Welding processes involve high temperatures and metallurgical and mechanical consequences that must be controlled. For this purpose, numerical simulations have been developed to study the effects of the process on the final structure. During the welding process, the material undergoes thermal cycles that can generate different physical phenomena, like phase changes, microstructure changes and residual stresses and distortions. But the accurate simulation of transient temperature distributions in the part needs to carefully take account of the fluid flow in the weld pool. The aim of this paper is thus to propose a new approach for such a simulation taking account of surface tension effects (including both the “curvature effect” and the “Marangoni effect”), buoyancy forces and free surface motion.
The proposed approach is validated by two numerical tests from the literature: a sloshing test and a plate subjected to a static heat source. Then, the effects of the fluid flow on temperature distributions are discussed in a hybrid laser/arc welding example.
Accepted:
Published online:
Yassine Saadlaoui 1; Éric Feulvarch 2; Alexandre Delache 3; Jean-Baptiste Leblond 4; Jean-Michel Bergheau 2
@article{CRMECA_2018__346_11_999_0, author = {Yassine Saadlaoui and \'Eric Feulvarch and Alexandre Delache and Jean-Baptiste Leblond and Jean-Michel Bergheau}, title = {A new strategy for the numerical modeling of a weld pool}, journal = {Comptes Rendus. M\'ecanique}, pages = {999--1017}, publisher = {Elsevier}, volume = {346}, number = {11}, year = {2018}, doi = {10.1016/j.crme.2018.08.007}, language = {en}, }
TY - JOUR AU - Yassine Saadlaoui AU - Éric Feulvarch AU - Alexandre Delache AU - Jean-Baptiste Leblond AU - Jean-Michel Bergheau TI - A new strategy for the numerical modeling of a weld pool JO - Comptes Rendus. Mécanique PY - 2018 SP - 999 EP - 1017 VL - 346 IS - 11 PB - Elsevier DO - 10.1016/j.crme.2018.08.007 LA - en ID - CRMECA_2018__346_11_999_0 ER -
%0 Journal Article %A Yassine Saadlaoui %A Éric Feulvarch %A Alexandre Delache %A Jean-Baptiste Leblond %A Jean-Michel Bergheau %T A new strategy for the numerical modeling of a weld pool %J Comptes Rendus. Mécanique %D 2018 %P 999-1017 %V 346 %N 11 %I Elsevier %R 10.1016/j.crme.2018.08.007 %G en %F CRMECA_2018__346_11_999_0
Yassine Saadlaoui; Éric Feulvarch; Alexandre Delache; Jean-Baptiste Leblond; Jean-Michel Bergheau. A new strategy for the numerical modeling of a weld pool. Comptes Rendus. Mécanique, Computational methods in welding and additive manufacturing Simulation numérique des procédés de soudage et fabrication additive, Volume 346 (2018) no. 11, pp. 999-1017. doi : 10.1016/j.crme.2018.08.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.007/
[1] Coupling between heat flow, metallurgy and stress-strain computations in steels – the approach developed in the computer code SYSWELD for welding or quenching (M. Rappaz; M.R. Ozgu; K.W. Mahin, eds.), Modeling of Casting, Welding and Advanced Solidification Processes V, The Minerals, Metals & Materials Society, 1991, pp. 203-210
[2] 3D modelling of multipass welding of a 316L stainless steel pipe, J. Mater. Process. Technol., Volume 153–154 (2004), pp. 457-463
[3] Prediction of laser beam welding-induced distortions and residual stresses by numerical simulation for aeronautic application, J. Mater. Process. Technol., Volume 209 (2009) no. 6, pp. 2907-2917
[4] Residual stress analysis of laser spot welding of steel sheets, Mater. Des., Volume 30 (2009) no. 9, pp. 3351-3359
[5] Thermometallurgical and mechanical modelling of welding – application to multipass dissimilar metal girth welds, Sci. Technol. Weld. Join., Volume 16 (2011) no. 3, pp. 221-226
[6] Evaluation of distortions in laser welded shipbuilding parts using a local-global finite element approach, Sci. Technol. Weld. Join., Volume 8 (2003) no. 2, pp. 79-88
[7] Experimental investigation and finite element simulation of laser beam welding induced residual stresses and distortions in thin sheets of {AA} 6056-t4, Mater. Sci. Eng. A, Volume 527 (2010) no. 12, pp. 3025-3039
[8] Numerical studies of post weld heat treatment on residual stresses in welded impeller, Int. J. Press. Vessels Piping, Volume 153 (2017), pp. 1-14
[9] A benchmark study of uncertainness in welding simulation, Mar. Struct., Volume 56 (2017), pp. 69-84
[10] A thermal-metallurgical-mechanical model for laser welding Q235 steel, J. Mater. Process. Technol., Volume 238 (2016), pp. 39-48
[11] Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, Int. J. Mech. Sci., Volume 131–132 (2017), pp. 37-51
[12] Modelling of keyhole dynamics and porosity formation considering the adaptive keyhole shape and three-phase coupling during deep-penetration laser welding, J. Phys. D, Appl. Phys. (2011) | DOI
[13] Modelling of thermal fluid dynamics for fusion welding, J. Mater. Process. Technol. (2017) | DOI
[14] Numerical analysis of thermal fluid transport behavior during electron beam welding of 2219 aluminum alloy plate, Trans. Nonferr. Met. Soc. China, Volume 27 (2017), pp. 1319-1326
[15] Numerical simulation of alloy composition in dissimilar laser welding, J. Mater. Process. Technol., Volume 224 (2015), pp. 135-142
[16] Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields, Int. J. Therm. Sci., Volume 101 (2016), pp. 24-34
[17] Investigation of humping defect in high speed gas tungsten arc welding by numerical modelling, Mater. Des., Volume 94 (2016), pp. 69-78
[18] Sensitivity to welding positions and parameters in GTA welding with a 3D multiphysics numerical model, Numer. Heat Transf., Part A, Appl., Volume 71 (2017) no. 3, pp. 233-249
[19] Origin of stray grain formation in single-crystal superalloy weld pools from heat transfer and fluid flow modeling, Acta Mater., Volume 58 (2010), pp. 1441-1454
[20] Three-dimensional modeling of grain structure evolution during welding of an aluminum alloy, Acta Mater., Volume 126 (2017), pp. 413-425
[21] Crystal growth during keyhole mode laser welding, Acta Mater., Volume 126 (2017), pp. 413-425
[22] Special features of double pulsed gas metal arc welding, J. Mater. Process. Technol., Volume 251 (2018), pp. 369-375
[23] A comparison of two modeling approaches for the prediction of residual stresses caused by the welding process, NUMIFORM, 2016
[24] Effect of fluid flow in the weld pool on the numerical simulation accuracy of the thermal field in hybrid welding, J. Manuf. Process., Volume 20 (2015), pp. 215-223
[25] Simulation numérique du soudage : couplage des écoulements dans le bain fondu avec les déformations de la partie solide, University of Lyon, France, 2014 (PhD thesis)
[26] Influence des écoulements de la matière sur l'évolution des contraintes résiduelles durant le procédé de soudage, 13e colloque national en calcul des structures CSMA, 15–19 May 2017, Giens, France, 2017
[27] A method for incorporating free surface boundaries with surface tension in finite element fluid-flow simulators, Int. J. Numer. Methods Fluids, Volume 15 (1980), pp. 639-648
[28] An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics with applications to free surface fluid flow, J. Fluid Mech., Volume 152 (1985), pp. 173-190
[29] The fluid mechanics of slide coating, J. Fluid Mech., Volume 208 (1989), pp. 321-354
[30] Finite element method for free surface flows of incompressible fluids in three dimensions. Part I. Boundary fitted mesh motion, Int. J. Numer. Methods Fluids, Volume 33 (2000), pp. 375-403
[31] Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow, Commun. Numer. Methods Eng., Volume 17 (2001), pp. 563-579
[32] Computation of free surface flows with a projection FEM in a moving mesh framework, Comput. Methods Appl. Mech. Eng., Volume 192 (2003), pp. 4703-4721
[33] An arbitrary Lagrangian–Eulerian computing method for all flow speeds, J. Comput. Phys., Volume 135 (1997), pp. 203-216
[34] Volume of fluid (vof) method for the dynamics of free boundaries, J. Comput. Phys., Volume 39 (1981), pp. 201-225
[35] Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988), pp. 12-49
[36] Formation and influence mechanism of keyhole-induced porosity in deep-penetration laser welding based on 3D transient modeling, Int. J. Heat Mass Transf., Volume 90 (2015), pp. 1143-1152
[37] A quantitative model of keyhole in stability induced porosity in laser welding of titanium alloy, Metall. Mater. Trans. A, Volume 45 (2014) no. 6, pp. 2808-2818
[38] A thermo-hydraulic numerical model for high energy welding processes, Rev. Eur. Éléments Finis, Volume 13 (2004) no. 3–4, pp. 207-229
[39] An axi-symmetric thermo-hydraulic model to better understand spot laser welding, Eur. J. Mech., Volume 17 (2008) no. 5–7, pp. 795-806
[40] A thermo-hydraulic numerical model to study spot laser welding, C. R. Mecanique, Volume 335 (2007), pp. 280-286
[41] On the incorporation of surface tension in finite-element calculations, C. R. Mecanique, Volume 341 (2013), pp. 770-775
[42] Finite Element Simulation of Heat Transfer, ISTE–Wiley, 2008 (279 pages) (ISBN: 978-1-84821-053-0)
[43] An implicit finite element algorithm for the simulation of diffusion with phase changes in solids, Int. J. Numer. Methods Eng., Volume 78 (2009), pp. 1492-1512
[44] A computational framework for free surface fluid flows accounting for surface tension, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 3038-3071
[45] On finite element modelling of surface tension. Variational formulation and applications – Part I: quasistatic problems, Comput. Mech., Volume 38 (2006), pp. 265-281
[46] A numerical method for the deformation of two-dimensional drops with surface tension, Int. J. Comput. Fluid Dyn., Volume 10 (1998), pp. 225-240
[47] Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys., Volume 113 (1994) no. 1, pp. 134-147
[48] Modélisation des couplages fluide/solide dans les procédés d'assemblage à haute température, Méc. Ind., Volume 12 (2011), pp. 183-191
[49] Numerical simulation of unsteady viscous free surface flow, J. Comput. Phys., Volume 90 (1990), pp. 396-430
[50] A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Methods Fluids, Volume 30 (1999), pp. 775-793
[51] Motion of two superposed viscous fluids, Phys. Fluids, Volume 24 (1981) no. 7, pp. 1217-1223
[52] Benchmark for Fluid Flow in Weld Pool Simulation: Two Dimensional Transient Computational Models for Arc Welding, 2005 (Internal research report)
[53] Modélisation numérique du soudage à l'arc des aciers, École des mines de Paris, 2008 (PhD thesis)
[54] User Manual, 2015
[55] Metall. Trans., 15B (1984), pp. 299-305
[56] Numerical simulation of temperature field, fluid flow and weld bead formation in oscillating single mode laser-GMA hybrid welding, J. Mater. Process. Technol., Volume 242 (2017), pp. 147-159
[57] A three-dimensional model of coupling dynamics of Keyhole and weld poll during electron beam welding, Int. J. Heat Mass Transf., Volume 115 (2017), pp. 159-173
[58] Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG, University of Aix–Marseille, France, 2015 (PhD thesis)
Cited by Sources:
Comments - Policy