Comptes Rendus
A two-scale damage model with material length
Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 645-652.

The Note presents the formulation of a class of two-scale damage models involving a micro-structural length. A homogenization method based on asymptotic developments is employed to deduce the macroscopic damage equations. The damage model completely results from energy-based micro-crack propagation laws, without supplementary phenomenological assumptions.

We show that the resulting two-scale model has the property of capturing micro-structural lengths. When damage evolves, the micro-structural length is given by the ratio of the surface density of energy dissipated during the micro-crack growth and the macroscopic damage energy release rate per unit volume of the material.

The use of fracture criteria based on resistance curves or power laws for sub-critical growth of micro-cracks leads to quasi-brittle and, respectively, time-dependent damage models.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2009.09.008
Keywords: Damage, Micro-crack propagation, Homogenization, Damage laws, Internal length, Resistance curve, Sub-critical crack growth

Cristian Dascalu 1

1 Laboratoire 3S-R, UJF, INPG, CNRS UMR 5521, BP 53, 38041 Grenoble cedex 9, France
@article{CRMECA_2009__337_9-10_645_0,
     author = {Cristian Dascalu},
     title = {A two-scale damage model with material length},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {645--652},
     publisher = {Elsevier},
     volume = {337},
     number = {9-10},
     year = {2009},
     doi = {10.1016/j.crme.2009.09.008},
     language = {en},
}
TY  - JOUR
AU  - Cristian Dascalu
TI  - A two-scale damage model with material length
JO  - Comptes Rendus. Mécanique
PY  - 2009
SP  - 645
EP  - 652
VL  - 337
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crme.2009.09.008
LA  - en
ID  - CRMECA_2009__337_9-10_645_0
ER  - 
%0 Journal Article
%A Cristian Dascalu
%T A two-scale damage model with material length
%J Comptes Rendus. Mécanique
%D 2009
%P 645-652
%V 337
%N 9-10
%I Elsevier
%R 10.1016/j.crme.2009.09.008
%G en
%F CRMECA_2009__337_9-10_645_0
Cristian Dascalu. A two-scale damage model with material length. Comptes Rendus. Mécanique, Volume 337 (2009) no. 9-10, pp. 645-652. doi : 10.1016/j.crme.2009.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2009.09.008/

[1] J.J. Marigo Formulation d'une loi d'endommagement d'un matriau lastique, C. R. Acad. Sci. Paris, Volume 292 (1981), pp. 1309-1312

[2] J.B. Leblond Mécanique de la rupture fragile et ductile, Hermes, Paris, 2003

[3] Z.P. Bazant; J. Planas Fracture and Size Effect in Concrete and Other Quasibrittle Materials, CRC Press, Boca Raton, FL, 1997

[4] P.M. Suquet Approach by homogenization of some linear and nonlinear problems in solid mechanics (J.-P. Boehler, ed.), Plastic Behavior of Anisotropic Solids, Editions du CNRS, Paris, 1985, pp. 77-117

[5] S. Andrieux; Y. Bamberger; J.J. Marigo Un modèle de matériau microfissuré pour les bétons et les roches, J. Mec. Theor. Appl., Volume 5 (1986), pp. 471-513

[6] F. Lene Damage constitutive relations for composite materials, Engrg. Fract. Mech., Volume 25 (2004), pp. 713-728

[7] L. Dormieux; D. Kondo; F.-J. Ulm A micromechanical analysis of damage propagation in fluid-saturated cracked media, C. R. Mecanique, Volume 334 (2006), pp. 440-446

[8] S. Pietruszczak; Z. Mroz Finite element analysis of deformation of strain-softening materials, Int. J. Numer. Methods Engrg., Volume 17 (1981), pp. 327-334

[9] J. Oliver A consistent characteristic length for smeared cracking models, Int. J. Numer. Methods Engrg., Volume 28 (1989), pp. 461-474

[10] Z.P. Bazant Scaling of quasi-brittle fracture: Asymptotic analysis, Int. J. Fracture, Volume 83 (1997), pp. 19-40

[11] C. Dascalu; G. Bilbie; E. Agiasofitou Damage and size effects in solids: A homogenization approach, Int. J. Solids Struct., Volume 45 (2008), pp. 409-430

[12] C. Dascalu; G. Bilbie A multiscale approach to damage configurational forces, Int. J. Fracture, Volume 147 (2007) no. 1–4, pp. 285-294

[13] E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory, Lecture Notes in Phys., vol. 127, Springer, Berlin, 1980

[14] D. Leguillon; E. Sancez-Palencia On the behavior of a cracked elastic body with (or without) friction, J. Mec. Theor. Appl., Volume 1 (1982), pp. 195-209

[15] R.J. Charles Dynamic fatigue of glass, J. Appl. Phys., Volume 29 (1958), pp. 1657-1662

[16] R.L. Salganik; L. Repoport; V.A. Gotlib Effect of structure on environmentally assisted subcritical crack growth in brittle materials, Int. J. Fracture, Volume 87 (1997), pp. 21-46

Cited by Sources:

Comments - Policy