Comptes Rendus
An engineering predictive approach of fatigue crack growth behavior: The case of the lug-type joint
Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 1-12.

The present attempt proposes a predictive approach of the fatigue crack growth (FCG) behavior of a lug-type joint used in an aeronautic context. The crack tip residual stress distribution and material dispersions are considered. The developed approach was implemented by coupling the Extended Finite Element Method (XFEM), the Residual Corrected Stress Intensity Factor (RC-SIF), developed by the authors, and the Monte Carlo simulation (MCS) method. The Lemaitre–Chaboche model, developed upon the ABAQUS commercial code, was considered for characterizing material behavior. The developed approach treats FCG life by considering the stochastic behavior of material parameters and the crack tip residual stress field during propagation. Comparing with experimental data, the proposed approach exhibits a good ability in evaluating the FCG reliability of a cracked lug-type joint subjected to different loading conditions. The iso-probabilistic PaN curves can be used as an efficient tool for ensuring the safety behavior of cracked components.

Published online:
DOI: 10.1016/j.crme.2017.10.003
Keywords: XFEM, FCG reliability, Iso-probabilistic FCG life curves, MCS, Fatigue life prediction

Ahmed Bahloul 1; Amal Ben Ahmed 1; Chokri Bouraoui 1

1 Laboratoire de mécanique de Sousse, École nationale d'ingénieurs de Sousse, Université de Sousse, BP 264, Erriadh, 4023, Sousse, Tunisia
     author = {Ahmed Bahloul and Amal Ben Ahmed and Chokri Bouraoui},
     title = {An engineering predictive approach of fatigue crack growth behavior: {The} case of the lug-type joint},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1--12},
     publisher = {Elsevier},
     volume = {346},
     number = {1},
     year = {2018},
     doi = {10.1016/j.crme.2017.10.003},
     language = {en},
AU  - Ahmed Bahloul
AU  - Amal Ben Ahmed
AU  - Chokri Bouraoui
TI  - An engineering predictive approach of fatigue crack growth behavior: The case of the lug-type joint
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1
EP  - 12
VL  - 346
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2017.10.003
LA  - en
ID  - CRMECA_2018__346_1_1_0
ER  - 
%0 Journal Article
%A Ahmed Bahloul
%A Amal Ben Ahmed
%A Chokri Bouraoui
%T An engineering predictive approach of fatigue crack growth behavior: The case of the lug-type joint
%J Comptes Rendus. Mécanique
%D 2018
%P 1-12
%V 346
%N 1
%I Elsevier
%R 10.1016/j.crme.2017.10.003
%G en
%F CRMECA_2018__346_1_1_0
Ahmed Bahloul; Amal Ben Ahmed; Chokri Bouraoui. An engineering predictive approach of fatigue crack growth behavior: The case of the lug-type joint. Comptes Rendus. Mécanique, Volume 346 (2018) no. 1, pp. 1-12. doi : 10.1016/j.crme.2017.10.003.

[1] P.C. Paris; F.A. Erdogan A critical analysis of crack propagation laws, J. Basic Eng. Trans. ASME, Ser. D, Volume 85 (1963) no. 4, pp. 528-534

[2] W. Elber The significance of fatigue crack closure, Toronto, Ontario, Canada, 21–26 June 1970 (M.S. Rosenfeld, ed.) (STP), Volume vol. 486 (1971), pp. 230-242

[3] F. Erdogan; R. Roberts A comparative study of crack propagation in plates under extension and bending, Sendai, Japan, 12–17 September 1965 (1966)

[4] E.K. Walker The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7076-T6 aluminium, Effect of Environment and Complex Load History on Fatigue Life. ASTM STR 462, American Society for Testing and Materials, Philadelphia, 1970, pp. 1-4

[5] S. Boljanovic; S. Maksimovic Mixed mode crack growth simulation with/without overloads, Int. J. Fatigue, Volume 67 (2014), pp. 183-190

[6] M.S. Toyosada; K. Gotoh; T. Niwa Fatigue crack propagation for a through thickness crack: a crack propagation law considering cyclic plasticity near crack tip, Int. J. Fatigue, Volume 26 (2004), pp. 983-992

[7] AFGROW, Fracture mechanics and fatigue crack growth analysis software tool. Ver, LexTech Inc., 2008.

[8] A.H. Noroozi; G. Glinka; S. Lambert A two-parameter driving force for fatigue crack growth analysis, Int. J. Fatigue, Volume 27 (2005), pp. 1277-1296

[9] P. Dai; Z. Li A plasticity-corrected stress intensity factor for fatigue crack growth in ductile materials, Acta Mater., Volume 61 (2013), pp. 5988-5995

[10] L.A. James; W.E. Anderson A simple experimental procedure for stress intensity factor calibration, Eng. Fract. Mech., Volume 1 (1969), pp. 565-568

[11] A.F. Liu; H.P. Kan Test and analysis of cracked lugs, ICF4, Waterloo, Canada, 19–24 June, Springer, Berlin (1977), pp. 657-664

[12] J.A. Aberson; J.M. Anderson Cracked finite-elements proposed for NASTRAN, NASA TMX-2893 (1973), pp. 531-550

[13] R. Rigby; M.H. Aliabadi Stress intensity factors for cracks of attachment lugs, Eng. Fail. Anal., Volume 4 (1997), pp. 133-146

[14] J.H. Kim; S.B. Lee; S.G. Hong Fatigue crack growth behavior of Al7050-T7451 attachment lugs under flight spectrum variation, Int. J. Fatigue, Volume 40 (2003), pp. 135-144

[15] S. Mikheevskiy; G. Glinka; D. Algera Analysis of fatigue crack growth in an attachment lug based on the weight function technique and the UniGrow fatigue crack growth model, Int. J. Fatigue, Volume 42 (2012), pp. 88-94

[16] S. Boljanovic; S. Maksimovic Fatigue crack growth modeling of attachment lugs, Int. J. Fatigue, Volume 58 (2014), pp. 66-74

[17] M. Naderi; N. Iyyer Fatigue life prediction of cracked attachment lugs using XFEM, Int. J. Fatigue, Volume 77 (2015), pp. 186-193

[18] N. Sukumar; N. Moës; B. Moran; T. Belytschko Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng., Volume 48 (2000), pp. 1549-1570

[19] A. Bahloul; C.H. Bouraoui; T. Boukharouba Prediction of fatigue life by crack growth analysis, Int. J. Adv. Manuf. Technol. (2017) | DOI

[20] H. Ghonem; S. Dore Experimental study of the constant probability crack growth curves under constant amplitude loading, Eng. Fract. Mech., Volume 27 (1987), pp. 1-25

[21] A.H. Noroozi; G. Glinka; S. Lambert A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force, Int. J. Fatigue, Volume 29 (2007), pp. 1616-1633

[22] J.A.F.O. Correia; A.M.P. De Jesus; A. Fernandez-Canteli; R.A.B. Calçada Modelling probabilistic fatigue crack propagation rates for a mild structural steel, Frattura Integr. Strutt., Volume 31 (2015), pp. 80-96

[23] H.F. Bueckner A novel principle for the computation of stress intensity factors, Z. Angew. Math. Mech., Volume 50 (1970), pp. 529-546

[24] G. Glinka; G. Shen Universal features of weight functions for cracks in mode I, Eng. Fract. Mech., Volume 40 (1991) no. 6, pp. 1135-1146

[25] G. Shen; G. Glinka Determination of weight functions from reference stress intensity factor, Theor. Appl. Fract. Mech., Volume 15 (1991), pp. 237-245

[26] X. Wang; S. Lambert; G. Glinka Approximate weight functions for embedded elliptical cracks, Eng. Fract. Mech., Volume 59 (1998), pp. 381-392

[27] Y. Jiang; J. Zhang Benchmark experiments and characteristic cyclic plasticity deformation, Int. J. Plast., Volume 24 (2008) no. 9, pp. 1481-1515

[28] S.K. Paul; S. Sivaprasad; S. Dhar; M. Tarafder; S. Tarafder Simulation of cyclic plastic deformation response in SA333 C–Mn steel by a kinematic hardening model, Comput. Mater. Sci., Volume 48 (2010) no. 3, pp. 662-671

[29] J. Lemaitre; R. Desmorat Engineering Damage Mechanic, Springer, Berlin, 2005 (ISBN: 3-540-21503-4)

[30] M. Naderi; S.H. Hoseini; M.M. Khonsari Probabilistic simulation of fatigue damage and life scatter of metallic components, Int. J. Plast., Volume 43 (2013), pp. 101-115

[31] C. Bouraoui; R. Ben Sghaier; R. Fathallah An engineering predictive design approach of high cycle fatigue reliability of shotpeened metallic parts, Mater. Des., Volume 30 (2009), pp. 475-486

[32] A. Nasr; C. Bouraoui; R. Fathallah; Y. Nadot Probabilistic high cycle fatigue behaviour of nodular cast iron containing casting defects, Fatigue Fract. Eng. Mater. Struct., Volume 32 (2009), pp. 292-309

[33] W. He; J. Liu; D. Xie Probabilistic life assessment on fatigue crack growth in mixed-mode by coupling of Kriging model and finite element analysis, Eng. Fract. Mech., Volume 139 (2015), pp. 56-77

[34] R.F. Sanches; A.M.P. De Jesus; J.A.F.O. Correia; A.L.L. da Silva; A.A. Fernandes A probabilistic fatigue approach for riveted joints using Monte Carlo simulation, J. Constr. Steel Res., Volume 110 (2015), pp. 149-162

[35] Y.G. Zhao; T. Ono Moment methods for structural reliability, Struct. Saf., Volume 23 (2001) no. 1, pp. 47-75

[36] A. Bahloul; A. Ben Ahmed; M.M. Mhala; C. Bouraoui Probabilistic approach for predicting fatigue life improvement of cracked structure repaired by high interference fit bushing, Int. J. Adv. Manuf. Technol., Volume 91 (2017) no. 5–8, pp. 2161-2173

[37] M.R. Ayatollahi; S.M. Javad Razavi; M.Y. Yahya Mixed mode fatigue crack initiation and growth in a CT specimen repaired by stop hole technique, Eng. Fract. Mech., Volume 145 (2015), pp. 115-127

[38] M. Eltaief; A. Chateauneuf; C. Bouraoui; T. Hassine Dynamic approach for optimal inspection planning of fatigue cracked components, J. Constr. Steel Res., Volume 115 (2015), pp. 263-275

[39] K. Kathiresan, T.M. Hsu, Advanced life analysis methods-crack growth, analysis methods for attachment lugs, AFWAL 1984-TR-84-3080, vol. II, 1984.

Cited by Sources:

Comments - Policy