 0

j± in (11)
must verify

Z 0
j±(ξ) = s0

±+a0 (∓1)q U 0
j±+o(1), |ξ|→+∞, ±ξ3 > 0,

with s0+ := T 0/|ω+|1/2 and s0− := (1+R0)/|ω−|−1/2. Besides, owing to (10) and (26), we have

Z 0
j±(ξ) = a0(∓1)q V ′

j±+o(1), |ξ|→+∞, ∓ξ3 > 0.

We conclude that

Z 0
j±(ξ j±) = A j±W j±(ξ j±)+B j±,

where, according to the decomposition (13) of W j±, the constants A j± and B j± solve the systems

±A j±+B j± = s0
±+a0 (∓1)q U 0

j±, ∓A j±+B j± = a0 (∓1)q V ′
j±.

Thus, we get

A j± =±(s0
±+a0 (∓1)q U 0

j±−a0 (∓1)q V ′
j±)/2, B j± = (s0

±+a0 (∓1)q U 0
j±+a0 (∓1)q V ′

j±)/2.

C. R. Mécanique, 2021, 349, n 1, 9-19
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? In (8)–(11), it only remains to define the term v ′′. Consider the problem

∆v ′′+κ2v ′′ = 0 inΩ0
0 \ (ω0 × {0}), ∂νv ′′ = 0 on ∂ω0 × (−L0;L0),

[v ′′](y,0) = 2a0L′∂z v ′(y,0), [∂z v ′′](y,0) = 2a0L′∂zz v ′(y,0)

±∂z v ′′(y,±L) = a0(∓1)qκ2L′′

±2π
J±∑

j=1
A j±cap(θ j±)δ(y −p j±)∓ a0

2
(∓1)q

J±∑
j=1

∑
p=1,2

q p
j±

∂δ

∂yp
(y −p j±) for y ∈ω0.

(27)

Here the jumps at z = 0 are introduced to compensate (20). Moreover, the boundary conditions
of the third line have been obtained by using (16) and by matching the expansions.

Multiplying the volume equation of (27) by v and integrating twice by parts, we find that (27)
admits a solution if and only if there holds a relation of the form (compatibility condition)

(−1)q T 0 K++ (1+R0)K−+a0(α1 +α2L′′) = 0 where K± := π

|ω±|1/2

J±∑
j=1

cap(θ j±) (28)

and where α1 and α2 are some real constants depending in particular on κ, ω0 and θ j± but not
on ε and L′′. Thus, together with (23), we obtain the system

iκT 0 +a0 (−1)q K+ = 0
iκ (R0 −1)+a0K− = 0
(−1)q T 0 K++ (1+R0)K−+a0(α1 +α2L′′) = 0.

(29)

Solving (29), we obtain the following proposition, the main result of this article.

Proposition 1. Let Rε, T ε be the scattering coefficients (see (5)) in the geometry Ωε defined
from the parameter Lε = πq/(2κ) + εL′ + ε2L′′. For L′ as in (18), we have limε→0 Rε = R0(L′′),
limε→0 T ε = T 0(L′′) with

R0(L′′) = K 2+−K 2−− iκβ

K 2++K 2−− iκβ
, and T 0(L′′) = 2(−1)q+1K+K−

K 2++K 2−− iκβ
. (30)

Here β :=α1 +α2L′′ and K±, α1, α2 are set in (28). Besides, for the constant a0 in (10) we have

a0 = a0(L′′) = 2iκK−
K 2++K 2−− iκβ

. (31)

5. Analysis of the results

First, we observe that the coefficients R0(L′′), T 0(L′′) defined in Proposition 1 satisfy the relation
of conservation of energy |R0(L′′)|2 + |T 0(L′′)|2 = 1. On the other hand, R0 vanishes for a certain
L′′ = L′′¦ (such that β(L′′¦ ) = 0 ⇔α1 +α2L′′¦ = 0) if and only if K− = K+. This is equivalent to

1

|ω−|1/2

J−∑
j=1

cap(θ j−) = 1

|ω+|1/2

J+∑
j=1

cap(θ j+). (32)

Then we have T 0(L′′¦ ) = (−1)q+1 and a0(L′′¦ ) = iκ/K−. Note that in order (32) to be satisfied, we do
not need J− = J+ or ω− =ω+. Moreover, the position of the holes does not play any role because
we deal with the piston modes. When (32) is met, setting β̃= κβ/(2K 2−), we obtain

R0(L′′) = −iβ̃

1− iβ̃
, T 0(L′′) = (−1)q+1

1− iβ̃
, a0(L′′) = iκ/K−

1− iβ̃
. (33)

In this case, there holds R0(L′′)+(−1)q+1T 0(L′′) = 1 and as L′′ varies in R, R0(L′′) runs on the circle
centred at 1/2 of radius 1/2 while T 0 runs on the circle centred at (−1)q+1/2 of radius 1/2 (see
Figure 2, right).

C. R. Mécanique, 2021, 349, n 1, 9-19



16 Lucas Chesnel and Sergei A. Nazarov

Figure 2. Left: paths {γL′′ (ε) = (ε,πq/(2κ) + εL′ + ε2L′′), ε > 0} ⊂ R2 for several values of
L′′. According to the chosen path, the limit of the scattering coefficients along this path as
ε→ 0+ is different. With this picture, we understand why for a fixed small ε0, the scattering
coefficients have a rapid variation as the distance between the screens changes in a vicinity
of πq/(2κ). Right: sets {R0(L′′) , L′′ ∈ R} (ä) and {T 0(L′′) , L′′ ∈ R} (•) in the complex plane
where R0(L′′), T 0(L′′) are defined in (30). Here q is odd and K− = K+. The black bold line
represents the unit circle.

When the geometry is symmetric with respect to the plane z = 0, we have K− = K+ and so
R0(L′′¦ ) = 0, T 0(L′′¦ ) = (−1)q+1. But in this situation, working with Symmetries, for example, as
in [21], we can get better and show that for ε> 0 small enough, there is Lε close to πq/(2κ)+εL′+
ε2L′′¦ such that Rε = 0 and T ε = (−1)q+1 (exactly and not asymptotically). We stress that for exact
complete transmission, the position of holes (and not only their shapes and numbers) matters.

6. Numerical illustrations

In this section, we illustrate the results we have obtained above. To simplify the numerical
implementation, we work in 2D. We emphasize that the asymptotic analysis is different from the
above 3D setting. However, the physical phenomena are similar. For the experiments, we define
the waveguideΩε such that for L > 0,

Ωε =R× (0;1) \ {Σε−∪Σε+} with Σε± := {±L}× I ε±. (34)

Here the sets I ε± depend on the situation and will be given below. We take κ = 0.8π < κ± = π,
so that only the piston modes (see (4)) can propagate. We compute numerically the scattering
solution uε defined in (5). To proceed, we use a P2 finite element method in a truncated geometry.
On the artificial boundary created by the truncation, a Dirichlet-to-Neumann operator with 15
terms serves as a transparent condition. Once we have computed uε, it is easy to obtain the
scattering coefficients Rε, T ε in the representation (5). For the numerics, we take ε= 10−4.

For the numerics of Figure 3, in (34) we take I ε− = I ε+ = (0;1) \ [1/2 − ε/2;1/2 + ε/2] (the
holes are centred on the middle line of the waveguide). For κ = 0.8π, the first critical length
is L0 = π/(2κ) = 1/1.6 = 0.625. In Figure 3, we display the scattering coefficients for L varying
close to 0.625. As expected, when ε is small, for most values of L, the energy of the incident
field is almost completely backscattered and the transmission coefficient T is close to zero. In
accordance with the discussion of Section 5 (remark that K− = K+ and even strongly, the geometry
is symmetric with respect to z = 0), we observe the phenomenon of complete transmission for
some L = L?. As expected (see formula (18)), we note that L? > L0. In Figure 3, we find back
the circles characterized by the formulae (33) for the asymptotic behaviour of the scattering
coefficients. In Figure 4, we display the same quantities as in Figure 3 but with L varying close
to the second critical length L0 = 2π/(2κ) = 1.25. Again, we get results in agreement with (33).
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Figure 3. Left: curves L 7→ |Rε(L)| (ä) and L 7→ |T ε(L)| (∗). Right: L 7→ Rε(L) (ä) and
L 7→ T ε(L) (∗) in the complex plane. According to the conservation of energy, we have
|Rε(L)|2 +|T ε(L)|2 = 1. Therefore, the scattering coefficients are located inside the unit disk
delimited by the black bold line. For both pictures, L takes values close to L0 = π/(2κ) =
0.625 and ε= 10−4.

Figure 4. Same quantities as in Figure 3 but with L taking values close to L0 = 2π/(2κ) =
1.25.

In Figure 5, we display the field uε for two different values of L, namely for a generic one
where T is almost zero and for L ≈ L?. For L ≈ L?, we indeed observe that the scattering field
is exponentially decaying in the incident branch. For L ≈ L?, we also note that the imaginary
part of uε is large in the resonator, of the order ε−1. This is coherent with the formula (31) which
indicates that a0(L?) is purely imaginary.

For the numerics of Figure 6 left, in (34) we take

I ε− = (0;1) \ [0.1−ε/2;0.1+ε/2] and I ε+ = (0;1) \ [0.7−ε/2;0.7+ε/2]. (35)

In this case, the holes are not at the centre of the waveguide and there is no symmetry with
respect to z = 0. However, we still have K+ = K− and (33) indicates that we should observe almost
complete transmission for a certain L∗. And this is what we get. For the numerics of Figure 6
(right), we take

I ε− = (0;1) \ [0.5−3ε/2;0.5+3ε/2] and I ε+ = (0;1) \ [0.5−ε/2;0.5+ε/2]. (36)

C. R. Mécanique, 2021, 349, n 1, 9-19



18 Lucas Chesnel and Sergei A. Nazarov

Figure 5. (1) ℜe uε for L = 0.5. (2) ℜe uε for L = 0.6265 ≈ L?. (3) (resp. (4)) ℜe (uε−ui ) (resp.
ℑm (uε−ui )) (scattered field) for L = 0.6265 ≈ L?. Here ui (x) = w in− (z +L).

Figure 6. Same quantities as in Figure 3 but in the geometries defined by (35) (left) and (36)
(right).

In other words, the right hole is three times larger than the left hole. In this case, we have
cap(θ j−) = 3cap(θ j+), so that K− = 3K+ and infL |R0(L)| = 4/5 according to (33). This is indeed
what we observe.
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