Comptes Rendus
Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 251-266.

The Arbitrary Lagrangian Eulerian (ALE) formalism is a breakthrough technique in the numerical simulation of the continuous-type roll-forming process. In contrast to the classical Lagrangian approach, the ALE formalism can compute the hopefully stationary state for the entire mill length with definitely effortless set-up tasks thanks to a nearly-stationary mesh. In this paper, advantages of ALE and Lagrangian formalisms are extensively discussed for simulating such continuous-type processes. Through a highly complex industrial application, the ease of use of ALE modelling is illustrated with the in-house code METAFOR. ALE and Lagrangian results are in good agreement with each other.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.02.005
Mots clés : Cold roll forming, Finite element method, ALE formalism, Springback

Yanick Crutzen 1 ; Romain Boman 1 ; Luc Papeleux 1 ; Jean-Philippe Ponthot 1

1 LTAS – Computational Mechanics, University of Liège, 9 allée de la Découverte, B-4000 Liège, Belgium
@article{CRMECA_2016__344_4-5_251_0,
     author = {Yanick Crutzen and Romain Boman and Luc Papeleux and Jean-Philippe Ponthot},
     title = {Lagrangian and arbitrary {Lagrangian} {Eulerian} simulations of complex roll-forming processes},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {251--266},
     publisher = {Elsevier},
     volume = {344},
     number = {4-5},
     year = {2016},
     doi = {10.1016/j.crme.2016.02.005},
     language = {en},
}
TY  - JOUR
AU  - Yanick Crutzen
AU  - Romain Boman
AU  - Luc Papeleux
AU  - Jean-Philippe Ponthot
TI  - Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
JO  - Comptes Rendus. Mécanique
PY  - 2016
SP  - 251
EP  - 266
VL  - 344
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crme.2016.02.005
LA  - en
ID  - CRMECA_2016__344_4-5_251_0
ER  - 
%0 Journal Article
%A Yanick Crutzen
%A Romain Boman
%A Luc Papeleux
%A Jean-Philippe Ponthot
%T Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes
%J Comptes Rendus. Mécanique
%D 2016
%P 251-266
%V 344
%N 4-5
%I Elsevier
%R 10.1016/j.crme.2016.02.005
%G en
%F CRMECA_2016__344_4-5_251_0
Yanick Crutzen; Romain Boman; Luc Papeleux; Jean-Philippe Ponthot. Lagrangian and arbitrary Lagrangian Eulerian simulations of complex roll-forming processes. Comptes Rendus. Mécanique, Volume 344 (2016) no. 4-5, pp. 251-266. doi : 10.1016/j.crme.2016.02.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.02.005/

[1] I. Kacar; F. Ozturk Roll forming applications for automotive industry, Bursa, Turkey (2014), pp. 26-27

[2] W. Cubberly; R. Bakerjian Tool and Manufacturing Engineers Handbook, Society of Manufacturing Engineers, 1989

[3] G. Halmos Roll Forming Handbook, Manufacturing Engineering and Materials Processing, Taylor & Francis, 2010

[4] data Sheet Metal Solutions GmbH COPRA RF http://www.datam.de/en/products-solutions/roll-forming/

[5] METAFOR http://metafor.ltas.ulg.ac.be/ (Website)

[6] J.-P. Ponthot Traitement unifié de la mécanique des milieux continus solides en grandes transformations par la méthode des éléments finis, Université de Liège, Liège, Belgium, 1995 (in French), Ph.D. thesis

[7] Q.V. Bui; R. Boman; L. Papeleux; P. Wouters; R. Kergen; G. Daolio; P. Duroux; P. Flores; A.-M. Habraken; J.-P. Ponthot Springback and twist prediction of roll formed parts, Porto, Portugal (2006), pp. 567-574

[8] M. Sheikh; R. Palavilayil An assessment of finite element software for application to the roll-forming process, J. Mater. Process. Technol., Volume 180 (2006) no. 1, pp. 221-232

[9] T. Dutton; P. Richardson; G. Duffett Simulating the complete forming sequence for a roll formed automotive component using ls-dyna, Bilbao, Spain (2009), pp. 49-55

[10] B. Joo; H. Lee; D. Kim; Y. Moon A study on forming characteristics of roll forming process with high strength steel, NUMISHEET 2011, Volume vol. 1383, AIP Publishing (2011), pp. 1034-1040 | DOI

[11] J. Falsafi; E. Demirci; V. Silberschmidt Numerical study of strain-rate effect in cold rolls forming of steel, J. Phys. Conf. Ser., Volume 451 (2013), pp. 12041-12047 (IOP Publishing)

[12] R. Boman; L. Papeleux; Q.V. Bui; J.-P. Ponthot Application of the arbitrary Lagrangian Eulerian formulation to the numerical simulation of cold roll forming process, J. Mater. Process. Technol., Volume 177 (2006) no. 1, pp. 621-625 | DOI

[13] Q.V. Bui; J.-P. Ponthot Numerical simulation of cold roll-forming processes, J. Mater. Process. Technol., Volume 202 (2008) no. 1–3, pp. 275-282 | DOI

[14] R. Boman; J.-P. Ponthot Continuous roll forming simulation using arbitrary Lagrangian Eulerian formalism, Key Eng. Mater., Volume 473 (2011), pp. 564-571 | DOI

[15] A. Depauw; D. Herisson; R. Boman; R. Kergen Roll forming of ultra high strength steels: progresses in experimental and modelling knowledge, Bilbao, Spain (2009), pp. 101-108

[16] J.-J. Sheu Simulation and optimization of the cold roll-forming process, Materials Processing and Design: Modeling, Simulation and Applications-NUMIFORM 2004-Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes, vol. 712, AIP Publishing, 2004, pp. 452-457

[17] M.O. Görtan; D. Vucic; P. Groche; H. Livatyali Roll forming of branched profiles, J. Mater. Process. Technol., Volume 209 (2009) no. 17, pp. 5837-5844

[18] L. Galdos; J. Larrañaga; L. Uncilla; H. Lete; G. Arrizabalaga Process simulation and experimental tests of cold roll forming of a u-channel made of different ultra high strength steel, Bilbao, Spain (2009), pp. 75-82

[19] J. Paralikas; K. Salonitis; G. Chryssolouris Investigation of the roll forming flower design techniques on main redundant deformations on symmetrical profiles from AHSS, Bilbao, Spain (2009), pp. 83-91

[20] J. Paralikas; K. Salonitis; G. Chryssolouris Optimization of roll forming process parameters—a semi-empirical approach, Int. J. Adv. Manuf. Technol., Volume 47 (2010) no. 9–12, pp. 1041-1052

[21] A. Abvabi; B. Rolfe; J. Larranaga; L. Glados; C. Yang; M. Weiss Using the solid-shell element to model the roll forming of large radii profiles, Steel Research Journal: Proceedings of the 14th International Conference on Metal Forming, Wiley, 2012, pp. 711-714

[22] J. Wiebenga; M. Weiss; B. Rolfe; A. Van Den Boogaard Product defect compensation by robust optimization of a cold roll forming process, J. Mater. Process. Technol., Volume 213 (2013) no. 6, pp. 978-986

[23] P. Groche; C. Mueller; T. Traub; K. Butterweck Experimental and numerical determination of roll forming loads, Steel Res. Int., Volume 85 (2014) no. 1, pp. 112-122 | DOI

[24] data M Sheet Metal Solutions GmbH COPRA FEA RF http://www.datam.de/en/products-solutions/simulation-with-fea/

[25] J. Chung; G.M. Hulbert A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. Appl. Mech., Volume 60 (1993) no. 2, pp. 371-375 | DOI

[26] J. Donea; A. Huerta; J.-P. Ponthot; A. Rodríguez-Ferran, John Wiley & Sons, Ltd (2004), pp. 413-437 (Ch. 14) | DOI

[27] D.J. Benson An efficient, accurate, simple ALE method for nonlinear finite element programs, Comput. Methods Appl. Mech. Eng., Volume 72 (1989) no. 3, pp. 305-350

[28] R. Boman; J.-P. Ponthot Efficient ALE mesh management for 3D quasi-Eulerian problems, Int. J. Numer. Methods Eng., Volume 92 (2012) no. 10, pp. 857-890 | DOI

[29] R. Boman; J.-P. Ponthot Finite element simulation of lubricated contact in rolling using the arbitrary Lagrangian–Eulerian formulation, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 39, pp. 4323-4353 | DOI

[30] D.J. Benson Momentum advection on unstructured staggered quadrilateral meshes, Int. J. Numer. Methods Eng., Volume 75 (2008) no. 13, pp. 1549-1580

[31] R. Boman; J.-P. Ponthot Enhanced ALE data transfer strategy for explicit and implicit thermomechanical simulations of high-speed processes, Int. J. Impact Eng., Volume 53 (2013), pp. 62-73 | DOI

[32] J. Reinders Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Parallelism, O'Reilly Media, Inc., 2007

[33] L. Dagum; R. Menon OpenMP: an industry standard API for shared-memory programming, IEEE Comput. Sci. Eng., Volume 5 (1998) no. 1, pp. 46-55

[34] A. Kuzmin; M. Luisier; O. Schenk Fast methods for computing selected elements of the Green's function in massively parallel nanoelectronic device simulations, Euro-Par 2013 Parallel Processing, Springer, 2013, pp. 533-544

[35] O. Schenk; K. Gärtner Solving unsymmetric sparse systems of linear equations with PARDISO, Future Gener. Comput. Syst., Volume 20 (2004) no. 3, pp. 475-487

[36] P. Flores Development of experimental equipment and identification procedures for sheet metal constitutive laws, University of Liège, 2005 (Ph.D. thesis)

[37] P. Flores; A.-M. Habraken Material identification of dual phase steel DP1000, University of Liège, 2005 (Tech. rep.)

[38] Q.V. Bui; L. Papeleux; J.-P. Ponthot Numerical simulation of springback using enhanced assumed strain elements, J. Mater. Process. Technol., Volume 153 (2004), pp. 314-318 | DOI

Cité par Sources :

Commentaires - Politique