Flows forced by a precessional motion can exhibit instabilities of crucial importance, whether they concern the fuel of a flying object or the liquid core of a telluric planet. So far, stability analyses of these flows have focused on the special case of a resonant forcing. Here, we address the instability of the flow inside a precessing cylinder in the general case. We first show that the base flow forced by the cylinder precession is a superposition of a vertical or horizontal shear flow and of an infinite sum of forced modes. We then perform a linear stability analysis of this base flow by considering its triadic resonance with two free Kelvin modes. Finally, we derive the amplitude equations of the free Kelvin modes and obtain an expression of the instability threshold and growth rate.
Les écoulements de précession peuvent subir des instabilités dont la compréhension est cruciale, que ce soit pour prédire le mouvement du carburant liquide d'un objet volant ou celui des noyaux liquides des planètes telluriques. Jusqu'à présent, les analyses de stabilité de ces écoulements se sont focalisées sur le cas particulier d'un forçage à une fréquence de résonance. Ici, nous étudions l'instabilité d'un fluide dans un cylindre en précession, pour une fréquence de forçage quelconque. Premièrement, nous montrons que l'écoulement de base d'un fluide dans un cylindre en précession est une superposition d'un cisaillement vertical ou horizontal et d'une somme de modes forcés. Ensuite, nous analysons la stabilité de l'écoulement de base en considérant sa résonance triadique avec deux modes de Kelvin libres. Finalement, nous dérivons les équations d'amplitude des modes de Kelvin libres et obtenons une expression du seuil d'instabilité et du taux de croissance.
Accepted:
Published online:
Mots-clés : Précession, Modes de Kelvin, Résonance triadique, Stabilité
Romain Lagrange 1; Patrice Meunier 2; Christophe Eloy 2
@article{CRMECA_2016__344_6_418_0, author = {Romain Lagrange and Patrice Meunier and Christophe Eloy}, title = {Triadic instability of a non-resonant precessing fluid cylinder}, journal = {Comptes Rendus. M\'ecanique}, pages = {418--433}, publisher = {Elsevier}, volume = {344}, number = {6}, year = {2016}, doi = {10.1016/j.crme.2015.12.002}, language = {en}, }
TY - JOUR AU - Romain Lagrange AU - Patrice Meunier AU - Christophe Eloy TI - Triadic instability of a non-resonant precessing fluid cylinder JO - Comptes Rendus. Mécanique PY - 2016 SP - 418 EP - 433 VL - 344 IS - 6 PB - Elsevier DO - 10.1016/j.crme.2015.12.002 LA - en ID - CRMECA_2016__344_6_418_0 ER -
Romain Lagrange; Patrice Meunier; Christophe Eloy. Triadic instability of a non-resonant precessing fluid cylinder. Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 418-433. doi : 10.1016/j.crme.2015.12.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.12.002/
[1] On the stability of a spinning top containing liquid, J. Fluid Mech., Volume 5 (1958), pp. 577-592
[2] Ballistic research labs, 1965 (Maryland, U.S. Report BRL R 1302)
[3] Dynamics of a near-resonant fluid-filled gyroscope, AIAA J., Volume 22 (1984), pp. 1465-1471
[4] Spacecraft nutational instability prediction by energy dissipation measurments, J. Guid. Control Dyn., Volume 9 (1986), pp. 357-361
[5] Viscous fluid motion in a spinning and nutating cylinder, J. Fluid Mech., Volume 167 (1986), pp. 181-198
[6] An experimental investigation of spacecraft sloshing, Space Commun. Broadcast., Volume 5 (1987), pp. 323-332
[7] Dynamics characteristics of liquid motion in partially filled tanks of a spinning spacecraft, J. Guid. Control Dyn., Volume 16 (1993), pp. 636-640
[8] Stability of a spinning liquid filled spacecraft, Appl. Mech., Volume 67 (1997), pp. 407-421
[9] Non-resonant viscous theory for the stability of a fluid-filled gyroscope, J. Fluid Mech., Volume 639 (2009), pp. 167-194
[10] An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder, Geophys. Astrophys. Fluid Dyn., Volume 48 (1989), pp. 123-134
[11] Convection driven quadrupolar dynamos in rotating spherical shells, Phys. Rev. E, Volume 60 (1999)
[12] Regular and chaotic spherical dynamos, Phys. Earth Planet. Inter., Volume 117 (2000), p. 259
[13] Dynamics of convection and dynamos in rotating spherical fluid shells, Fluid Dyn. Res., Volume 28 (2001), pp. 349-368
[14] Magnetohydrodynamic simulations of the elliptical instability in triaxial ellipsoids, Geophys. Astrophys. Fluid Dyn., Volume 106 (2011), pp. 524-546
[15] Precession driven dynamos, Phys. Fluids, Volume 17 (2005)
[16] Nonlinear dynamo action in a precessing cylindrical container, Phys. Rev. E, Volume 84 (2011)
[17] Can precession power the geomagnetic dynamo?, Geophys. J. R. Astron. Soc., Volume 43 (1975), p. 661
[18] Torque balance and energy budget for the precesionally driven dynamo, Phys. Earth Planet. Inter., Volume 43 (1975), p. 43
[19] Origin of the Main Field: Kinematics (J.A. Jacobs, ed.), Geomagnetism, vol. 2, Academic Press, 1987, pp. 185-249
[20] Experiments on precessing flows in the Earth's liquid core, Geophys. J. Int., Volume 121 (1995), pp. 136-142
[21] Upper bounds on the energy dissipation in turbulent precession, J. Fluid Mech., Volume 321 (1996), pp. 335-370
[22] On the precession of a resonant cylinder, J. Fluid Mech., Volume 476 (1970), pp. 865-872
[23] Oscillatory shear layer in source driven flows in an unbounded rotating fluid, Phys. Fluids, Volume 12 (2000), pp. 1101-1111
[24] Laboratory experiments on hydromagnetic dynamos, Rev. Mod. Phys., Volume 74 (2002), p. 973
[25] Vibrations of a columnar vortex, Philos. Mag., Volume 10 (1880), pp. 155-168
[26] The Theory of Rotating Fluids, Cambridge University Press, Cambridge, UK, 1968
[27] A note on overstability and elastoid-inertia oscillations of Kelvin, Solberg and Bjerknes, J. Meteorol., Volume 16 (1959), pp. 199-208
[28] Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech., Volume 40 (1970), pp. 603-640
[29] On the viscous decay rates of inertial waves in a rotating cylinder, J. Fluid Mech., Volume 285 (1995), pp. 203-214
[30] A rotating fluid cylinder subject to weak precession, J. Fluid Mech., Volume 599 (2008), pp. 405-440
[31] On the transition from the laminar to disordered flow in a precessing spherical-like cylinder, Geophys. Astrophys. Fluid Dyn., Volume 109 (2015), pp. 62-83
[32] Diurnal tides and shear instabilities in a rotating cylinder, J. Fluid Mech., Volume 40 (1970), pp. 737-751
[33] Breakdown regimes of inertia waves in a precessing cylinder, J. Fluid Mech., Volume 243 (1992), pp. 261-296
[34] Distorsions of inertia waves in a precessing cylinder forced near its fundamental mode resonance, J. Fluid Mech., Volume 265 (1994), pp. 345-370
[35] Inertial wave dynamics in a rotating and precessing cylinder, J. Fluid Mech., Volume 303 (1995), pp. 233-252
[36] Nonlinear behaviour of contained inertia waves, J. Fluid Mech., Volume 315 (1996), pp. 151-173
[37] Instability of a fluid inside a precessing cylinder, Phys. Fluids, Volume 20 (2008) no. 8
[38] Dynamics of a fluid inside a precessing cylinder, Mech. Ind., Volume 10 (2009), pp. 187-194
[39] Precessional instability of a fluid cylinder, J. Fluid Mech., Volume 666 (2011), pp. 104-145
Cited by Sources:
Comments - Policy