Comptes Rendus
Asymptotic modeling of thin linearly quasicrystalline plates
Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 793-798.

We rigorously derive a theory of thin linearly quasicrystalline plates by studying the limit behavior of a three-dimensional flat body as its thickness tends to zero. We exhibit the existence of 26 different models, each of them linked to a specific set of boundary conditions. This stunning number of models is essentially the consequence of the coupling between displacements and a specific local rearrangement of matter at the microscopic scale that is called a phason. We exhibit the influence of the icosahedral order on the limit behavior.

Lʼanalyse asymptotique, lorsque lʼépaisseur tend vers 0, de plaques minces quasicristallines linéaires montre que, selon le type de conditions aux limites considéré, il apparaît 26 modèles rendant compte de comportements différents. Ce nombre étonnamment élevé de modèles limites est essentiellement dû au couplage entre les déplacements élastiques et un type spécifique de réarrangement atomique appelé phason. On montre en particulier lʼinfluence de lʼordre icosahédral sur ces différents comportements limites.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2013.10.002
Keywords: Asymptotic modeling, Quasicrystals, Thin structures
Mot clés : Analyse asymptotique, Quasicristaux, Structures minces

Thibaut Weller 1; Christian Licht 1

1 Laboratoire de mécanique et génie civil, UMR 5508 CNRS – UMII, Université Montpellier-2, c.c. 048, place Eugène-Bataillon, 34095 Montpellier cedex 5, France
@article{CRMECA_2013__341_11-12_793_0,
     author = {Thibaut Weller and Christian Licht},
     title = {Asymptotic modeling of thin linearly quasicrystalline plates},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {793--798},
     publisher = {Elsevier},
     volume = {341},
     number = {11-12},
     year = {2013},
     doi = {10.1016/j.crme.2013.10.002},
     language = {en},
}
TY  - JOUR
AU  - Thibaut Weller
AU  - Christian Licht
TI  - Asymptotic modeling of thin linearly quasicrystalline plates
JO  - Comptes Rendus. Mécanique
PY  - 2013
SP  - 793
EP  - 798
VL  - 341
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crme.2013.10.002
LA  - en
ID  - CRMECA_2013__341_11-12_793_0
ER  - 
%0 Journal Article
%A Thibaut Weller
%A Christian Licht
%T Asymptotic modeling of thin linearly quasicrystalline plates
%J Comptes Rendus. Mécanique
%D 2013
%P 793-798
%V 341
%N 11-12
%I Elsevier
%R 10.1016/j.crme.2013.10.002
%G en
%F CRMECA_2013__341_11-12_793_0
Thibaut Weller; Christian Licht. Asymptotic modeling of thin linearly quasicrystalline plates. Comptes Rendus. Mécanique, Volume 341 (2013) no. 11-12, pp. 793-798. doi : 10.1016/j.crme.2013.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2013.10.002/

[1] D. Shechtman; I. Blech; D. Gratias; J.W. Cahn Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984), pp. 1951-1953

[2] The Physics of Quasicrystals (P.J. Steinhardt; S. Ostlund, eds.), World Scientific, Singapore, 1987

[3] A. Blaaderen Quasicrystals from nanocrystals, Mater. Sci., Volume 461 (2009), pp. 892-893

[4] J.-M. Dubois Useful Quasicrystals, World Scientific, London, 2005

[5] J.-M. Dubois New prospects from potential applications of quasicrystalline materials, Mater. Sci. Eng., Volume 294–296 (2000), pp. 4-9

[6] T. Weller; C. Licht Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., Volume 1 (2010), pp. 173-188

[7] T. Weller; C. Licht Mathematical modeling of piezomagnetoelectric thin plates, Eur. J. Mech. A, Solids, Volume 29 (2010), pp. 928-937

[8] T. Weller; C. Licht Asymptotic modeling of piezoelectric plates with electric field gradient, C. R., Mecanique, Volume 340 (2012), pp. 405-410

[9] T. Weller; C. Licht Asymptotic modeling of linearly piezoelectric slender rods, C. R., Mecanique, Volume 336 (2008), pp. 572-577

[10] D.H. Ding; W.G. Yang; C.Z. Hu; R. Wang Generalized elasticity theory of quasicrystals, Phys. Rev. B, Volume 48 (1993), pp. 7003-7010

[11] T. Fan Mathematical Theory of Elasticity of Quasicrystals and Its Applications, Springer, 2011

[12] D. Levine; T.C. Lubensky; S. Ostlund; S. Ramaswamy; P.J. Steinhardt Elasticity and dislocations in pentagonal and icosahedral quasicrystals, Phys. Rev. Lett., Volume 54 (1985), pp. 1520-1523

[13] H. Brézis Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, 2011

[14] P.G. Ciarlet Mathematical Elasticity, vol. II, North-Holland, 1997

Cited by Sources:

Comments - Policy