A standard technique of evolution equations in Hilbert spaces of possible states with finite energy supplies results of existence and uniqueness for the dynamic evolution of a thermoelectromagnetoelastic body and for its ‘‘quasi-electromagnetostatic approximation’’ whose relevance is established through a convergence result as a parameter, accounting for the ratio of the speed of elastic wave propagation to the celerity of the light, goes to zero.
Accepted:
Published online:
Christian Licht 1, 2, 3; Somsak Orankitjaroen 2, 3; Panumart Sawangtong 4; Thibaut Weller 1
@article{CRMECA_2017__345_5_344_0, author = {Christian Licht and Somsak Orankitjaroen and Panumart Sawangtong and Thibaut Weller}, title = {Dynamic and quasi-electromagnetostatic evolution of a thermoelectromagnetoelastic body}, journal = {Comptes Rendus. M\'ecanique}, pages = {344--352}, publisher = {Elsevier}, volume = {345}, number = {5}, year = {2017}, doi = {10.1016/j.crme.2017.03.005}, language = {en}, }
TY - JOUR AU - Christian Licht AU - Somsak Orankitjaroen AU - Panumart Sawangtong AU - Thibaut Weller TI - Dynamic and quasi-electromagnetostatic evolution of a thermoelectromagnetoelastic body JO - Comptes Rendus. Mécanique PY - 2017 SP - 344 EP - 352 VL - 345 IS - 5 PB - Elsevier DO - 10.1016/j.crme.2017.03.005 LA - en ID - CRMECA_2017__345_5_344_0 ER -
%0 Journal Article %A Christian Licht %A Somsak Orankitjaroen %A Panumart Sawangtong %A Thibaut Weller %T Dynamic and quasi-electromagnetostatic evolution of a thermoelectromagnetoelastic body %J Comptes Rendus. Mécanique %D 2017 %P 344-352 %V 345 %N 5 %I Elsevier %R 10.1016/j.crme.2017.03.005 %G en %F CRMECA_2017__345_5_344_0
Christian Licht; Somsak Orankitjaroen; Panumart Sawangtong; Thibaut Weller. Dynamic and quasi-electromagnetostatic evolution of a thermoelectromagnetoelastic body. Comptes Rendus. Mécanique, Volume 345 (2017) no. 5, pp. 344-352. doi : 10.1016/j.crme.2017.03.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.03.005/
[1] Modeling of smart materials with thermal effects: dynamic and quasi-static evolution, Math. Models Methods Appl. Sci., Volume 25 (2015) no. 14, pp. 2633-2667
[2] Mathematical and numerical modeling of piezoelectric sensors, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 4, pp. 875-909
[3] Asymptotic modeling of thin piezoelectric plates, Ann. Solid Struct. Mech., Volume 1 (2010) no. 3–4, pp. 173-183
[4] Transient response of thermoelastic bodies linked by a thin layer of low stiffness and high thermal resistivity, C. R. Mecanique, Volume 343 (2015) no. 1, pp. 18-26
[5] Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions, Math. Models Methods Appl. Sci., Volume 7 (1997) no. 7, pp. 957-991
Cited by Sources:
Comments - Policy