Comptes Rendus
The construction of effective relations for waves in a composite
Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 181-192.

Implications of a recent general formulation for the effective dynamic response of a composite, in which “effective displacement” is defined as a weighted average, which could, for instance, be an average over the matrix material, are developed. A general formula is already known [J.R. Willis, Effective constitutive relations for waves in composites and metamaterials, Proc. R. Soc. A 467 (2011) 1865–1879], but it is expressed in terms of the Greenʼs function of the actual composite. A corresponding formula, expressed relative to a comparison medium, is developed here. The property of self-adjointness of the problem for the actual medium is transmitted to the corresponding problem for the “effective medium”. This permits, in the case of self-adjointness, variational characterizations of the effective response, both directly and in a formulation of “Hashin–Shtrikman” type relative to a comparison medium. The exposition is for waves in a viscoelastic composite but it applies equally to other physical examples, including electromagnetic waves.

Published online:
DOI: 10.1016/j.crme.2012.02.001
Keywords: Effective relations, Homogenization, Elastic waves, Metamaterials, Comparison medium

John R. Willis 1

1 Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge CB3 0WA, UK
@article{CRMECA_2012__340_4-5_181_0,
     author = {John R. Willis},
     title = {The construction of effective relations for waves in a composite},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {181--192},
     publisher = {Elsevier},
     volume = {340},
     number = {4-5},
     year = {2012},
     doi = {10.1016/j.crme.2012.02.001},
     language = {en},
}
TY  - JOUR
AU  - John R. Willis
TI  - The construction of effective relations for waves in a composite
JO  - Comptes Rendus. Mécanique
PY  - 2012
SP  - 181
EP  - 192
VL  - 340
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2012.02.001
LA  - en
ID  - CRMECA_2012__340_4-5_181_0
ER  - 
%0 Journal Article
%A John R. Willis
%T The construction of effective relations for waves in a composite
%J Comptes Rendus. Mécanique
%D 2012
%P 181-192
%V 340
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2012.02.001
%G en
%F CRMECA_2012__340_4-5_181_0
John R. Willis. The construction of effective relations for waves in a composite. Comptes Rendus. Mécanique, Volume 340 (2012) no. 4-5, pp. 181-192. doi : 10.1016/j.crme.2012.02.001. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2012.02.001/

[1] Z. Liu; X. Zhang; Y. Mao; Y.Y. Zhu; Z. Yang; C.T. Chan; P. Sheng Locally resonant sonic materials, Science, Volume 289 (2000), pp. 1734-1736

[2] Z. Liu; C.T. Chan; P. Sheng Analytic model of phononic crystals with local resonances, Phys. Rev. B, Volume 71 (2005), p. 014103

[3] V.V. Zhikov On an extension of the method of two-scale convergence and its applications, Sb. Math., Volume 191 (2000), pp. 973-1014

[4] S.A. Schelkunoff; H.J. Friis Antennas: Theory and Practice, J. Wiley, New York, 1952

[5] J.B. Pendry; A.J. Holden; W.J. Stewart; I. Youngs Extremely low frequency plasmons in metallic mesostructures, Phys. Rev. Lett., Volume 76 (1996), pp. 4773-4776

[6] J.B. Pendry; A.J. Holden; D.J. Robbins; W.J. Stewart Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., Volume 47 (1999), pp. 2075-2084

[7] J.R. Willis Effective constitutive relations for waves in composites and metamaterials, Proc. R. Soc. A, Volume 467 (2011), pp. 1865-1879

[8] J.R. Willis Variational principles for waves in inhomogeneous elastic media, Wave Motion, Volume 3 (1981), pp. 1-11

[9] J.R. Willis Elasticity theory of composites (H.G. Hopkins; M.J. Sewell, eds.), Mechanics of Solids. The Rodney Hill 60th Anniversary Volume, Pergamon, Oxford, 1982, pp. 653-686

[10] J.R. Willis Dynamics of composites (P. Suquet, ed.), Continuum Micromechanics, CISM Lecture Notes, Springer, Wien/New York, 1997, pp. 265-290

[11] G.W. Milton; J.R. Willis On modifications of Newtonʼs second law and linear continuum elastodynamics, Proc. R. Soc. A, Volume 463 (2007), pp. 855-880

[12] J.R. Willis Exact effective relations for dynamics of a laminated body, Mech. Mater., Volume 41 (2009), pp. 385-393

[13] E. Kröner Elastic moduli of perfectly disordered composite materials, J. Mech. Phys. Solids, Volume 15 (1967), pp. 319-329

[14] M.J. Beran Statistical Continuum Theories, Interscience, New York, 1968

[15] J.R. Willis A polarization approach to the scattering of elastic waves. I. Scattering by a single inclusion, J. Mech. Phys. Solids, Volume 28 (1980), pp. 287-305

[16] J.R. Willis A polarization approach to the scattering of elastic waves. II. Scattering by multiple inclusions, J. Mech. Phys. Solids, Volume 28 (1980), pp. 307-327

[17] J.R. Willis A comparison of two formulations for effective relations for waves in composites, Mechanics of Materials, Volume 47 (2012), pp. 51-60

[18] G.W. Milton; J.R. Willis Minimum variational principles for time-harmonic waves in a dissipative medium and associated variational principles of Hashin–Shtrikman type, Proc. R. Soc. A, Volume 466 (2010), pp. 3013-3032

[19] Z. Hashin; S. Shtrikman On some variational principles in anisotropic and inhomogeneous elasticity, J. Mech. Phys. Solids, Volume 10 (1962), pp. 335-342

[20] Z. Hashin; S. Shtrikman A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, Volume 11 (1963), pp. 127-140

[21] S. Nemat-Nasser; A. Srivastava Overall dynamic constitutive relations of layered elastic composites, J. Mech. Phys. Solids, Volume 59 (2011), pp. 1953-1965

[22] A. Srivastava; S. Nemat-Nasser Overall dynamic properties of three-dimensional periodic elastic composites, Proc. R. Soc. A, Volume 468 (2012), pp. 269-287

[23] A. Serdyukov; I. Semchenko; S. Tratyakov; A. Sihvola Electromagnetics of Bi-anisotropic Materials, Gordon and Breach, Amsterdam, 2001

[24] A.L. Shuvalov; A.A. Kutsenko; A.N. Norris; O. Poncelet Effective Willis constitutive equations for periodically stratified anisotropic elastic media, Proc. R. Soc. A, Volume 467 (2011), pp. 1749-1769

[25] C. Feitz; G. Shvets Current-driven metamaterial homogenization, Phys. B: Condens. Matter, Volume 405 (2010), pp. 2930-2934

Cited by Sources:

Comments - Policy