Comptes Rendus
An engineering model for creeping flame spread over idealized electrical wires in microgravity
Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 57-75.

Flame spread over an insulated electrical wire is a major source of fire scenario in a space vehicle. In this work, an engineering model that predicts the creeping flame spread over cylindrical wires in microgravity is developed. The model is applied to interpret experimental data obtained in parabolic flights for wires composed by a 0.25 mm radius nickel-chromium (NiCr) metallic core coated by low-density polyethylene (LDPE) of different thicknesses ranging from 0.15 mm to 0.4 mm. The model relies on the assumption that, in the pyrolysis region, the NiCr and the LDPE are in thermal equilibrium. This assumption is supported by more detailed numerical simulations and the model reduces then to solving the heat transfer equations for both NiCr and LDPE in the pyrolysis region and in the region ahead of the flame front along with a simple degradation model for LDPE, an Oseen approximation of opposed oxidizer flow and an infinitely fast gas-phase chemistry. The flame spread rate (FSR) is controlled by two model parameters, which are measurable from intrinsic material and ambient gas properties: the convective flame heat flux transferred to the solid ahead from the flame front and the gaseous thermal heat length near the flame front. These parameters are then calibrated from experimental data for a given wire geometry and the calibrated model is validated against experimental data for other wire geometries and ambient conditions. The heat transfer mechanisms ahead of the pyrolysis front are investigated with a special emphasis on the LDPE thickness and the conductivity of the metallic core. In addition to NiCr, metallic cores of lower and higher conductivities are considered. The polymer is shown to be thermally thick for all tested wire geometries and core conductivities. The flame heat flux is found to dominate the heat transfer in the preheat zone where it applies. The core has nevertheless a significant impact in the heating of the LDPE with its contribution increasing with the core conductivity and when decreasing the LDPE thickness.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.149
Mots clés : Creeping flame spread, electrical wire, microgravity, low-density polyethylene, nickel-chromium core
Alain Coimbra 1 ; Yutao Li 2 ; Augustin Guibaud 3 ; Jean-Marie Citerne 2 ; Guillaume Legros 4 ; Jean-Louis Consalvi 1

1 Aix-Marseille Université, CNRS, IUSTI UMR 7343, 5 rue E. Fermi, 13013 Marseille, France
2 Institut Jean le Rond d’Alembert/UMR CNRS 7190, Sorbonne Université, Paris F-75005, France
3 Department of Civil, Environmental and Geomatic Engineering, University College London, London WC1 E6BT, UK
4 ICARE/CNRS, 1C av. de la Recherche Scientifique, Orléans Cedex 1 45071, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_S2_57_0,
     author = {Alain Coimbra and Yutao Li and Augustin Guibaud and Jean-Marie Citerne and Guillaume Legros and Jean-Louis Consalvi},
     title = {An engineering model for creeping flame spread over idealized electrical wires in microgravity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {57--75},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.149},
     language = {en},
}
TY  - JOUR
AU  - Alain Coimbra
AU  - Yutao Li
AU  - Augustin Guibaud
AU  - Jean-Marie Citerne
AU  - Guillaume Legros
AU  - Jean-Louis Consalvi
TI  - An engineering model for creeping flame spread over idealized electrical wires in microgravity
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 57
EP  - 75
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.149
LA  - en
ID  - CRMECA_2023__351_S2_57_0
ER  - 
%0 Journal Article
%A Alain Coimbra
%A Yutao Li
%A Augustin Guibaud
%A Jean-Marie Citerne
%A Guillaume Legros
%A Jean-Louis Consalvi
%T An engineering model for creeping flame spread over idealized electrical wires in microgravity
%J Comptes Rendus. Mécanique
%D 2023
%P 57-75
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.149
%G en
%F CRMECA_2023__351_S2_57_0
Alain Coimbra; Yutao Li; Augustin Guibaud; Jean-Marie Citerne; Guillaume Legros; Jean-Louis Consalvi. An engineering model for creeping flame spread over idealized electrical wires in microgravity. Comptes Rendus. Mécanique, Volume 351 (2023) no. S2, pp. 57-75. doi : 10.5802/crmeca.149. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.149/

[1] Yuji Nakamura; Nobuko Yoshimura; Tomohiro Matsumura; Hiroyuki Ito; Osamu Fujita Flame Spread over Polymer-Insulated Wire in Sub-Atmospheric Pressure: Similarity to Microgravity Phenomena, Springer (2008), pp. 17-27 | DOI

[2] Longhua Hu; Yangshu Zhang; Kosuke Yoshioka; Hirokazu Izumo; Osamu Fujita Flame spread over electric wire with high thermal conductivity metal core at different inclinations, Proc. Combust. Inst., Volume 35 (2015) no. 3, pp. 2607-2614 | DOI

[3] Yoshinari Kobayashi; Xinyan Huang; Shinji Nakaya; Mitsuhiro Tsue; Carlos Fernandez-Pello Flame spread over horizontal and vertical wires: The role of dripping and core, Fire Safety Journal, Volume 91 (2017), pp. 112-122 (Fire Safety Science: Proceedings of the 12th International Symposium) | DOI

[4] Xinyan Huang; Yuji Nakamura A Review of Fundamental Combustion Phenomena in Wire Fires, Fire Technol., Volume 56 (2020), pp. 315-360 | DOI

[5] Osamu Fujita; Masao Kikuchi; Kenichi Ito; Katsuhiro Nishizawa Effective mechanisms to determine flame spread rate over ethylene-tetrafluoroethylene wire insulation: Discussion on dilution gas effect based on temperature measurements, Proc. Combust. Inst., Volume 28 (2000) no. 2, pp. 2905-2911 | DOI

[6] Akira Umemura; Mashahiro Uchida; Tetsuya Hirata; Jun’ichi Sato Physical model analysis of flame spreading along an electrical wire in microgravity, Proc. Combust. Inst., Volume 29 (2002) no. 2, pp. 2535-2543 | DOI

[7] Shuhei Takahashi; Hiroyuki Takeuchi; Hiroyuki Ito; Yuji Nakamura; Osamu Fujita Study on unsteady molten insulation volume change during flame spreading over wire insulation in microgravity, Proc. Combust. Inst., Volume 34 (2013) no. 2, pp. 2657-2664 | DOI

[8] Jean-Marie Citerne; Hugo Dutilleul; Koki Kizawa; Masashi Nagachi; Osamu Fujita; Masao Kikuchi; Grunde Jomaas; Sébastien Rouvreau; Jose L. Torero; Guillaume Legros Fire safety in space – Investigating flame spread interaction over wires, Acta Astronautica, Volume 126 (2016), pp. 500-509 (Space Flight Safety) | DOI

[9] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Guillaume Legros On the effects of opposed flow conditions on non-buoyant flames spreading over polyethylene-coated wires – Part I: Spread rate and soot production, Combust. Flame, Volume 221 (2020), pp. 530-543 | DOI

[10] Masashi Nagachi; Fumiya Mitsui; Jean-Marie Citerne; Hugo Dutilleul; Augustin Guibaud; Grunde Jomaas; Guillaume Legros; Nozomu Hashimoto; Osamu Fujita Effect of Ignition Condition on the Extinction Limit for Opposed Flame Spread Over Electrical Wires in Microgravity, Fire Technol., Volume 56 (2020), pp. 149-168 | DOI

[11] Indrek S. Wichman Theory of opposed-flow flame spread, Progress in Energy and Combustion Science, Volume 18 (1992) no. 6, pp. 553-593 | DOI

[12] Robert F. McAlevy; Richard S. Magee The mechanism of flame spreading over the surface of igniting condensed-phase materials, Symposium (International) on Combustion, Volume 12 (1969) no. 1, pp. 215-227 | DOI

[13] Fernandez-Pello Carlos The solid phase, Combustion Fundamentals of Fire, Academic Press Inc., 1994, pp. 31-100

[14] J. N. De Ris Spread of a laminar diffusion flame, Symposium (International) on Combustion, Volume 12 (1969) no. 1, pp. 241-252 | DOI

[15] Michael A. Delichatsios Creeping flame spread: Energy balance and application to practical materials, Symposium (International) on Combustion, Volume 26 (1996) no. 1, pp. 1495-1503 | DOI

[16] Michael A. Delichatsios; Robert A. Altenkirch; Matthew F. Bundy; Subrata Bhattacharjee; Lin Tang; Kurt Sacksteder Creeping flame spread along fuel cylinders in forced and natural flows and microgravity, Proc. Combust. Inst., Volume 28 (2000) no. 2, pp. 2835-2842 | DOI

[17] Michael A. Delichatsios Relation of opposed flow (creeping) flame spread with extinction/ignition, Combust. Flame, Volume 135 (2003) no. 4, pp. 441-447 | DOI

[18] Shuhei Takahashi; Hiroyuki Ito; Yuji Nakamura; Osamu Fujita Extinction limits of spreading flames over wires in microgravity, Combust. Flame, Volume 160 (2013) no. 9, pp. 1900-1902 | DOI

[19] Yusuke Konno; Nozomu Hashimoto; Osamu Fujita Role of wire core in extinction of opposed flame spread over thin electric wires, Combust. Flame, Volume 220 (2020), pp. 7-15 | DOI

[20] Yusuke Konno; Nozomu Hashimoto; Osamu Fujita Downward flame spreading over electric wire under various oxygen concentrations, Proc. Combust. Inst., Volume 37 (2019) no. 3, pp. 3817-3824 | DOI

[21] Augustin Guibaud; J. L. Consalvi; J. M. Orlac’h; Jean-Marie Citerne; Guillaume Legros Soot Production and Radiative Heat Transfer in Opposed Flame Spread over a Polyethylene Insulated Wire in Microgravity, Fire Technol., Volume 56 (2020), pp. 287-314 | DOI

[22] Augustin Guibaud Flame spread in microgravity environment : influence of ambient flow conditions, Ph. D. Thesis, Sorbonne University, Paris, France (2019) (Thèse de doctorat dirigée par Legros, Guillaume et Consalvi, Jean-Louis, Mécanique Sorbonne université 2019, http://www.theses.fr/2019sorus129)

[23] Augustin Guibaud; Jean-Louis Consalvi; Jean-Marie Citerne; Guillaume Legros Pressure effects on the soot production and radiative heat transfer of non-buoyant laminar diffusion flames spreading in opposed flow over insulated wires, Combust. Flame, Volume 222 (2020), pp. 383-391 | DOI

[24] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Osamu Fujita; Jose L. Torero; Guillaume Legros Experimental evaluation of flame radiative feedback: methodology and application to opposed flame spread over coated wires in microgravity, Fire Technol., Volume 56 (2020) no. 1, pp. 185-207 | DOI

[25] Jean-Louis Consalvi; Augustin Guibaud; Alain Coimbra; Jean-Marie Citerne; Guillaume Legros Effects of oxygen depletion on soot production, emission and radiative heat transfer in opposed-flow flame spreading over insulated wire in microgravity, Combust. Flame, Volume 230 (2021), 111447 | DOI

[26] Michael A. Delichastsios Exact Solution for the Rate of Creeping Flame Spread over Thermally Thin Materials, Combustion Science and Technology, Volume 44 (1986) no. 5-6, pp. 257-267 | DOI

[27] Alain Coimbra; Johan Sarazin; Serge Bourbigot; Guillaume Legros; Jean-Louis Consalvi A semi-global reaction mechanism for the thermal decomposition of low-density polyethylene blended with ammonium polyphosphate and pentaerythritol, Fire Safety Journal, Volume 133 (2022), 103649

[28] Yusuke Konno; Yoshinari Kobayashi; Carlos Fernandez-Pello; Nozomu Hashimoto; Shinji Nakaya; Mitsuhiro Tsue; Osamu Fujita Opposed-Flow Flame Spread and Extinction in Electric Wires: The Effects of Gravity, External Radiant Heat Flux, and Wire Characteristics on Wire Flammability, Fire Technol., Volume 56 (2020), pp. 131-148 | DOI

[29] Augustin Guibaud; Jean-Marie Citerne; Jean-Louis Consalvi; Osamu Fujita; Jose L. Torero; Guillaume Legros Experimental Evaluation of Flame Radiative Feedback: Methodology and Application to Opposed Flame Spread Over Coated Wires in Microgravity, Fire Technol., Volume 56 (2020), pp. 185-207 | DOI

[30] Yuji Sano; Sinzo Nishikawa The Heat Transfer Coefficient of Fine Wires in Air Flow, Chemical Engineering, Volume 28 (1964) no. 4, pp. 275-284 | DOI

[31] Suhas V. Patankar Numerical heat transfer and fluid flow, Series on Computational Methods in Mechanics and Thermal Science, Hemisphere Publishing Corporation, 1980

[32] Physical Properties of Polymers Handbook (James E. Mark, ed.), Springer, 2007 | DOI

[33] Yoshinari Kobayashi; Kaoru Terashima; Muhammad Arif Fahmi bin Borhan; Shuhei Takahashi Opposed Flame Spread over Polyethylene Under Variable Flow Velocity and Oxygen Concentration in Microgravity, Fire Technol., Volume 56 (2020), pp. 113-130 | DOI

[34] Maria Thomsen; Carlos Fernandez-Pello; Xinyan Huang; Sandra Olson; Paul Ferkul Buoyancy Effect on Downward Flame Spread Over PMMA Cylinders, Fire Technol., Volume 56 (2020) no. 1, pp. 247-269 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Electric sampling of soot particles in spreading non-premixed flames: methodology and influence of gravity

Yutao Li; Antoine Bordino; Augustin Guibaud; ...

C. R. Méca (2023)


Polymer stabilization: present status and possible future trends

Ján Malík; Christoph Kröhnke

C. R. Chim (2006)


Synthesis and voltammetric study of some new macrocyclic sulfur compounds for use as chelating agents for separation of arsenic (III) in wastewater and as molluscicidal agents against Biomophalaria Alexandrina Snails

M.S.T. Makki; R.M. Abdel-Rahman; M.S. El-Shahawi

C. R. Chim (2012)