Comptes Rendus
Articles spontanés
Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves
Comptes Rendus. Mécanique, Volume 351 (2023), pp. 151-170.

In this study, structure – property relationships (SPR) have been investigated using machine learning methods (ML). The research objective was to create a ML model that can predict the stress – strain response of materials at different temperatures from a given microstructure with industrially acceptable accuracy and high computational efficiency. Automated microstructure generation techniques and numerical simulations were developed to create a dataset for the ML model. Two – phase 3D representative volume elements (RVEs) were analyzed using finite element analysis (FEA) to obtain the stress – strain responses of the RVEs. The phase arrangement of the RVEs, the temperature, and the stress – strain responses were used to train the ML model. The microstructure arrangement and the temperature – dependent mechanical properties of each phase were known parameters, while the output parameter was the stress – strain response of the two – phase RVE. The ML model has shown excellent prediction accuracy in the temperature range from 20 °C to 250 °C. In addition, the model showed very high computational efficiency compared to FEA, allowing much faster prediction of the stress – strain curves at specific temperatures.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.185
Mots clés : deep learning, temperature dependent stress – strain curves, structure – property relationships, finite element analysis, machine learning
Filip Nikolić 1, 2 ; Marko Čanađija 1

1 University of Rijeka, Faculty of Engineering, Department of Engineering Mechanics, Vukovarska 58, 51000 Rijeka, Croatia
2 Elaphe Propulsion Technologies Ltd, CAE Department, Litostrojska 44c, 1000 Ljubljana, Slovenia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2023__351_G1_151_0,
     author = {Filip Nikoli\'c and Marko \v{C}ana{\dj}ija},
     title = {Deep {Learning} of {Temperature} {\textendash} {Dependent} {Stress} {\textendash} {Strain} {Hardening} {Curves}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {151--170},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     year = {2023},
     doi = {10.5802/crmeca.185},
     language = {en},
}
TY  - JOUR
AU  - Filip Nikolić
AU  - Marko Čanađija
TI  - Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 151
EP  - 170
VL  - 351
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.185
LA  - en
ID  - CRMECA_2023__351_G1_151_0
ER  - 
%0 Journal Article
%A Filip Nikolić
%A Marko Čanađija
%T Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves
%J Comptes Rendus. Mécanique
%D 2023
%P 151-170
%V 351
%I Académie des sciences, Paris
%R 10.5802/crmeca.185
%G en
%F CRMECA_2023__351_G1_151_0
Filip Nikolić; Marko Čanađija. Deep Learning of Temperature – Dependent Stress – Strain Hardening Curves. Comptes Rendus. Mécanique, Volume 351 (2023), pp. 151-170. doi : 10.5802/crmeca.185. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.185/

[1] Xiang Li; Zhanli Liu; Shaoging Cui; Chengcheng Luo; Chengfeng Li; Zhuo Zhuang Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning, Comput. Methods Appl. Mech. Eng., Volume 347 (2019), pp. 735-753 | DOI | MR | Zbl

[2] Jaimyun Jung; Jae Ik Yoon; Hyung Keun Park; Jin You Kim; Hyoung Seop Kim An efficient machine learning approach to establish structure-property linkages, Comput. Mater. Sci., Volume 156 (2019), pp. 17-25 | DOI

[3] Huiran Zhang; Zhiting Guo; Hongqing Hu; Gaofeng Zhou; Qing Liu; Yan Xu; Quan Qian; Dongbo Dai A novel structure-property relationship model based on machine learning, Model. Simul. Mat. Sci. Eng., Volume 28 (2020) no. 3, 035002 | DOI

[4] Marat I. Latypov; Surya R. Kalidindi Data-driven reduced order models for effective yield strength and partitioning of strain in multiphase materials, J. Comput. Phys., Volume 346 (2017), pp. 242-261 | DOI | MR

[5] Zijiang Yang; Yuksel C. Yabansu; Reda Al-Bahrani; Wei-keng Liao; Alok N. Choudhary; Surya R. Kalidindi; Ankit Agrawal Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets, Comput. Mater. Sci., Volume 151 (2018), pp. 278-287 | DOI

[6] Ahmet Cecen; Hanjun Dai; Yuksel C. Yabansu; Surya R. Kalidindi; Le Song Material structure-property linkages using three-dimensional convolutional neural networks, Acta Mater., Volume 146 (2018), pp. 76-84 | DOI

[7] Yixing Wang; Min Zhang; Angi Lin; Akshay Iyer; Aditya S. Prasad; Xiaolin Li; Yichi Zhang; Linda S. Schadler; Wei Chen; L. Catherine Brinson Mining structure–property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks, Mol. Syst. Des. Eng., Volume 5 (2020) no. 5, pp. 962-975 | DOI

[8] Zeliang Liu; C. Wu; M. Koishi Transfer learning of deep material network for seamless structure–property predictions, Comput. Mech., Volume 64 (2019) no. 2, pp. 451-465 | DOI | MR | Zbl

[9] Shravan Kotha; Deniz Ozturk; Somnath Ghosh Parametrically homogenized constitutive models (PHCMs) from micromechanical crystal plasticity FE simulations, part I: Sensitivity analysis and parameter identification for Titanium alloys, Int. J. Plast., Volume 120 (2019), pp. 296-319 | DOI

[10] Ari Frankel; Cosmin Safta; Coleman Alleman; Reese Jones Mesh-based graph convolutional neural network models of processes with complex initial states (2021) (https://arxiv.org/abs/2107.00090)

[11] Charles Yang; Youngsoo Kim; Seunghwa Ryu; Grace X. Gu Prediction of composite microstructure stress-strain curves using convolutional neural networks, Mater. Des., Volume 189 (2020), 108509 | DOI

[12] Kejie Jiang; Qiang Han; Yulei Bai; Xiuli Du Data-driven ultimate conditions prediction and stress-strain model for FRP-confined concrete, Compos. Struct., Volume 242 (2020), 112094 | DOI

[13] Jici Wen; Qingrong Zou; Yujie Wei Physics-driven machine learning model on temperature and time-dependent deformation in lithium metal and its finite element implementation, J. Mech. Phys. Solids, Volume 153 (2021), 104481 | DOI

[14] Daniele Versino; Alberto Tonda; Curt A. Bronkhorst Data driven modeling of plastic deformation, Comput. Methods Appl. Mech. Eng., Volume 318 (2017), pp. 981-1004 | DOI | Zbl

[15] Gabriel Kronberger; Evgeniya Kabliman; Johannes Kronsteiner; Michael Kommenda Extending a physics-based constitutive model using genetic programming, Applications in Engineering Science, Volume 9 (2022), 100080 | DOI

[16] Christian Gebhardt; Torsten Trimborn; Felix Weber; Alexander Bezold; Christoph Broeckmann; Michael Herty Simplified ResNet approach for data driven prediction of microstructure-fatigue relationship, Mech. Mater., Volume 151 (2020), 103625 | DOI

[17] Brendan P. Croom; Michael Berkson; Robert K. Mueller; Michael Presley; Steven Storck Deep learning prediction of stress fields in additively manufactured metals with intricate defect networks, Mech. Mater., Volume 165 (2022), 104191 | DOI

[18] Anindya Bhaduri; Ashwini Gupta; Lori Graham-Brady Stress field prediction in fiber-reinforced composite materials using a deep learning approach, Compos. B. Eng., Volume 238 (2022), 109879 | DOI

[19] Cameron McElfresh; Collin Roberts; Sicon He; Sergey Prikhodko; Jaime Marian Using machine-learning to understand complex microstructural effects on the mechanical behavior of Ti-6Al-4V alloys, Comput. Mater. Sci., Volume 208 (2022), 111267 | DOI

[20] Carl Herriott; Ashley D. Spear Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine- and deep-learning methods, Comput. Mater. Sci., Volume 175 (2020), 109599 | DOI

[21] Chenping Rao; Yang Liu Three-dimensional convolutional neural network (3D-CNN) for heterogeneous material homogenization, Comput. Mater. Sci., Volume 184 (2020), 109850 | DOI

[22] Diab W. Abueidda; Mohammad Almasri; Rami Ammourah; Umberto Ravaioli; Iwona M. Jasiuk; Nahil A. Sobh Prediction and optimization of mechanical properties of composites using convolutional neural networks, Compos. Struct., Volume 227 (2019), 111264 | DOI

[23] Sang Ye; Bo Li; Qunyang Li; Hong-Ping Zhao; Xi-Qiao Feng Deep neural network method for predicting the mechanical properties of composites, Appl. Phys. Lett., Volume 115 (2019) no. 16, 161901 | DOI

[24] Alex D. Casey; Steven F. Son; Ilias Bilionis; Brian C. Barnes Prediction of Energetic Material Properties from Electronic Structure Using 3D Convolutional Neural Networks, J. Chem. Inf. Model., Volume 60 (2020) no. 10, pp. 4457-4473 | DOI

[25] Michael A. Groeber; Michael A. Jackson DREAM.3D: a digital representation environment for the analysis of microstructure in 3D, Integr. Mater. Manuf. Innov., Volume 3 (2014) no. 1, pp. 56-72 | DOI

[26] S. Balasivanandha Prabu; L. Karunamoorthy Microstructure-based finite element analysis of failure prediction in particle-reinforced metal-matrix composite, J. Mater. Process. Technol., Volume 207 (2008) no. 1-3, pp. 53-62 | DOI

[27] A. B. Phillion; S. L. Cockcroft; P. D. Lee Predicting the constitutive behavior of semi-solids via a direct finite element simulation: application to AA5182, Model. Simul. Mat. Sci. Eng., Volume 17 (2009) no. 5, 055011 | DOI

[28] K. Kim; B. Forest; J. Geringer Two-dimensional finite element simulation of fracture and fatigue behaviours of alumina microstructures for hip prosthesis, Proc. Inst. Mech. Eng. H., Volume 225 (2011) no. 12, pp. 1158-1168 | DOI

[29] S. Patel; R. Vaish; N. Sinha; C. R. Bowen Finite element analysis of the microstructure of AlN-TiN composites, Strain, Volume 50 (2014) no. 3, pp. 250-261 | DOI

[30] Steve Kench; Samuel J. Cooper Generating three-dimensional structures from a two-dimensional slice with generative adversarial network-based dimensionality expansion, Nat. Mach. Intell., Volume 3 (2021) no. 4, pp. 299-305 | DOI

[31] Ghayath Al Kassem Micromechanical material models for polymer composites through advanced numerical simulation techniques, Ph. D. Thesis, RWTH Aachen University, Aachen, Germany (2010)

[32] V. G. Kouznetsova; M. G. D. Geers; W. A. M. Brekelmans Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, Int. J. Numer. Methods Eng., Volume 54 (2002) no. 8, pp. 1235-1260 | DOI | Zbl

[33] M. G. D. Geers; V. G. Kouznetsova; W. A. M. Brekelmans Multi-scale computational homogenization: Trends and challenges, J. Comput. Appl. Math., Volume 234 (2010) no. 7, pp. 2175-2182 | DOI | Zbl

[34] Michael Smith ABAQUS/Standard User’s Manual, Version 6.9, 2009

[35] Jing Wei; Xuan Chu; Xiang-Yu Sun; Kun Xu; Hui-Xiong Deng; Jigen Chen; Zhongming Wei; Ming Lei Machine learning in materials science, InfoMat, Volume 1 (2019) no. 3, pp. 338-358 | DOI

[36] Carl Herriott; Ashley D. Spear Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine-and deep-learning methods, Comput. Mater. Sci., Volume 175 (2020), 109599 | DOI

[37] Marco Ragone; Vitaliy Yurkiv; Boao Song; Ajaykrishna Ramsubramanian; Reza Shahbazian-Yassar; Farzad Mashayek Atomic column heights detection in metallic nanoparticles using deep convolutional learning, Comput. Mater. Sci., Volume 180 (2020), 109722 | DOI

[38] Asif Khan; Dae-Kwan Ko; Soo Chul Lim; Heung Soo Kim Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network, Compos. B. Eng., Volume 161 (2019), pp. 586-594 | DOI

[39] Seyed M. Azimi; Dominik Britz; Michael Engstler; Mario Fritz; Frank Mücklich Advanced steel microstructural classification by deep learning methods, Sci. Rep., Volume 8 (2018) no. 1, 2128 | DOI

[40] Xialin Li; Yichi Zhang; He Zhao; Craig Burkhart; L. Catherine Brinson; Wei Chen A transfer learning approach for microstructure reconstruction and structure-property predictions, Sci. Rep., Volume 8 (2018) no. 1, 13461 | DOI

[41] Brian L. DeCost; Bo Lei; Toby Francis; Elisabeth A. Holm High Throughput Quantitative Metallography for Complex Microstructures Using Deep Learning: A Case Study in Ultrahigh Carbon Steel, Microsc. Microanal., Volume 25 (2019) no. 1, pp. 21-29 | DOI

[42] Max K. Ferguson; Ak Ronay; Yung-Tsun T. Lee; Kincho H. Law Detection and segmentation of manufacturing defects with convolutional neural networks and transfer learning, Smart Sustain Manuf Syst., Volume 2 (2018) | DOI

[43] Mahindra Rautela; Armin Huber; J. Senthilnath; S. Gopalakrishnan Inverse characterization of composites using guided waves and convolutional neural networks with dual-branch feature fusion, Mech. Adv. Mater. Struct. (2021) | DOI

[44] Shirin Javadi; Ali Maghami; Seyed M. Hosseini A deep learning approach based on a data-driven tool for classification and prediction of thermoelastic waves band structures for phononic crystals, Mech. Adv. Mater. Struct., Volume 29 (2021) no. 27, pp. 6612-6625 | DOI

[45] Filip Nikolić; Ivan Štajduhar; Marko Čanađija Casting Microstructure Inspection Using Computer Vision: Dendrite Spacing in Aluminum Alloys, Metals, Volume 11 (2021) no. 5, p. 756 | DOI

[46] Filip Nikolić; Ivan Štajduhar; Marko Čanađija Casting Defects Detection in Aluminum Alloys Using Deep Learning: a Classification Approach, Inter. Metalcast. (2022) | DOI

[47] Ganapathi Ammasai Sengodan Prediction of two-phase composite microstructure properties through deep learning of reduced dimensional structure-response data, Compos. B. Eng., Volume 225 (2021), 109282 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Establishment of strain gradient constitutive relations by homogenization

Jia Li

C. R. Méca (2011)


Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping

Simona Cocco; John F. Marko; Rémi Monasson

C. R. Phys (2002)


On the use of an high order perturbation method for numerical time integration in structural dynamics.

Bertille Claude; Grégory Girault; Bruno Leblé; ...

C. R. Méca (2023)