Cold tube drawing is a metal forming process that allows manufacturers to produce high-precision tubes. The dimensions of the tube are reduced by pulling it through a conical converging die with or without inner tool. In this study, finite element modelling has been used to give a better understanding of the process.
This paper presents a model that predicts the final dimensions of the tube with very high accuracy. It is validated thanks to experimental tests. Moreover, five studies are performed with this model, such as investigating the influence of the die angle on the drawing force or the influence of relative thickness on tube deformation.
Accepted:
Published online:
Florian Boutenel 1; Myriam Delhomme 2; Vincent Velay 1; Romain Boman 3
@article{CRMECA_2018__346_8_665_0, author = {Florian Boutenel and Myriam Delhomme and Vincent Velay and Romain Boman}, title = {Finite element modelling of cold drawing for high-precision tubes}, journal = {Comptes Rendus. M\'ecanique}, pages = {665--677}, publisher = {Elsevier}, volume = {346}, number = {8}, year = {2018}, doi = {10.1016/j.crme.2018.06.005}, language = {en}, }
TY - JOUR AU - Florian Boutenel AU - Myriam Delhomme AU - Vincent Velay AU - Romain Boman TI - Finite element modelling of cold drawing for high-precision tubes JO - Comptes Rendus. Mécanique PY - 2018 SP - 665 EP - 677 VL - 346 IS - 8 PB - Elsevier DO - 10.1016/j.crme.2018.06.005 LA - en ID - CRMECA_2018__346_8_665_0 ER -
Florian Boutenel; Myriam Delhomme; Vincent Velay; Romain Boman. Finite element modelling of cold drawing for high-precision tubes. Comptes Rendus. Mécanique, Volume 346 (2018) no. 8, pp. 665-677. doi : 10.1016/j.crme.2018.06.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.06.005/
[1] A comparison between two manufacturing methods, Asilomar, California, May 2000 (A.P.S. Russell, ed.) (2000), p. 477
[2] Modern side-shafts for passenger cars: manufacturing processes II – Monobloc tube shafts, J. Mater. Process. Technol., Volume 63 (1997) no. 1, pp. 225-232 | DOI
[3] Mandrel drawing and plug drawing of shape-memory-alloy fine tubes used in catheters and stents, J. Mater. Process. Technol., Volume 153 (2004), pp. 145-150 | DOI
[4] Modélisation des couplages multiphysiques matériaux–produits–procédés lors de l'étirage de tubes : application aux alliages métalliques usuels, Université de Grenoble, France, 2009 Ph.D. thesis (in French)
[5] An upper bound solution of tube drawing, J. Mater. Process. Technol., Volume 63 (1997) no. 1, pp. 43-48 | DOI
[6] Analytical treatment of tube drawing with a mandrel, Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., Volume 215 (2001) no. 5, pp. 581-589 | DOI
[7] Fracture analysis of tube drawing with a mandrel, J. Mater. Process. Technol., Volume 142 (2003) no. 3, pp. 755-761 | DOI
[8] An analytical solution for tube sinking by strain rate vector inner-product integration, J. Mater. Process. Technol., Volume 209 (2009) no. 1, pp. 408-415 | DOI
[9] Simulation of a tube drawing process by the finite element method, J. Mater. Process. Technol., Volume 27 (1991) no. 1, pp. 179-190 | DOI
[10] A conical mandrel tube drawing test designed to assess failure criteria, J. Mater. Process. Technol., Volume 214 (2014) no. 2, pp. 347-357 | DOI
[11] Study of cold tube drawing by finite-element modelling, J. Mater. Process. Technol., Volume 80 (1998), pp. 690-694 | DOI
[12] Cold drawing of 316L stainless steel thin-walled tubes: experiments and finite element analysis, Int. J. Mech. Sci., Volume 70 (2013), pp. 69-78 | DOI
[13] Optimum die design for single pass steel tube drawing with large strain deformation, Proc. Eng., Volume 81 (2014), pp. 688-693 | DOI
[14] Die shape design of tube drawing process using Fe analysis and optimization method, Int. J. Adv. Manuf. Technol., Volume 66 (2013) no. 1, pp. 381-392 | DOI
[15] Optimization on the cold drawing process of 6063 aluminium tubes, Appl. Math. Model., Volume 35 (2011) no. 11, pp. 5302-5313 | DOI
[16] Design of mandrel in tube drawing process for automotive steering input shaft, J. Mater. Process. Technol., Volume 187 (2007), pp. 182-186 | DOI
[17] METAFOR website, University of Liège, Belgium, http://metafor.ltas.ulg.ac.be/.
[18] Simulation of crashworthiness problems with improved contact algorithms for implicit time integration, Int. J. Impact Eng., Volume 32 (2006) no. 5, pp. 799-825 | DOI
[19] Numerical simulation of viscoplastic and frictional heating during finite deformation of metal. Part I: theory, J. Eng. Mech., Volume 128 (2002) no. 11, pp. 1215-1221 | DOI
[20] ASTM F138-00: Standard Specification for Wrought 18 Chromium–14 Nickel–2.5 Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673), . | DOI
[21] Comportement dynamique et évolution microstructurale d'un acier inoxydable austénitique allié à l'azote, Tours, France (2002) (in French)
[22] A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures, The Hague, Netherlands, 19–21 April 1983 (1983), pp. 541-547
[23] Modélisation numérique et expérimentale de l'enlèvement de matière : application à la coupe orthogonale, Université Bordeaux-1, Bordeaux, France, 1994 Ph.D. thesis (in French)
[24] Precision Tube Drawing for Biomedical Applications: Theoritical, Numerical and Experimental Study, Université de Grenoble, France, 2013 (Ph.D. thesis)
[25] A mathematical model of the theory of tube drawing with floating plug, Int. J. Eng. Sci., Volume 26 (1988) no. 6, pp. 569-585 | DOI
[26] A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method, J. Appl. Mech., Volume 60 (1993) no. 2, pp. 371-375 | DOI
Cited by Sources:
Comments - Politique