The method of asymptotic partial domain decomposition for thin tube structures (finite unions of thin cylinders) is revisited. Its application to the Newtonian and non-Newtonian flows in great systems of vessels is considered. The possibility of a parallelization of its algorithm is discussed for linear and non-linear models.
La méthode de décomposition asymptotique de domaine pour des structures minces (une réunion des cylindres minces) est revisitée. Son application aux écoulements newtoniens et non newtoniens est considérée. La possibilité d'une parallélisation de son algorithme est discuté pour des modèles linéaires ainsi que non linéaires.
Accepted:
Published online:
Mots-clés : Mécanique des fluides numérique, Équations de Navier–Stokes, Structures minces, Méthode de décomposition asymptotique partielle de domaine, Modèles multi-échelles, Modèles de dimension hybride, Parallélisation
Grigory Panasenko 1
@article{CRMECA_2010__338_12_675_0, author = {Grigory Panasenko}, title = {Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures}, journal = {Comptes Rendus. M\'ecanique}, pages = {675--680}, publisher = {Elsevier}, volume = {338}, number = {12}, year = {2010}, doi = {10.1016/j.crme.2010.10.007}, language = {en}, }
TY - JOUR AU - Grigory Panasenko TI - Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures JO - Comptes Rendus. Mécanique PY - 2010 SP - 675 EP - 680 VL - 338 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2010.10.007 LA - en ID - CRMECA_2010__338_12_675_0 ER -
Grigory Panasenko. Parallelization of the algorithm of asymptotic partial domain decomposition in thin tube structures. Comptes Rendus. Mécanique, Volume 338 (2010) no. 12, pp. 675-680. doi : 10.1016/j.crme.2010.10.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2010.10.007/
[1] Multi-Scale Modelling for Structures and Composites, Springer, Dordrecht, 2005 (398 pp)
[2] Asymptotic expansion of the solution of Navier–Stokes equation in a tube structure, C. R. Acad. Sci. Paris Sér. IIb, Volume 326 (1998), pp. 867-872
[3] Partial asymptotic decomposition of domain: Navier–Stokes equation in tube structure, C. R. Acad. Sci. Paris Sér. IIb, Volume 326 (1998), pp. 893-898
[4] Asymptotic analysis and partial asymptotic decomposition of the domain for Stokes equation in tube structure, Math. Model. Meth. Appl. Sci., Volume 9 (1999) no. 9, pp. 1351-1378
[5] The finite volume implementation of the partial asymptotic domain decomposition, Appl. Anal., Volume 87 (2008) no. 12, pp. 1381-1408
[6] The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sc. Publ., New York/London/Paris, 1969
[7] Weak and Measure-valued Solutions to Evolutionary PDEs, Chapman and Hall, London, 1996
[8] Hemodynamical Flows Modelling, Analysis and Simulation, Oberwolfach Seminar, Birkhäuser/Basel, Boston/Berlin, 2008
[9] Motion of Non-linear Viscous Fluid, Nauka, Moscow, 1982 (in Russian)
[10] Multiphase hemodynamic simulation of pulsatile flow in a coronary artery, J. Biomech., Volume 39 (2006), pp. 2064-2073
Cited by Sources:
Comments - Policy