Comptes Rendus
Note
A fatigue-reliability approach using ultrasonic non-destructive inspection
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 105-124.

Fatigue crack propagation can considerably reduce the life of components, leading to sudden failures. This paper provides a method for fatigue life prediction based on ultrasonic non-destructive inspection applied on Al 2024 T3 material.

A new crack quantification model based on ultrasonic waves features is developed. To analyse the performance and efficacity of the model, the probability of detection is determined using the “signal response” technique.

The Paris model is used to predict the fatigue life taking into consideration the initial crack distributions, the dispersion of the parameters underlined by the Least-squares method and Monte-Carlo simulations.

Reliability evaluation is discussed later for two cases: Detection and No-detection case.

If no indication is presented, an inspection detection threshold is determined and optimized. This proposed indicator will be helpful for industrial environments whenever the inspection machine does not have any indication.

Considering the ultrasonic inspection data, an updating reliability via the Bayesian approach is suggested. The results of this approach can lead to a gain in the life span or a gain of the costs generated by the failure of the part.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.179
Mots clés : Ultrasonic inspection, POD, Reliability, Bayesian approach, Detection threshold
Iheb Chouikh 1 ; Chokri Bouraoui 1

1 Mechanical Laboratory of Sousse LMS/ENISo, University of Sousse, BP 264 Sousse Erriadh 4023, Tunisia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G1_105_0,
     author = {Iheb Chouikh and Chokri Bouraoui},
     title = {A fatigue-reliability approach using ultrasonic non-destructive inspection},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {105--124},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.179},
     language = {en},
}
TY  - JOUR
AU  - Iheb Chouikh
AU  - Chokri Bouraoui
TI  - A fatigue-reliability approach using ultrasonic non-destructive inspection
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 105
EP  - 124
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.179
LA  - en
ID  - CRMECA_2023__351_G1_105_0
ER  - 
%0 Journal Article
%A Iheb Chouikh
%A Chokri Bouraoui
%T A fatigue-reliability approach using ultrasonic non-destructive inspection
%J Comptes Rendus. Mécanique
%D 2023
%P 105-124
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.179
%G en
%F CRMECA_2023__351_G1_105_0
Iheb Chouikh; Chokri Bouraoui. A fatigue-reliability approach using ultrasonic non-destructive inspection. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 105-124. doi : 10.5802/crmeca.179. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.179/

[1] J. B. Ihn; F. K. Chang Pitch-catch active sensing methods in structural health monitoring for aircraft structures, Struct. Health Monit., Volume 7 (2008), pp. 5-19 | DOI

[2] C. Bollerand; N. Meyendorf State-of-the-art in structural health monitoring for aeronautics, Proceedings of International Symposium on NDT in Aerospace, Fürth/Bavaria-Germany (2008)

[3] S. S. Kulkarni; J. D. Achenbach Structural health monitoring and damage prognosis in fatigue, Struct. Health Monit., Volume 7 (2008) no. 1, pp. 37-49 | DOI

[4] Y. Kong; C. J. Bennett; C. J. Hyde A review of non-destructive testing techniques for the in-situ investigation of fretting fatigue cracks, Mater. Des., Volume 196 (2020), 109093 | DOI

[5] B. Kühn et al. Assessment of existing steel structures: recommendations for estimation of remaining fatigue life (2008) (Technical report)

[6] S. Kuznetsov et al. Lamb wave interaction with a fatigue crack in a thin sheet of Al2024-T3, EU Project Meeting on Aircraft Integrated Structural Health Assessment (AISHA), Leuven, Belgium (2007)

[7] J. E. Michaels; T. E. Michaels; A. C. Cobb; G. J. Kacprzynski Ultrasonic sensing and life prediction for the DARPA structural integrity prognosis system, Rev. Quant. Nondestruct. Eval., Volume 894 (2007), pp. 1453-1460 | DOI

[8] G. A. Georgiou Probability of Detection (PoD) Curves Derivation, Applications and Limitations, Health & Safety Executive, Norway, 2006

[9] H. M. Elwalwal; S. B. H. Mahzan; A. N. Abdalla Crack inspection using guided waves (GWS)/structural health monitoring (SHM), Rev. J. Appl. Sci., Volume 17 (2017), pp. 415-428 | DOI

[10] D. Wang; J. He; X. Guan; J. Yang; W. Zhang A model assesment method for predicting structural fatigue life using Lamb waves, Ultrasonics, Volume 84 (2017), pp. 319-328 | DOI

[11] J. He; Y. Ran; B. Liu; J. Yang; X. Guan A fatigue crack size evaluation method based on lamb wave simulation and limited experimental data, Sensors, Volume 17 (2017), 2097

[12] J. Yang et al. A probabilistic crack size quantification method using in-situ Lamb wave test and Bayesian updating, Mech. Syst. Signal Process., Volume 78 (2016), pp. 118-133 | DOI

[13] B. C. Lee; W. J. Staszewski Modelling of lamb wave interaction with open and closed fatigue cracks for damage detection, IOP Conf. Ser.: Mater. Sci. Eng., Volume 10 (2010), 012059

[14] S. Mishra; A. Kumar; R. K. Mishra; S. Sharma; S. singh Structural health monitoring and propagation of lamb waves to identification of crack, 4th International Conference on Materials Processing and Characterization, Materials Today: Proceedings, Volume 2 (2015), pp. 1833-1840

[15] X. Guan et al. Probabilistic fatigue life prediction and structural reliability evaluation of turbine rotors integrating an automated ultrasonic inspection system, J. Nondestruct. Eval., Volume 33 (2014), pp. 51-61

[16] M. Eltaeif et al. Toward optimal updating time inspection based on reliability approach of fatigue crack propagation, Appl. Mech. Mater., Volume 146 (2012), pp. 96-111 | DOI

[17] R. Zhang; S. Mahadevan Model uncertainty and Bayesian updating in reliability-based inspection, Struct. Saf., Volume 22 (2000), pp. 145-160 | DOI

[18] M. E. Zareei; M. Iranmanesh Reliability-based inspection planning of the ship structure exposed to fatigue damages, Brodogradnja-Shipbuilding, Volume 69 (2018) no. 2, pp. 119-134 | DOI

[19] A. Coro; M. Abasolo; J. Aguirrebeitia; L. de Lacalle Inspection scheduling based on reliability updating of gas turbine welded structures, Adv. Mech. Eng., Volume 11 (2019) no. 1, pp. 1-20 | DOI

[20] T. Dang; Q. Mai; P. Morato; P. Rigo Optimal inspection and repair scheduling for mitre lock gates, Proc. Inst. Civ. Eng.: Marit. Eng., Volume 172 (2019) no. 3, pp. 95-103

[21] G. Zou; A. González; K. Banisoleiman; M. H. Faber An integrated probabilistic approach for optimum maintenance offatigue-critical structural components, Mar. Struct., Volume 68 (2019), 102649

[22] D. Y. Yang; D. M. Frangopol Probabilistic optimization framework for inspection/repair planning offatigue-critical details using dynamic Bayesian networks, Comput. Struct., Volume 198 (2018), pp. 40-50 | DOI

[23] M. Carboni; S. Cantini Advanced ultrasonic “probability of detection” curves for designing in-service inspection intervals, Int. J. Fatigue, Volume 86 (2016), pp. 77-87 | DOI

[24] V. Rentala; P. Mylavarapu; J. P. Gautam Issues in estimating probability of detection of NDT techniques—a model assisted approach, Ultrasonics, Volume 87 (2018), pp. 59-70 | DOI

[25] J-B. Ihn; F.-K. Chang Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics, Smart Mater. Struct., Volume 13 (2004), pp. 609-620 | DOI

[26] MIL-HDBK-1823-2 Nondestructive Evaluation System Reliability Assessment, Department of Defense of the US, 2009

[27] J. He et al. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves, Smart Mater. Struct., Volume 22 (2013), 105007

[28] H. Riahi; Ph Bressolette; A. Chateauneuf; Ch Bouraoui; R. Fathallah Reliability analysis and inspection updating by stochastic response surface of fatigue cracks in mixed mode, Eng. Struct., Volume 33 (2011) no. 12, pp. 3392-3401 | DOI

[29] T. Anderson Fracture Mechanics: Fundamentals and Applications, CRC Press Taylor & Francis Group, 2005 | DOI

[30] J. H. Kurz; A. Jungert; S. Dugan; G. Dobmann Probability of detection (POD) determination using ultrasound phased array for considering NDT in probabilistic damage assessments, 18th World Conference on Nondestructive Testing, Durban, South Africa (2012)

[31] Rui F. Sanches; Abílio M. P. de Jesus; José A. F. O. Correia; A. L. L. da Silva; A. A. Fernandes A probabilistic fatigue approach for riveted joints using Monte Carlo simulation, J. Constr. Steel Res., Volume 110 (2015), pp. 149-162 | DOI

[32] C. W. Huang; A. El Hami; B. Radi Overview of structural reliability analysis methods-part I: Local reliability methods, OpenScience, Volume 10 (2016), 21494

[33] Aker Offshore Partner A. S. Target Levels for Reliability-based Assessment of Offshore Structures During Design and Operation, Health & Safety Executive, Norway, 1999 (ISBN 0 7176 2303 3)

[34] T. Peng et al. Fatigue damage diagnosis and prognosis using bayesian updating, Structures, Structural Dynamics, and Materials and Co-located Conferences, Boston, Massachusetts, Volume 6 (2013), p. 1652

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Fast computation of critical planes for fatigue life analysis of metals

Bastien Agard; Landry Giraud; Françoise Fauvin; ...

C. R. Méca (2022)


Comparative study of fatigue assessment of defective material based on affected depth

Marwa Youssef; Anouar Nasr

C. R. Méca (2022)


Data-driven modeling and learning in science and engineering

Francisco J. Montáns; Francisco Chinesta; Rafael Gómez-Bombarelli; ...

C. R. Méca (2019)