Comptes Rendus
Basic and applied researches in microgravity/Recherches fondamentales et appliquées en microgravité
Evaporation condensation-induced bubble motion after temperature gradient set-up
Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 35-46.

Thermocapillary (Marangoni) motion of a gas bubble (or a liquid drop) under a temperature gradient can hardly be present in a one-component fluid. Indeed, in such a pure system, the vapor–liquid interface is always isothermal (at saturation temperature). However, evaporation on the hot side and condensation on the cold side can occur and displace the bubble. We have observed such a phenomenon in two different fluids submitted to a temperature gradient under reduced gravity: hydrogen under magnetic compensation of gravity in the HYLDE facility at CEA-Grenoble and water in the DECLIC facility onboard the ISS. The experiments and the subsequent analysis are performed in the vicinity of the vapor–liquid critical point to benefit from critical universality. In order to better understand the phenomena, a 1D numerical simulation has been performed. After the temperature gradient is imposed, two regimes can be evidenced. At early times, the temperatures in the bubble and the surrounding liquid become different thanks to their different compressibility and the “piston effect” mechanism, i.e. the fast adiabatic bulk thermalization induced by the expansion of the thermal boundary layers. The difference in local temperature gradients at the vapor–liquid interface results in an unbalanced evaporation/condensation phenomenon that makes the shape of the bubble vary and provoke its motion. At long times, a steady temperature gradient progressively forms in the liquid (but not in the bubble) and induces steady bubble motion towards the hot end. We evaluate the bubble velocity and compare with existing theories.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2016.10.002
Mots clés : Bubble motion, Thermal gradient, Critical phenomena, Piston effect

Vadim S. Nikolayev 1 ; Yves Garrabos 2 ; Carole Lecoutre 2 ; Guillaume Pichavant 3 ; Denis Chatain 3 ; Daniel Beysens 4, 5

1 Service de physique de l'état condensé, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France
2 CNRS, Université de Bordeaux, ICMCB, UPR 9048, 33600 Pessac, France
3 Université Grenoble Alpes, CEA INAC–SBT, 38000 Grenoble, France
4 Univ. Grenoble Alpes, CEA INAC–SBT, 38000 Grenoble, France
5 ESEME, PMMH–ESPCI, 10, rue Vauquelin, 75231 Paris cedex 5, France
@article{CRMECA_2017__345_1_35_0,
     author = {Vadim S. Nikolayev and Yves Garrabos and Carole Lecoutre and Guillaume Pichavant and Denis Chatain and Daniel Beysens},
     title = {Evaporation condensation-induced bubble motion after temperature gradient set-up},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {35--46},
     publisher = {Elsevier},
     volume = {345},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crme.2016.10.002},
     language = {en},
}
TY  - JOUR
AU  - Vadim S. Nikolayev
AU  - Yves Garrabos
AU  - Carole Lecoutre
AU  - Guillaume Pichavant
AU  - Denis Chatain
AU  - Daniel Beysens
TI  - Evaporation condensation-induced bubble motion after temperature gradient set-up
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 35
EP  - 46
VL  - 345
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2016.10.002
LA  - en
ID  - CRMECA_2017__345_1_35_0
ER  - 
%0 Journal Article
%A Vadim S. Nikolayev
%A Yves Garrabos
%A Carole Lecoutre
%A Guillaume Pichavant
%A Denis Chatain
%A Daniel Beysens
%T Evaporation condensation-induced bubble motion after temperature gradient set-up
%J Comptes Rendus. Mécanique
%D 2017
%P 35-46
%V 345
%N 1
%I Elsevier
%R 10.1016/j.crme.2016.10.002
%G en
%F CRMECA_2017__345_1_35_0
Vadim S. Nikolayev; Yves Garrabos; Carole Lecoutre; Guillaume Pichavant; Denis Chatain; Daniel Beysens. Evaporation condensation-induced bubble motion after temperature gradient set-up. Comptes Rendus. Mécanique, Volume 345 (2017) no. 1, pp. 35-46. doi : 10.1016/j.crme.2016.10.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2016.10.002/

[1] N.O. Young; J.S. Goldstein; M.J. Block The motion of bubbles in a vertical temperature gradient, J. Fluid Mech., Volume 6 (1959), pp. 350-356 | DOI

[2] Y. Garrabos; C. Lecoutre-Chabot; J. Hegseth; V.S. Nikolayev; D. Beysens; J.-P. Delville Gas spreading on a heated wall wetted by liquid, Phys. Rev. E, Volume 64 (2001) no. 5 | DOI

[3] L. Mok; K. Kim; T.P. Bernat; D.H. Darling Temperature effects on the formation of a uniform liquid layer of hydrogen isotopes inside a spherical cryogenic ICF target, J. Vac. Sci. Technol. A, Volume 1 (1983) no. 2, pp. 897-900 | DOI

[4] A. Onuki; K. Kanatani Droplet motion with phase change in a temperature gradient, Phys. Rev. E, Volume 72 (2005) no. 6 | DOI

[5] A. Onuki Dynamic van der Waals theory, Phys. Rev. E, Volume 75 (2007) no. 3 | DOI

[6] R. Wunenburger; D. Chatain; Y. Garrabos; D. Beysens Magnetic compensation of gravity forces in (p-)hydrogen near its critical point: application to weightless conditions, Phys. Rev. E, Volume 62 (2000) no. 1, pp. 469-476 | DOI

[7] L. Quettier; H. Félice; A. Mailfert; D. Chatain; D. Beysens Magnetic compensation of gravity forces in liquid/gas mixtures: surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts, Eur. Phys. J. Appl. Phys., Volume 32 (2005) no. 3, pp. 167-175 | DOI

[8] V. Nikolayev; D. Chatain; D. Beysens; G. Pichavant Magnetic gravity compensation, Microgravity Sci. Technol., Volume 23 (2011) no. 2, pp. 113-122 | DOI

[9] R. Marcout; G. Raymond; B. Martin; G. Cambon; B. Zappoli; F. Duclos; S. Barde; D. Beysens; Y. Garrabos; C. Lecoutre; B. Billia; N. Bergeon; N. Mangelinck DECLIC: a facility to investigate fluids and transparent materials in microgravity conditions in ISS, Valencia, Spain (2006) (paper IAC-06-A2.5.02)

[10] G. Pont; S. Barde; P. Bioulez; D. Blonde; B. Zappoli; Y. Garrabos; C. Lecoutre; D. Beysens; N. Bergeon; L. Billia; N. Mangelinck-Noël; A. Ramirez; R. Trivedi DECLIC, first result on orbit, Prague, Czech Republic (2010) (paper IAC-10-A2.5.1)

[11] W. Wagner; A. Pruss The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use, J. Phys. Chem. Ref. Data, Volume 31 (2002) no. 2, pp. 387-535 | DOI

[12] R. Wunenburger; Y. Garrabos; C. Lecoutre-Chabot; D. Beysens; J. Hegseth Thermalization of a two-phase fluid in low gravity: heat transferred from cold to hot, Phys. Rev. Lett., Volume 84 (2000) no. 18, pp. 4100-4103 | DOI

[13] B. Zappoli; D. Beysens; Y. Garrabos Heat Transfer and Related Phenomena in Supercritical Fluids, Springer, Berlin, Heidelberg, 2015 (ISBN: 978-94-017-9186-1)

[14] B. Zappoli; D. Bailly; Y. Garrabos; B. Le Neindre; P. Guenoun; D. Beysens Anomalous heat transport by the piston effect in supercritical fluids under zero gravity, Phys. Rev. A, Volume 41 (1990) no. 4, pp. 2264-2267 | DOI

[15] H. Boukari; J.N. Shaumeyer; M.E. Briggs; R.W. Gammon Critical speeding up in pure fluids, Phys. Rev. A, Volume 41 (1990) no. 4, pp. 2260-2263 | DOI

[16] D. Beysens; D. Chatain; V.S. Nikolayev; J. Ouazzani; Y. Garrabos Possibility of long-distance heat transport in weightlessness using supercritical fluids, Phys. Rev. E, Volume 82 (2010) no. 6 | DOI

[17] J. Straub; L. Eicher; A. Haupt Dynamic temperature propagation in a pure fluid near its critical point observed under microgravity during the German Spacelab Mission D-2, Phys. Rev. E, Volume 51 (1995) no. 6, pp. 5556-5563 | DOI

[18] F. Zhong; H. Meyer Density equilibration near the liquid-vapor critical point of a pure fluid: single phase T>Tc, Phys. Rev. E, Volume 51 (1995) no. 4, pp. 3223-3241 | DOI

[19] J. Straub; L. Eicher Density and temperature relaxation in the two-phase region near the critical point of a pure fluid, Phys. Rev. Lett., Volume 75 (1995) no. 8, pp. 1554-1557 | DOI

[20] F. Zhong; H. Meyer Density equilibration near the liquid-vapor critical point of a pure fluid. II. Coexisting phases for T<Tc, Phys. Rev. E, Volume 53 (1996) no. 6, pp. 5935-5948 | DOI

[21] V.S. Nikolayev; A. Dejoan; Y. Garrabos; D. Beysens Fast heat transfer calculations in supercritical fluids versus hydrodynamic approach, Phys. Rev. E, Volume 67 (2003) no. 6 | DOI

[22] L.D. Landau; E.M. Lifshitz Electrodynamics of Continuous Media, Pergamon Press, Oxford, UK, 1963

Cité par Sources :

Commentaires - Politique