We study the homogenization of the Dirichlet variational problem of a class of nonlinear elliptic equations with nonstandard growth. Such equations arise in many engineering disciplines, such as electrorheological fluids, non-Newtonian fluids with thermo-convective effects, and nonlinear Darcy flow of compressible fluids in heterogeneous porous media. We derive the homogenized model by means of the variational homogenization technique in the framework of Sobolev spaces with variable exponents. This result is then illustrated with a periodic example.
On étudie l'homogénéisation du problème variationnel de Dirichlet d'une classe d'équations elliptiques non linéaires de croissance non standard. Ce genre d'équations apparaît dans la modélisation de certains problèmes de l'ingénierie, comme par exemple les fluides électrorhéologiques, les écoulements non Newtoniens thermoconvectifs, et les écoulements non linéaires de Darcy de fluides compressibles en milieux poreux hétérogènes. On obtient le problème homogénéisé par la technique de l'homogénéisation variationnelle dans le cadre des espaces de Sobolev avec des exposants variables. Enfin, on présente un exemple périodique pour illustrer le résultat obtenu.
Accepted:
Published online:
Mots-clés : Mécanique des fluides, Homogénéisation, Problème variationnel non linéaire, Croissance non standard
Brahim Amaziane 1; Stanislav Antontsev 2; Leonid Pankratov 1, 3
@article{CRMECA_2007__335_3_138_0, author = {Brahim Amaziane and Stanislav Antontsev and Leonid Pankratov}, title = {Homogenization of a class of nonlinear elliptic equations with nonstandard growth}, journal = {Comptes Rendus. M\'ecanique}, pages = {138--143}, publisher = {Elsevier}, volume = {335}, number = {3}, year = {2007}, doi = {10.1016/j.crme.2007.02.007}, language = {en}, }
TY - JOUR AU - Brahim Amaziane AU - Stanislav Antontsev AU - Leonid Pankratov TI - Homogenization of a class of nonlinear elliptic equations with nonstandard growth JO - Comptes Rendus. Mécanique PY - 2007 SP - 138 EP - 143 VL - 335 IS - 3 PB - Elsevier DO - 10.1016/j.crme.2007.02.007 LA - en ID - CRMECA_2007__335_3_138_0 ER -
%0 Journal Article %A Brahim Amaziane %A Stanislav Antontsev %A Leonid Pankratov %T Homogenization of a class of nonlinear elliptic equations with nonstandard growth %J Comptes Rendus. Mécanique %D 2007 %P 138-143 %V 335 %N 3 %I Elsevier %R 10.1016/j.crme.2007.02.007 %G en %F CRMECA_2007__335_3_138_0
Brahim Amaziane; Stanislav Antontsev; Leonid Pankratov. Homogenization of a class of nonlinear elliptic equations with nonstandard growth. Comptes Rendus. Mécanique, Volume 335 (2007) no. 3, pp. 138-143. doi : 10.1016/j.crme.2007.02.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2007.02.007/
[1] On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara, Sez., Sci. Mat., Volume 52 (2006), pp. 19-36
[2] Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000
[3] Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions (M. Chipot; P. Quittner, eds.), Handbook of Differential Equations: Stationary Partial Differential Equations, Elsevier, Amsterdam, 2006
[4] Boundary value problems with fine-grained boundary, Mat. Sbornik, Volume 65 (1964), pp. 458-472
[5] Un terme étrange venu d'ailleurs (H. Brézis; J.-L. Lions, eds.), Nonlinear Partial Differential Equations and Their Applications: Collège de France Séminaire, Pitman, London, 1982
[6] Homogenization of the Dirichlet variational problems in Orlicz–Sobolev spaces, Fields Institute Communications, Volume 25 (2000), pp. 345-366
[7] Methods of Investigation of Nonlinear Elliptic Boundary Value Problems, Fizmatgiz, Moscow, 1990
[8] Homogenization of Partial Differential Equations, Birkhäuser, Berlin, 2006
[9] Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, 1994
[10] B. Amaziane, S. Antontsev, L. Pankratov, A. Piatnitski, Homogenization of p-Laplacian in perforated domains, 2007, in preparation
[11] Homogenization of Multiple Integrals, Clarendon Press, Oxford, 1998
[12] The topology of the space , Mat. Zametki, Volume 26 (1979), pp. 613-632
[13] On generalized Orlicz–Sobolev space, Funct. Approx. Comment. Math., Volume 4 (1976), pp. 37-51
[14] On spaces and , Czechoslovak Math. J., Volume 41 (1991), pp. 592-618
[15] Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, 1983
[16] Existence of solutions for -Laplacian Dirichlet problem, Nonlinear Anal., Volume 52 (2003), pp. 1843-1852
[17] Elliptic equations and systems with nonstandard growth conditions: existence, uniqueness and localization properties of solutions, Nonlinear Anal., Volume 65 (2006), pp. 722-755
[18] The Dirichlet energy integral and variable exponents Sobolev spaces with zero boundary values, Potential Anal., Volume 25 (2006), pp. 205-222
Cited by Sources:
Comments - Policy