Comptes Rendus
Note
Study on the drag reduction mechanism of spheres with various hydrophobic types
Comptes Rendus. Mécanique, Volume 350 (2022), pp. 171-189.

In this paper, a 3D hydrophobic model was developed using User-Defined Functions to investigate the flow characteristics and drag reduction mechanism of spheres with various hydrophobic types. The results confirmed that for the fully hydrophobic spheres, the separation point was continuously shifted back and the separation angle was reduced from 57.6° to 29.5° when the dimensionless slip length was increased from 0.02 to 0.1. The length of the recirculation zone was reduced from 1.90D to 0.93D, which was 51% shorter. And the decreasing fluctuation energy made the vortex structure transformed from hairpin-shaped vortices to vortex-ring. In addition, the drag reduction of partial-hydrophobic spheres was closely related to the number and location of the sudden change interfaces.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.110
Mots clés : Sphere, Hydrophobic, Drag reduction mechanism, Vortex structure, Separation point, Slip length
Ju Liu 1 ; Junwei Yu 2, 1 ; Lingbing Kong 2 ; Yonghui Guo 1 ; Hang Yu 3 ; Kuo Yuan 1

1 College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
2 Beijing Institute of Aerospace Control Devices, Beijing 100094, China
3 Yunnan Kunchuan Electronic Equipment Co., Ltd., Kunming Yunnan 650236, China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2022__350_G1_171_0,
     author = {Ju Liu and Junwei Yu and Lingbing Kong and Yonghui Guo and Hang Yu and Kuo Yuan},
     title = {Study on the drag reduction mechanism of spheres with various hydrophobic types},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {171--189},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     year = {2022},
     doi = {10.5802/crmeca.110},
     language = {en},
}
TY  - JOUR
AU  - Ju Liu
AU  - Junwei Yu
AU  - Lingbing Kong
AU  - Yonghui Guo
AU  - Hang Yu
AU  - Kuo Yuan
TI  - Study on the drag reduction mechanism of spheres with various hydrophobic types
JO  - Comptes Rendus. Mécanique
PY  - 2022
SP  - 171
EP  - 189
VL  - 350
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.110
LA  - en
ID  - CRMECA_2022__350_G1_171_0
ER  - 
%0 Journal Article
%A Ju Liu
%A Junwei Yu
%A Lingbing Kong
%A Yonghui Guo
%A Hang Yu
%A Kuo Yuan
%T Study on the drag reduction mechanism of spheres with various hydrophobic types
%J Comptes Rendus. Mécanique
%D 2022
%P 171-189
%V 350
%I Académie des sciences, Paris
%R 10.5802/crmeca.110
%G en
%F CRMECA_2022__350_G1_171_0
Ju Liu; Junwei Yu; Lingbing Kong; Yonghui Guo; Hang Yu; Kuo Yuan. Study on the drag reduction mechanism of spheres with various hydrophobic types. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 171-189. doi : 10.5802/crmeca.110. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.110/

[1] C. X. Jiang; S. L. Li; F. C. Li; W. Y. Li Numerical study on axisymmetric ventilated supercavitation influenced by drag-reduction additives, Int. J. Heat Mass Transfer, Volume 115 (2017), pp. 62-76 | DOI

[2] C.-X. Jiang; Z.-J. Shuai; X.-Y. Zhang; W.-Y. Li; F.-C. Li Numerical study on evolution of axisymmetric natural supercavitation influenced by turbulent drag-reducing additives, Appl. Therm. Eng., Volume 107 (2016), pp. 797-803 | DOI

[3] A. Rastegari; R. Akhavan On the mechanism of turbulent drag reduction with super-hydrophobic surfaces, J. Fluid Mech., Volume 773 (2015), R4 | DOI

[4] M. Dhiman; R. Gupta; K. A. Reddy Hydrodynamic interactions between two side-by-side Janus spheres, Eur. J. Mech. (B/Fluids), Volume 87 (2021), pp. 61-74 | DOI | MR | Zbl

[5] W.-M. Zhang; G. Meng; X. Wei A review on slip models for gas microflows, Microfluid. Nanofluid., Volume 13 (2012), pp. 845-882 | DOI

[6] L. A. Ju; A. Jy; H. A. Zheng; Y. B. Hang; A. Ky; A. Yg Numerical investigation on the formation mechanism of ventilated cavitation with gas jet cavitator, Eur. J. Mech. (B/Fluids), Volume 87 (2021), pp. 37-46 | MR

[7] W. U. Hao; O. Yongpeng; Y. E. Qing Experimental study of air layer drag reduction on a flat plate and bottom hull of a ship with cavity, Ocean Eng., Volume 183 (2019), pp. 236-248 | DOI

[8] J. Lee; H. Kim; H. Park Effects of superhydrophobic surfaces on the flow around an NACA0012 hydrofoil at low Reynolds numbers, Exp. Fluids, Volume 59 (2018), pp. 1-18 | DOI

[9] Y. L. Xiong; D. Yang Influence of slip on the three-dimensional instability of flow past an elongated superhydrophobic bluff body, J. Fluid Mech., Volume 814 (2017), pp. 69-94 | DOI | MR | Zbl

[10] T. Jung; H. Choi; J. Kim Effects of the air layer of an idealized superhydrophobic surface on the slip length and skin-friction drag, J. Fluid Mech., Volume 790 (2016), R1 | DOI

[11] B. Zeinali; J. Ghazanfarian; B. Lessani Janus surface concept for three-dimensional turbulent flows, Comput. Fluids, Volume 170 (2018), pp. 213-221 | DOI | MR | Zbl

[12] W. Barthlott; C. Neinhuis Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, Volume 202 (1997), pp. 1-8 | DOI

[13] D. Song; R. J. Daniello; J. P. Rothstein Drag reduction using superhydrophobic sanded Teflon surfaces, Exp. Fluids, Volume 55 (2014), 1783 | DOI

[14] J. Zhang; H. Tian; Z. Yao; P. Hao; N. Jiang Evolutions of hairpin vortexes over a superhydrophobic surface in turbulent boundary layer flow, Phys. Fluids, Volume 28 (2016), 095106 | DOI

[15] R. J. Daniello; N. E. Waterhouse; J. P. Rothstein Drag reduction in turbulent flows over superhydrophobic surfaces, Phys. Fluids, Volume 21 (2009), 085103 | DOI | Zbl

[16] J. Ou; B. Perot; J. P. Rothstein Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, Volume 16 (2004), pp. 4635-4643 | DOI | Zbl

[17] J. Ou; J. P. Rothstein Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces, Phys. Fluids, Volume 17 (2005), 103606 | Zbl

[18] M. B. Martell; J. B. Perot; J. P. Rothstein Direct numerical simulations of turbulent flows over superhydrophobic surfaces, J. Fluid Mech., Volume 620 (2009), pp. 31-41 | DOI | Zbl

[19] J. Zhang; H. Tian; Z. Yao; P. Hao; N. Jiang Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow, Exp. Fluids, Volume 56 (2015), 179 | DOI

[20] W. Abu Rowin; S. Ghaemi Streamwise and spanwise slip over a superhydrophobic surface, J. Fluid Mech., Volume 870 (2019), pp. 1127-1157 | DOI | MR | Zbl

[21] M. Castagna; N. Mazellier; A. Kourta On the onset of instability in the wake of super-hydrophobic spheres, Int. J. Heat Fluid Flow, Volume 87 (2021), 108709 | DOI

[22] C. Navier Mémoire sur les lois du mouvement des fluides, Mem. Acad. R. Sci. Inst. Fr., Volume 6 (1823), pp. 389-440

[23] D. Legendre; E. Lauga; J. Magnaudet Influence of slip on the dynamics of two-dimensional wakes, J. Fluid Mech., Volume 633 (2009), pp. 437-447 | DOI | Zbl

[24] R. Daniello; P. Muralidhar; N. Carron; M. Greene; J. P. Rothstein Influence of slip on vortex-induced motion of a superhydrophobic cylinder, J. Fluids Struct., Volume 42 (2013), pp. 358-368 | DOI

[25] I. W. Seo; C. G. Song Numerical simulation of laminar flow past a circular cylinder with slip conditions, Int. J. Numer. Methods Fluids, Volume 68 (2012), pp. 1538-1560 | DOI | MR | Zbl

[26] H. Huang; M. Liu; H. Gu; X. Li; X. Wu; F. Sun Effect of the slip length on the flow over a hydrophobic circular cylinder, Fluid Dyn. Res., Volume 50 (2018), 025515 | DOI | MR

[27] D. Li; S. Li; Y. Xue; Y. Yang; W. Su; Z. Xia; Y. Shi; H. Lin; H. Duan The effect of slip distribution on flow past a circular cylinder, J. Fluids Struct., Volume 51 (2014), pp. 211-224 | DOI

[28] B. Zeinali; J. Ghazanfarian Turbulent flow over partially superhydrophobic underwater structures: The case of flow over sphere and step, Ocean Eng., Volume 195 (2020), 106688 | DOI

[29] R. Pit; H. Hervet; L. Léger Direct experimental evidence of slip in hexadecane: solid interfaces, Phys. Rev. Lett., Volume 85 (2000) no. 5, pp. 980-983 | DOI

[30] L. I. Jian; M. Zhou; L. Cai; Y. Xia; U. Yuan Run center for photon manufacturing science and technology, on the measurement of slip length for liquid flow over super-hydrophobic surface, China Sci. Bull., Volume 54 (2009) no. 24, pp. 4560-4565

[31] C. Lee; C. Kim Influence of surface hierarchy of superhydrophobic surfaces on liquid slip, Langmuir, Volume 27 (2011), pp. 4243-4248 | DOI

[32] Y. Murai Frictional drag reduction by bubble injection, Exp. Fluids, Volume 55 (2014), 1773 | DOI

[33] R. Deng; C. H. Wang; K. A. Smith Bubble Behavior in a Taylor Vortex, Phys. Rev. E, Volume 73 (2006), 036306 | DOI

[34] P. Sooraj; M. S. Ramagya; M. H. Khan; A. Sharma; A. Agrawal Effect of superhydrophobicity on the flow past a circular cylinder in various flow regimes, J. Fluid Mech., Volume 897 (2020), A21 | DOI

[35] Q. Ren; Y. L. Xiong; D. Yang; J. Duan Flow past a rotating circular cylinder with superhydrophobic surfaces, Acta Mech., Volume 229 (2018), pp. 3613-3627 | DOI | MR

[36] J. Liu; J. Yu; Z. Yang; Z. He; Y. Li Numerical investigation of shedding dynamics of cloud cavitation around 3D hydrofoil using different turbulence models, Eur. J. Mech. (B/Fluids), Volume 85 (2021), pp. 232-244 | DOI | MR

[37] J. S. Wu; G. M. Faeth Sphere wakes in still surroundings at intermediate Reynolds numbers, AIAA J., Volume 31 (1993), pp. 1448-1455 | DOI

[38] A. G. Tomboulides; S. A. Orszag; G. E. Karniadakis Direct and large-eddy simulations of axisymmetric wakes, AIAA Aerospace Sciences Meeting & Exhibit, 1993

[39] R. H. Magarvey; R. L. Bishop Transition ranges for three-dimensional wakes, Can. J. Phys., Volume 39 (1961), pp. 1418-1422 | DOI

[40] H. J. Kim; P. A. Durbin Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation, Phys. Fluids, Volume 31 (1988), 3260 | DOI

[41] F. W. Roos; W. W. Willmarth Some experimental results on sphere and disk drag, AIAA J., Volume 9 (1971), pp. 285-291 | DOI

[42] B. R. K. Gruncell; N. D. Sandham; G. McHale Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay, Phys. Fluids, Volume 25 (2013), 043601 | DOI

[43] H. Sakamoto; H. Haniu A study on vortex shedding from spheres in a uniform flow, J. Fluids Eng., Volume 112 (1990), pp. 386-392 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Superhydrophobic surfaces: From the lotus leaf to the submarine

Mohamed A. Samaha; Hooman Vahedi Tafreshi; Mohamed Gad-el-Hak

C. R. Méca (2012)


Antiwettability enhancement of PVDF-HFP membrane via superhydrophobic modification by SiO2 nanoparticles

Moau Jian Toh; Pei Ching Oh; Thiam Leng Chew; ...

C. R. Chim (2019)