Comptes Rendus
A possible link between brittle and ductile failure by viewing fracture as a topological defect
Comptes Rendus. Mécanique, Volume 348 (2020) no. 4, pp. 275-284.

A continuum model of fracture that describes, in principle, the propagation and interaction of arbitrary distributions of cracks and voids with evolving topology without a “fracture criterion” is developed. It involves a “law of motion” for crack tips, primarily as a kinematical consequence coupled with thermodynamics. Fundamental kinematics endow the crack tip with a topological charge. This allows the association of a kinematical conservation law for the charge, resulting in a fundamental evolution equation for the crack-tip field and, in turn, the crack field. The vectorial crack field degrades the elastic modulus in a physically justified anisotropic manner. The mathematical structure of this conservation law allows an additive “free” gradient of a scalar field in the evolution of the crack field. We associate this naturally emerging scalar field with the porosity that arises in the modeling of ductile failure. Thus, porosity-rate gradients affect the evolution of the crack field, which then naturally degrades the elastic modulus, and it is through this fundamental mechanism that spatial gradients in porosity growth affect the strain energy density and the stress-carrying capacity of the material and, as a dimensional consequence related to fundamental kinematics, introduce a length scale in the model. A key result of this work is that brittle fracture is energy-driven while ductile fracture is stress-driven. Under overall shear loadings where the mean stress vanishes or is compressive, the shear strain energy can still drive shear fracture in ductile materials.

Published online:
DOI: 10.5802/crmeca.14
Keywords: Ductile, Brittle, Fracture, Porosity, Crack, Topological defect
Amit Acharya 1

1 Department of Civil & Environmental Engineering, and Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh, PA 15213, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Amit Acharya},
     title = {A possible link between brittle and ductile failure by viewing fracture as a topological defect},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {275--284},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {4},
     year = {2020},
     doi = {10.5802/crmeca.14},
     language = {en},
AU  - Amit Acharya
TI  - A possible link between brittle and ductile failure by viewing fracture as a topological defect
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 275
EP  - 284
VL  - 348
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.14
LA  - en
ID  - CRMECA_2020__348_4_275_0
ER  - 
%0 Journal Article
%A Amit Acharya
%T A possible link between brittle and ductile failure by viewing fracture as a topological defect
%J Comptes Rendus. Mécanique
%D 2020
%P 275-284
%V 348
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmeca.14
%G en
%F CRMECA_2020__348_4_275_0
Amit Acharya. A possible link between brittle and ductile failure by viewing fracture as a topological defect. Comptes Rendus. Mécanique, Volume 348 (2020) no. 4, pp. 275-284. doi : 10.5802/crmeca.14.

[1] J. Clayton; A. Tonge A nonlinear anisotropic elastic–inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide, Int. J. Solids Struct., Volume 64 (2015), pp. 191-207 | DOI

[2] D. Misseroni Experiments on fracture trajectories in ceramic samples with voids, J. Eur. Ceram. Soc., Volume 36 (2016) no. 9, pp. 2277-2281 | DOI

[3] A. Pineau; A. A. Benzerga; T. Pardoen Failure of metals I: Brittle and ductile fracture, Acta Mater., Volume 107 (2016), pp. 424-483 | DOI

[4] D. Teirlinck; F. Zok; J. Embury; M. Ashby Fracture mechanism maps in stress space, Acta Metall., Volume 36 (1988) no. 5, pp. 1213-1228 | DOI

[5] A. Weck; D. S. Wilkinson; H. Toda; E. Maire 2D and 3D visualization of ductile fracture, Adv. Eng. Mater., Volume 8 (2006) no. 6, pp. 469-472 | DOI

[6] F. A. McClintock; S. M. Kaplan; C. A. Berg Ductile fracture by hole growth in shear bands, Int. J. Fract. Mech., Volume 2 (1966) no. 4, pp. 614-627 | DOI

[7] A. Acharya Fracture and singularities of the mass-density gradient field, J. Elast., Volume 132 (2018) no. 2, pp. 243-260 | DOI | MR | Zbl

[8] K. Nahshon; J. Hutchinson Modification of the Gurson model for shear failure, Eur. J. Mech. A, Volume 27 (2008) no. 1, p. 1 | DOI | Zbl

[9] A. A. Benzerga; J.-B. Leblond; A. Needleman; V. Tvergaard Ductile failure modeling, Int. J. Fract., Volume 201 (2016) no. 1, pp. 29-80 | DOI

[10] A. Garg; A. Acharya; C. E. Maloney A study of conditions for dislocation nucleation in coarser-than-atomistic scale models, J. Mech. Phys. Solids, Volume 75 (2015), pp. 76-92 | DOI

[11] B. Bourdin; G. A. Francfort; J.-J. Marigo Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI | MR | Zbl

[12] M. J. Borden; C. V. Verhoosel; M. A. Scott; T. J. Hughes; C. M. Landis A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng., Volume 217 (2012), pp. 77-95 | DOI | MR | Zbl

[13] S. Nemat-Nasser; M. Hori Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, 2013

[14] F. Sabina; J. Willis Self-consistent analysis of waves in rocks containing arrays of cracks, Seismic Anisotropy, Society of Exploration Geophysicists, 1996, pp. 318-356 | DOI

[15] V. Tvergaard Behaviour of voids in a shear field, Int. J. Fract., Volume 158 (2009) no. 1, pp. 41-49 | DOI | Zbl

[16] V. Hakim; A. Karma Laws of crack motion and phase-field models of fracture, J. Mech. Phys. Solids, Volume 57 (2009) no. 2, pp. 342-368 | DOI | Zbl

[17] C. Miehe; M. Hofacker; F. Welschinger A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 45, pp. 2765-2778 | DOI | MR | Zbl

[18] H. Amor; J.-J. Marigo; C. Maurini Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, Volume 57 (2009) no. 8, pp. 1209-1229 | DOI | Zbl

[19] X. Tu; A. Ray; S. Ghosh A coupled crystal plasticity FEM and phase-field model for crack evolution in microstructures of 7000 series aluminum alloys, Eng. Fract. Mech., Volume 230 (2020), 106970 | DOI

[20] F. A. McClintock Plasticity aspects of fracture, Engineering Fundamentals and Environmental Effects (H. Leibowitz, ed.), Elsevier, 1971, pp. 47-225 | DOI

[21] G. Johnson; W. Cook Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., Volume 21 (1985) no. 1, pp. 31-48 | DOI

[22] Y. Bao; T. Wierzbicki On fracture locus in the equivalent strain and stress triaxiality space, Int. J. Mech. Sci., Volume 46 (2004) no. 1, pp. 81-98 | DOI

[23] I. Barsoum; J. Faleskog Rupture mechanisms in combined tension and shear—experiments, Int. J. Solids Struct., Volume 44 (2007) no. 6, pp. 1768-1786 | DOI | Zbl

[24] L. Xue Constitutive modeling of void shearing effect in ductile fracture of porous materials, Eng. Fract. Mech., Volume 75 (2008) no. 11, pp. 3343-3366 | DOI

[25] K. Dorhmi; L. Morin; K. Derrien; Z. Hadjem-Hamouche; J.-P. Chevalier A homogenization-based damage model for stiffness loss in ductile metal-matrix composites, J. Mech. Phys. Solids, Volume 137 (2020), 103812 | DOI | MR

[26] P. P. Castañeda; P. Suquet Nonlinear composites, Advances in Applied Mechanics, Volume 34, Elsevier, 1997, pp. 171-302 | DOI

[27] S. Ramaswamy; N. Aravas Finite element implementation of gradient plasticity models Part I: Gradient-dependent yield functions, Comput. Methods Appl. Mech. Eng., Volume 163 (1998) no. 1-4, pp. 11-32 | DOI | Zbl

[28] S. Ramaswamy; N. Aravas Finite element implementation of gradient plasticity models Part II: Gradient-dependent evolution equations, Comput. Methods Appl. Mech. Eng., Volume 163 (1998) no. 1-4, pp. 33-53 | DOI | Zbl

[29] M. Gologanu; J.-B. Leblond; G. Perrin; J. Devaux Recent extensions of Gurson’s model for porous ductile metals, Continuum Micromechanics, Springer, 1997, pp. 61-130 | DOI | Zbl

[30] K. L. Nielsen; J. Dahl; V. Tvergaard Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D, Int. J. Fract., Volume 177 (2012) no. 2, pp. 97-108 | DOI

[31] L. Morin; J.-B. Leblond; V. Tvergaard Application of a model of plastic porous materials including void shape effects to the prediction of ductile failure under shear-dominated loadings, J. Mech. Phys. Solids, Volume 94 (2016), pp. 148-166 | DOI | MR

[32] C. Miehe; S. Teichtmeister; F. Aldakheel Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization, Phil. Trans. R. Soc. A, Volume 374 (2016) no. 2066, 20150170 | DOI | MR | Zbl

[33] M. Ambati; T. Gerasimov; L. De Lorenzis Phase-field modeling of ductile fracture, Comput. Mech., Volume 55 (2015) no. 5, pp. 1017-1040 | DOI | MR | Zbl

Cited by Sources:

Articles of potential interest

Multiscale modeling of ductile failure in metallic alloys

Thomas Pardoen; Florence Scheyvaerts; Aude Simar; ...

C. R. Phys (2010)

A theoretical approach of strain localization within thin planar bands in porous ductile materials

Jean-Baptiste Leblond; Gérard Mottet

C. R. Méca (2008)

Theoretical modeling and numerical study of coalescence of cavities in porous ductile viscoplastic solids

Laïla Flandi; Jean-Baptiste Leblond

C. R. Méca (2005)