We derive a new model for the description of large amplitude internal waves in a two-fluid system. The displacement of the interface between the two fluids is assumed to be of small slope, but no smallness assumption is made on the wave amplitude. The derivation of the model is based on the perturbation theory for Hamiltonian systems. In the case of a single fluid layer, the model reduces to the classical shallow water regime for surface water waves.
Nous établissons un nouveau modèle pour la description des ondes internes de grande amplitude dans un système à deux fluides. On suppose que le déplacement de l'interface entre les deux fluides est de faible pente, mais on ne fait aucune hypothèse de faible amplitude pour les ondes. L'écriture du modèle est basée sur la théorie des perturbations pour les systèmes hamiltoniens. Dans le cas d'une seule couche de fluide, le modèle se réduit au régime classique en eau peu profonde pour les ondes de surface.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Ondes internes, Systèmes hamiltoniens, Opérateurs Dirichlet–Neumann
Walter Craig 1; Philippe Guyenne 1; Henrik Kalisch 2
@article{CRMECA_2004__332_7_525_0, author = {Walter Craig and Philippe Guyenne and Henrik Kalisch}, title = {A new model for large amplitude long internal waves}, journal = {Comptes Rendus. M\'ecanique}, pages = {525--530}, publisher = {Elsevier}, volume = {332}, number = {7}, year = {2004}, doi = {10.1016/j.crme.2004.02.026}, language = {en}, }
Walter Craig; Philippe Guyenne; Henrik Kalisch. A new model for large amplitude long internal waves. Comptes Rendus. Mécanique, Volume 332 (2004) no. 7, pp. 525-530. doi : 10.1016/j.crme.2004.02.026. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2004.02.026/
[1] Reappraisal of the Kelvin–Helmholtz problem. I. Hamiltonian structure, J. Fluid Mech., Volume 333 (1997), pp. 301-325
[2] Normal forms for wave motion in fluid interfaces, Wave Motion, Volume 31 (2000), pp. 21-41
[3] Nonlinear harmonic analysis and analytic dependence, Pseudodifferential Operators and Applications, Notre Dame, IN, 1984, American Mathematical Society, 1985, pp. 71-78
[4] Numerical simulation of gravity waves, J. Comput. Phys., Volume 108 (1993), pp. 73-83
[5] Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., Volume 386 (1999), pp. 1-36
[6] Hydrodynamics, Dover, New York, 1932 (p. 738)
[7] Hamiltonian long-wave scaling limits of the water-wave problem, Wave Motion, Volume 19 (1994), pp. 367-389
Cited by Sources:
Comments - Policy