We consider periodic travelling gravity waves at the surface of an infinitely deep perfect fluid. The pattern is non-symmetric with respect to the propagation direction of the waves and we consider a general non-resonant situation. Defining a couple of amplitudes along the basis of wave vectors which satisfy the dispersion relation, following Iooss and Plotnikov (2009), travelling waves exist with an asymptotic expansion in powers of , for nearly all pair of angles made by the basic wave vectors with the critical propagation direction, and for values of the couple in a subset of the plane, with asymptotic full measure at the origin. We prove the remarkable property that on the free surface, observed in the moving frame, the propagation direction of the waves differs from the asymptotic direction taken by fluid particles, by a small angle which is computed.
On considère les vagues périodiques à la surface d'une couche de fluide parfait, de profondeur infinie, soumise à la seule gravité. Le réseau bidimensionnel des périodes est pris non symétrique par rapport à la direction de propagation et on suppose ne pas être dans un cas résonant. On définit le couple d'amplitudes le long des deux vecteurs d'onde de base qui vérifient l'équation de dispersion. D'après Iooss et Plotnikov (2009), les vagues asymétriques existent et possèdent un développement asymptotique en puissances de , pour presque tous les angles faits par les vecteurs d'onde de base avec la direction critique de propagation, et pour des valeurs de dans un sous-ensemble du quadrant ayant une mesure asymptotiquement pleine à l'origine. Nous montrons la propriété remarquable dans le référentiel relatif, qu'à la surface libre, la direction de propagation des ondes diffère de la direction asymptotique prise par les trajectoires des particules de fluide, d'un petit angle qu'on calcule.
Accepted:
Published online:
Mot clés : Ondes, Écoulements potentiels de fluides parfaits, Vagues non linéaires, Ondes progressives de gravité, Théorie des bifurcations, Vagues tri-dimensionnelles asymétriques
Gérard Iooss 1; Pavel Plotnikov 2
@article{CRMECA_2009__337_9-10_633_0, author = {G\'erard Iooss and Pavel Plotnikov}, title = {Existence of a directional {Stokes} drift in asymmetrical three-dimensional travelling gravity waves}, journal = {Comptes Rendus. M\'ecanique}, pages = {633--638}, publisher = {Elsevier}, volume = {337}, number = {9-10}, year = {2009}, doi = {10.1016/j.crme.2009.09.001}, language = {en}, }
TY - JOUR AU - Gérard Iooss AU - Pavel Plotnikov TI - Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves JO - Comptes Rendus. Mécanique PY - 2009 SP - 633 EP - 638 VL - 337 IS - 9-10 PB - Elsevier DO - 10.1016/j.crme.2009.09.001 LA - en ID - CRMECA_2009__337_9-10_633_0 ER -
Gérard Iooss; Pavel Plotnikov. Existence of a directional Stokes drift in asymmetrical three-dimensional travelling gravity waves. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 633-638. doi : 10.1016/j.crme.2009.09.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.001/
[1] On the theory of oscillatory waves, Trans. Cambridge Phil. Soc., Volume 8 (1847), pp. 441-455
[2] Nonlinear gravity capillary-gravity waves, Annu. Rev. Fluid Mech., Volume 31 (1999), pp. 301-346
[3] Three-dimensional nonlinear wave interaction in water of constant depth, Nonlinear Anal. T.M.A., Volume 5 (1981) no. 3, pp. 303-323
[4] Traveling gravity water waves in two three dimensions, EJMB/Fluids, Volume 21 (2002), pp. 615-641
[5] Travelling two three-dimensional capillary gravity water waves, SIAM J. Math. Anal., Volume 32 (2000), pp. 323-359
[6] A spatial dynamics approach to three-dimensional gravity-capillary steady water waves, Proc. Roy. Soc. Edinburgh A, Volume 131 (2001), pp. 83-136
[7] A bifurcation theory for three-dimensional oblique travelling gravity-capillary water waves, J. Nonlinear Sci., Volume 13 (2003), pp. 397-447
[8] Small divisor problem in the theory of three-dimensional water gravity waves, Mem. Amer. Math. Soc., Volume 200 (2009), p. 940
[9] G. Iooss, P. Plotnikov, Asymmetrical three-dimensional travelling gravity waves, Preprint, 2009
[10] Well-posedness of the water-waves equations, J. Amer. Math. Soc., Volume 18 (2005), pp. 605-654
[11] Standing waves on an infinitely deep perfect fluid under gravity, Arch. Ration. Mech. Anal., Volume 177 (2005) no. 3, pp. 367-478
Cited by Sources:
Comments - Policy