Comptes Rendus
Triadic instability of a non-resonant precessing fluid cylinder
Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 418-433.

Flows forced by a precessional motion can exhibit instabilities of crucial importance, whether they concern the fuel of a flying object or the liquid core of a telluric planet. So far, stability analyses of these flows have focused on the special case of a resonant forcing. Here, we address the instability of the flow inside a precessing cylinder in the general case. We first show that the base flow forced by the cylinder precession is a superposition of a vertical or horizontal shear flow and of an infinite sum of forced modes. We then perform a linear stability analysis of this base flow by considering its triadic resonance with two free Kelvin modes. Finally, we derive the amplitude equations of the free Kelvin modes and obtain an expression of the instability threshold and growth rate.

Les écoulements de précession peuvent subir des instabilités dont la compréhension est cruciale, que ce soit pour prédire le mouvement du carburant liquide d'un objet volant ou celui des noyaux liquides des planètes telluriques. Jusqu'à présent, les analyses de stabilité de ces écoulements se sont focalisées sur le cas particulier d'un forçage à une fréquence de résonance. Ici, nous étudions l'instabilité d'un fluide dans un cylindre en précession, pour une fréquence de forçage quelconque. Premièrement, nous montrons que l'écoulement de base d'un fluide dans un cylindre en précession est une superposition d'un cisaillement vertical ou horizontal et d'une somme de modes forcés. Ensuite, nous analysons la stabilité de l'écoulement de base en considérant sa résonance triadique avec deux modes de Kelvin libres. Finalement, nous dérivons les équations d'amplitude des modes de Kelvin libres et obtenons une expression du seuil d'instabilité et du taux de croissance.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2015.12.002
Keywords: Precession, Kelvin modes, Triadic resonance, Stability
Mot clés : Précession, Modes de Kelvin, Résonance triadique, Stabilité

Romain Lagrange 1; Patrice Meunier 2; Christophe Eloy 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille, France
@article{CRMECA_2016__344_6_418_0,
     author = {Romain Lagrange and Patrice Meunier and Christophe Eloy},
     title = {Triadic instability of a non-resonant precessing fluid cylinder},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {418--433},
     publisher = {Elsevier},
     volume = {344},
     number = {6},
     year = {2016},
     doi = {10.1016/j.crme.2015.12.002},
     language = {en},
}
TY  - JOUR
AU  - Romain Lagrange
AU  - Patrice Meunier
AU  - Christophe Eloy
TI  - Triadic instability of a non-resonant precessing fluid cylinder
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 418
EP  - 433
VL  - 344
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2015.12.002
LA  - en
ID  - CRMECA_2016__344_6_418_0
ER  - 
%0 Journal Article
%A Romain Lagrange
%A Patrice Meunier
%A Christophe Eloy
%T Triadic instability of a non-resonant precessing fluid cylinder
%J Comptes Rendus. Mécanique
%D 2016
%P 418-433
%V 344
%N 6
%I Elsevier
%R 10.1016/j.crme.2015.12.002
%G en
%F CRMECA_2016__344_6_418_0
Romain Lagrange; Patrice Meunier; Christophe Eloy. Triadic instability of a non-resonant precessing fluid cylinder. Comptes Rendus. Mécanique, Volume 344 (2016) no. 6, pp. 418-433. doi : 10.1016/j.crme.2015.12.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2015.12.002/

[1] K. Stewartson On the stability of a spinning top containing liquid, J. Fluid Mech., Volume 5 (1958), pp. 577-592

[2] B.G. Karpov Ballistic research labs, 1965 (Maryland, U.S. Report BRL R 1302)

[3] R.F. Gans Dynamics of a near-resonant fluid-filled gyroscope, AIAA J., Volume 22 (1984), pp. 1465-1471

[4] S.C. Garg; N. Furunoto; J.P. Vanyo Spacecraft nutational instability prediction by energy dissipation measurments, J. Guid. Control Dyn., Volume 9 (1986), pp. 357-361

[5] T. Herbert Viscous fluid motion in a spinning and nutating cylinder, J. Fluid Mech., Volume 167 (1986), pp. 181-198

[6] J.J. Pocha An experimental investigation of spacecraft sloshing, Space Commun. Broadcast., Volume 5 (1987), pp. 323-332

[7] B.N. Agrawal Dynamics characteristics of liquid motion in partially filled tanks of a spinning spacecraft, J. Guid. Control Dyn., Volume 16 (1993), pp. 636-640

[8] G.W. Bao; M. Pascal Stability of a spinning liquid filled spacecraft, Appl. Mech., Volume 67 (1997), pp. 407-421

[9] J.P. Lambelin; F. Nadal; R. Lagrange; A. Sarthou Non-resonant viscous theory for the stability of a fluid-filled gyroscope, J. Fluid Mech., Volume 639 (2009), pp. 167-194

[10] W.V.R. Malkus An experimental study of global instabilities due to tidal (elliptical) distortion of a rotating elastic cylinder, Geophys. Astrophys. Fluid Dyn., Volume 48 (1989), pp. 123-134

[11] F. Grote; H. Busse; A. Tilgner Convection driven quadrupolar dynamos in rotating spherical shells, Phys. Rev. E, Volume 60 (1999)

[12] F. Grote; H. Busse; A. Tilgner Regular and chaotic spherical dynamos, Phys. Earth Planet. Inter., Volume 117 (2000), p. 259

[13] F. Grote; H. Busse Dynamics of convection and dynamos in rotating spherical fluid shells, Fluid Dyn. Res., Volume 28 (2001), pp. 349-368

[14] D. Cébron; M.L. Bars; P. Maubert Magnetohydrodynamic simulations of the elliptical instability in triaxial ellipsoids, Geophys. Astrophys. Fluid Dyn., Volume 106 (2011), pp. 524-546

[15] A. Tilgner Precession driven dynamos, Phys. Fluids, Volume 17 (2005)

[16] C. Nore; J. Léorat; J. Guermond; F. Luddens Nonlinear dynamo action in a precessing cylindrical container, Phys. Rev. E, Volume 84 (2011)

[17] M.G. Rochester; J.A. Jacobs; D.E. Smylie; K.F. Chong Can precession power the geomagnetic dynamo?, Geophys. J. R. Astron. Soc., Volume 43 (1975), p. 661

[18] D.E. Loper Torque balance and energy budget for the precesionally driven dynamo, Phys. Earth Planet. Inter., Volume 43 (1975), p. 43

[19] P.H. Roberts; D. Gubbins Origin of the Main Field: Kinematics (J.A. Jacobs, ed.), Geomagnetism, vol. 2, Academic Press, 1987, pp. 185-249

[20] J.P. Vanyo; P. Wilde; P. Cardin Experiments on precessing flows in the Earth's liquid core, Geophys. J. Int., Volume 121 (1995), pp. 136-142

[21] R.R. Kerswell Upper bounds on the energy dissipation in turbulent precession, J. Fluid Mech., Volume 321 (1996), pp. 335-370

[22] R.F. Gans On the precession of a resonant cylinder, J. Fluid Mech., Volume 476 (1970), pp. 865-872

[23] A. Tilgner Oscillatory shear layer in source driven flows in an unbounded rotating fluid, Phys. Fluids, Volume 12 (2000), pp. 1101-1111

[24] A. Gailitis; O. Lielaussis; E. Platacis; F. Stefani; G. Gerbeth Laboratory experiments on hydromagnetic dynamos, Rev. Mod. Phys., Volume 74 (2002), p. 973

[25] L. Kelvin Vibrations of a columnar vortex, Philos. Mag., Volume 10 (1880), pp. 155-168

[26] H.P. Greenspan The Theory of Rotating Fluids, Cambridge University Press, Cambridge, UK, 1968

[27] D. Fultz A note on overstability and elastoid-inertia oscillations of Kelvin, Solberg and Bjerknes, J. Meteorol., Volume 16 (1959), pp. 199-208

[28] A.D. McEwan Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech., Volume 40 (1970), pp. 603-640

[29] R.R. Kerswell; C.F. Barenghi On the viscous decay rates of inertial waves in a rotating cylinder, J. Fluid Mech., Volume 285 (1995), pp. 203-214

[30] P. Meunier; C. Eloy; R. Lagrange; F. Nadal A rotating fluid cylinder subject to weak precession, J. Fluid Mech., Volume 599 (2008), pp. 405-440

[31] D. Kong; Z. Cui; X. Liao; K. Zhang On the transition from the laminar to disordered flow in a precessing spherical-like cylinder, Geophys. Astrophys. Fluid Dyn., Volume 109 (2015), pp. 62-83

[32] R. Thompson Diurnal tides and shear instabilities in a rotating cylinder, J. Fluid Mech., Volume 40 (1970), pp. 737-751

[33] R. Manasseh Breakdown regimes of inertia waves in a precessing cylinder, J. Fluid Mech., Volume 243 (1992), pp. 261-296

[34] R. Manasseh Distorsions of inertia waves in a precessing cylinder forced near its fundamental mode resonance, J. Fluid Mech., Volume 265 (1994), pp. 345-370

[35] J.J. Kobine Inertial wave dynamics in a rotating and precessing cylinder, J. Fluid Mech., Volume 303 (1995), pp. 233-252

[36] R. Manasseh Nonlinear behaviour of contained inertia waves, J. Fluid Mech., Volume 315 (1996), pp. 151-173

[37] R. Lagrange; C. Eloy; F. Nadal; P. Meunier Instability of a fluid inside a precessing cylinder, Phys. Fluids, Volume 20 (2008) no. 8

[38] R. Lagrange; P. Meunier; C. Eloy; F. Nadal Dynamics of a fluid inside a precessing cylinder, Mech. Ind., Volume 10 (2009), pp. 187-194

[39] R. Lagrange; P. Meunier; F. Nadal; C. Eloy Precessional instability of a fluid cylinder, J. Fluid Mech., Volume 666 (2011), pp. 104-145

Cited by Sources:

Comments - Policy