Comptes Rendus
Evolution of CFD as an engineering science. A personal perspective with emphasis on the finite volume method
Comptes Rendus. Mécanique, More than a half century of Computational Fluid Dynamics, Volume 350 (2022) no. S1, pp. 233-258.

Computational Fluid Dynamics—CFD for short—is a comparatively recent development that has made a significant impact in engineering sciences. The foundations of CFD were laid by developments in physics, numerical analysis and matrix theory over the last 200 years or so. It was, however, the electronic computer in the middle of the 20th century that led to its birth and its widespread use. It has now become an invaluable tool for almost every sphere of human activity. A number of researchers contributed to the tools and technology that came to be called CFD but the prime movers were two brilliant scientists—one at Los Alamos National Laboratory and the other at Imperial College, London. The author was a part of the Imperial College group and this is a personal perspective on the evolution of CFD.

Over the last few decades, CFD has made a significant impact in a wide spectrum of engineering and environmental sectors. These include both traditional disciplines such as aerospace, automotive, mechanical and thermal sciences, and newer disciplines and emerging fields of human and social relevance such as biomedical, sports, entertainment, food processing, fire safety, HVAC and energy efficiency. However, a number of challenges remain. For many important applications, we lack both the physics and the mathematical tools to adequately understand the behavior of fluids. The current generation of CFD tools are resource intensive and difficult to use that require a long period of training. Most importantly, except for a very limited set of applications, one cannot rely on the predictions with a high level of confidence.

Computational Fluid Dynamics is now poised on the threshold of a revolution. Recent developments in machine learning, AI, computer hardware, big data, IOT and Virtual Reality tools will lead to design tools with CFD engines that are robust, reliable and easily accessible to a practicing engineer rather than be the domain of a CFD expert. CFD will be a tool that is ubiquitous by its absence—buried inside devices and applications into diverse areas of human activity. This would make it possible for a practicing engineer to effectively visualize a fluid system, interact with its components, conduct CFD simulation, and control its behaviour through dynamic intervention.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.240
Keywords: CFD, Finite volume methods, Machine learning, PINN, AI

Akshai Kumar Runchal 1

1 Analytic & Computational Research, Inc., 1931 Stradella Road, Los Ángeles, CA 90077, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_233_0,
     author = {Akshai Kumar Runchal},
     title = {Evolution of {CFD} as an engineering science. {A~personal} perspective with emphasis on the finite volume method},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {233--258},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     number = {S1},
     year = {2022},
     doi = {10.5802/crmeca.240},
     language = {en},
}
TY  - JOUR
AU  - Akshai Kumar Runchal
TI  - Evolution of CFD as an engineering science. A personal perspective with emphasis on the finite volume method
JO  - Comptes Rendus. Mécanique
PY  - 2022
SP  - 233
EP  - 258
VL  - 350
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.240
LA  - en
ID  - CRMECA_2022__350_S1_233_0
ER  - 
%0 Journal Article
%A Akshai Kumar Runchal
%T Evolution of CFD as an engineering science. A personal perspective with emphasis on the finite volume method
%J Comptes Rendus. Mécanique
%D 2022
%P 233-258
%V 350
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.240
%G en
%F CRMECA_2022__350_S1_233_0
Akshai Kumar Runchal. Evolution of CFD as an engineering science. A personal perspective with emphasis on the finite volume method. Comptes Rendus. Mécanique, More than a half century of Computational Fluid Dynamics, Volume 350 (2022) no. S1, pp. 233-258. doi : 10.5802/crmeca.240. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.240/

[1] L. Euler Principes généraux du mouvement des fluides (The General Principles of the Movement of Fluids), Mém. Acad. Sci. Berlin, Volume 11 (1757), pp. 274-315

[2] C.-L. Navier Mémoire sur les lois du mouvement des fluides, lu à l’Académie royale des Sciences le 18 mars dans Mémoires de l’Académie des sciences de l’Institut de France - Année 1823, Gauthier-Villars, Paris, 1822, pp. 389-440

[3] G. G. Stokes On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids, Trans. Cambridge Philos. Soc., Volume 8 (1845), pp. 287-319

[4] Clay Institute Millennium prize problems—Navier–Stokes equation, 2017 https://www.claymath.org (Clay Mathematics Institute, retrieved 2017-04-02)

[5] G. G. Stokes On the effect of internal friction of fluids on the motion of pendulums, Trans. Cambridge Philos. Soc., Part II, Volume 9 (1851), pp. 8-106

[6] L. Prandtl Motion of fluid with very little viscosity, Proceedings of the 3rd International Mathematicians Congress, Heidelburg, also, NACA TM 452, 1904

[7] K. Pohlhausen Zur näherungsweisen Integration der Differentialgleichung der Laminaren Grenzschicht, Z. Angew. Math. Mech., Volume I (1921), pp. 208-252

[8] B. Taylor Methodus Incrementorum Directa & Inversa, Gulielmi Innys, London, 1715, 108 pages

[9] D. E. Smith Book review: Briefwechsel zwischen carl friedrich gauss und christian ludwig gerling, by Clemens Schaeffer, Eisner - Berlin (1927), Bull. Am. Math. Soc., Volume 34 (1928), pp. 665-666 | DOI

[10] W. R. Hamilton Introductory Lecture on Astronomy Dublin University Review and Quarterly Magazine, I, Trinity College, Dublin, 1833

[11] A.-L. Cauchy Leçons sur le calcul différentiel, De Bure frères, Paris, 1929

[12] A. Amritkar; E. de Sturler; K. Świrydowicz; D. Tafti; K. Ahuja Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver, J. Comput. Phys., Volume 303 (2015), pp. 222-237 | DOI | MR | Zbl

[13] C. G. J. Jacobi Ueber eine neue Aufl ösungsart der bei der Methode der kleinsten Quadrate vorkommende linearen Gleichungen, Astronom. Nachrichten, Volume 22 (1845) no. 20, pp. 297-306 | DOI

[14] L. Seidel “Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive Annäherung aufzulösen” [On a process for solving by successive approximation the equations to which the method of least squares leads as well as linear equations generally], Abh. Math.-Phys. Kl., K. Bayer. Akad. Wiss., Volume 11 (1874) no. 3, pp. 81-108 (in German) | Zbl

[15] R. S. Varga Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962

[16] W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik, J. Für Die Reine Und Angew. Math., Volume 135 (1909) no. 1909, pp. 1-61 | MR | Zbl

[17] A. W. Leissa The historical bases of the Rayleigh and Ritz methods, J. Sound Vib., Volume 287 (2005) no. 4–5, pp. 961-978 | DOI

[18] L. F. Richardson The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses to a masonry dam, Phil. Trans. R. Soc. Lond. A, Volume 210 (1910) no. 1910, pp. 307-357 | Zbl

[19] B. G. Galerkin Rods and plates, series occurring in various questions concerning the elastic equilibrium of rods and plates, Vestnik Inzhenerov i Tekhnikov (Engineers and Technologists Bulletin), Volume 19 (1915), pp. 897-908 (in Russian), (English Translation: 63-18925, Clearinghouse Fed. Sci. Tech. Info.1963)

[20] H. Liebmann Die angenäherte harmonischer Funktionen und konformer Abbildungen (nach Ideen von Boltzmann und Jacobi), S. B. Math. Nat. Kl. Bayerischen Akad. Wiss. München (1918), pp. 385-416 | Zbl

[21] A. N. Krylov O chislennom reshenii uravnenija, kotorym v tehnicheskih voprosah opredeljajutsja chastoty malyh kolebanij material’nyh sistem [On the numerical solution of equation by which are determined in technical problems the frequencies of small vibrations of material systems], Izv. Akad. Nauk SSSR, Volume 7 (1931) no. 4, pp. 491-539 (in Russian)

[22] R. V. Southwell Stress calculation in frameworks by the method of systematic relaxation of constraints, Proc. R. Soc. Lond. A, Volume 151 (1935), pp. 56-95 | DOI | Zbl

[23] D. M. Young Iterative methods for solving partial difference equations of elliptical type (PDF), PhD thesis, Harvard University (1950)

[24] G. E. Forsythe Solving linear algebraic equations can be interesting, Bull. Am. Math. Soc., Volume 59 (1953), pp. 299-329 | DOI | MR | Zbl

[25] Y. Saad Contemporary Mathematics, 754, American Mathematical Society, 2020 | DOI

[26] L. F. Richardson Weather Prediction by Numerical Process, University College, Dublin, 1922 (Also ISBN: 9780521680448, 0521680441, Cambridge University Press, 2007)

[27] A. Thom An investigation of fluid flow in two dimensions, R & M No. 1194, 1928 (Aerospace Research Council, United Kingdom)

[28] A. Thom The flow past circular cylinders at low speeds, Proc. R. Soc. Lond. A, Volume 141 (1933), pp. 651-669 | Zbl

[29] R. V. Southwell Relaxation Methods in Theoretical Physics, Oxford University Press, Oxford, 1946

[30] M. Kawaguti Numerical solution of the Navier–Stokes equations for the flow around a circular cylinder at Reynolds number 40, J. Phys. Soc. Japan, Volume 8 (1953) no. 6, pp. 747-757 | DOI | MR

[31] M. Kawaguti Numerical solution of the Navier–Stokes equation for the flow in a two-dimensional cavity, J. Phys. Soc. Japan, Volume 16 (1961) no. 11, pp. 2307-2315 | DOI | MR | Zbl

[32] D. N. De G. Allen; R. V. Southwell Relaxation methods applied to determine the motion in two-dimensions of a viscous fluid past a fixed cylinder, Q. J. Mech. Appl. Math., Volume 8 (1955) no. 2, pp. 129-145 | DOI | MR | Zbl

[33] A. Thom; C. J. Apelt Field Computations in Engineering and Physics, D. van Nostrand Co., London, 1961

[34] L. M. Simuni The numerical solution of some problems in the flow of a viscous fluid, Inzh. Zhou., i, Volume 3 (1964), pp. 446-450 (In Russian) (NLL Translation, RTS 3634)

[35] R. Courant; E. Isaacson; M. Rees On the solution of nonlinear hyperbolic differential equations by finite differences, Commun. Pure Appl. Math., Volume 5 (1952) no. 3, pp. 243-255 | DOI | MR | Zbl

[36] A. A. Dorodnitsyn A contribution to the solution of mixed problems of transonic aerodynamics, Advances in Aeronautical Sciences, Volume 2, Pergamon Press, New York, 1959 | DOI | Zbl

[37] S. K. Godunov Finite difference method for computation of discontinuous solutions, Math. Sbornik, Volume 47 (1959), pp. 271-306 (in Russian) | Zbl

[38] S. M. Gilinskii; G. F. Telenin; G. P. Tinyakov A method for computing supersonic flow around blunt bodies, Izv. Adad. Nauk, SSSR Rekh. Mash., Volume 4 (1964), p. 9 (Also NASA TT F297)

[39] V. V. Rusanov A three-dimensional supersonic gas flow past smooth blunt bodies, Proceedings of the 11th International Congress of Applied Mechanics (H. Gortler, ed.), Springer, Berlin, 1966 | Zbl

[40] N. N. Yanenko Fractional Step Method for Solution of Multidimensional Problems in Mathematical Physics, Nauka, Novosibirsk, 1967

[41] O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Phil. Trans. R. Soc. Lond., Volume 186 (1895), pp. 123-164 | Zbl

[42] F. H. Harlow Hydrodynamics problem involving large fluid distortions, J. Assoc. Compos. Mach., Volume 4 (1957), pp. 137-142 | DOI

[43] T. Von Kármán Uber laminare und turbulente Reibung, Z. Angew. Math. Mech., Volume 1 (1921), pp. 233-252 | DOI | Zbl

[44] G. N. Kruzhilin A theory of heat transfer for a circular cylinder in cross flow, Zh. Tekh. Fizik., Volume 6 (1936) no. 5, pp. 858-865

[45] E. R. G. Eckert Introduction to the Transfer of Heat and Mass, McGraw-Hill, New York and Londonv, 1950

[46] D. B. Spalding Convective Mass Transfer - An Introduction, McGraw Hill, New York, 1963

[47] D. B. Spalding Contribution to the theory of heat transfer across a turbulent boundary layer, Int. J. Heat Mass Transf., Volume 7 (1964) no. 7, pp. 743-761 | DOI

[48] F. P. Ricou; D. B. Spalding Measurements of entrainment by axisymmetrical turbulent jets, J. Fluid Mech., Volume 11 (1961) no. 1, pp. 21-32 | DOI | Zbl

[49] C. L. V. Jayatillaka The influence of Prandtl number and surface roughness on the resistance of the laminar sub-layer to momentum and heat transfer (1966) no. TWF (Technical report)

[50] M. P. Escudier; W. B. Nicoll The entrainment function in turbulent boundary-layer and wall-jet calculations, J. Fluid Mech., Volume 25 (1966) no. 2, pp. 337-366 | DOI

[51] M. P. Escudier The turbulent incompressible hydrodynamic boundary layer, PhD thesis, Imperial College, London University, UK (1967)

[52] H. Z. Barakat; J. A. Clark Transient natural convection in flows in closed containers (1965) no. #2 (Technical report)

[53] O. R. Burggraf Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., Volume 24 (1966) no. 1, pp. 113-151 | DOI

[54] A. J. Chorin The numerical solution of the Navier–Stokes equations for an incompressible fluid, Bull. Am. Math. Soc., Volume 73 (1967) no. 6, pp. 928-931 | DOI | MR | Zbl

[55] S. V. Patankar; D. B. Spalding A calculation procedure for heat transfer by forced convection through two-dimensional uniform-property turbulent boundary layers on smooth impermeable walls, Proceedings 3rd International Heat Transfer Conference, Chicago, Volume 2, 1966, pp. 50-63 | Zbl

[56] A. K. Runchal; M. Wolfshtein Numerical integration procedure for the steady state Navier–Stokes equations, J. Mech. Eng. Sci., Volume 11 (1969) no. 5, pp. 445-453 | DOI | Zbl

[57] S. V. Patankar; D. B. Spalding Heat and Mass Transfer in Boundary Layers, Morgan-Grampian, London, 1967

[58] A. K. Runchal Transport processes in steady two-dimensional separated flows, PhD thesis, Imperial College of Science and Technology, London, UK (1969)

[59] A. K. Runchal; D. B. Spalding; M. Wolfshtein The numerical solution of the elliptic equations for the transport of vorticity, heat and matter in two dimensional flows, SF/TN/2, 1967 (Imperial College, Mechanical Engineering Department)

[60] A. K. Runchal; D. B. Spalding; M. Wolfshtein Numerical solution of the elliptic equations for transport of vorticity, heat and matter in two-dimensional flow, Phys. Fluids, Volume 12 (1969) no. Suppl. II, pp. 21-28 | DOI | Zbl

[61] A. D. Gosman; W. M. Pun; A. K. Runchal; D. B. Spalding; M. Wolfshtein Heat and Mass Transfer in Recirculating Flows, Academic Press, London, 1969

[62] S. V. Patankar; D. B. Spalding A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf., Volume 15 (1972), pp. 1787-1806 | DOI | Zbl

[63] D. Kwak; C. Kiris; C. S. Kim Computational challenges of viscous incompressible flows, Comput. Fluids, Volume 34 (2005) no. 3, pp. 283-299 | DOI | Zbl

[64] H. Wang; H. Wang; F. Gao; P. Zhou; Z. J. Zhai Literature review on pressure–velocity decoupling algorithms applied to built-environment CFD simulation, Build. Environ., Volume 143 (2018), pp. 671-678 | DOI

[65] 100 Volumes of ‘Notes on Numerical Fluid Mechanics’ 40 Years of Numerical Fluid Mechanics and Aerodynamics in Retrospect (E. H. Hirschel; E. Krause, eds.), Springer, Berlin, Heidelberg, 2009 | DOI | Zbl

[66] B. van Leer; K. G. Powell Introduction to computational fluid dynamics, Encyclopedia of Aerospace Engineering, John Wiley & Sons, Inc., Hoboken, NJ, 2010 | DOI

[67] A. Rizzi; J. M. Luckring Historical development and use of CFD for separated flow simulations relevant to military aircraft, Aerosp. Sci. Technol., Volume 117 (2021), 106940 | DOI

[68] O. C. Zienkiewicz; A. K. Bahrani; P. L. Arlett Solution of three-dimensional field problems by the finite element method, The Engineer, Volume 27 (1967)

[69] O. C. Zienkiewicz Constrained variational principles and penalty function methods in finite element analysis, Conference on the Numerical Solution of Differential Equations, Springer, Berlin, Heidelberg, 1974, pp. 207-214 | DOI | Zbl

[70] L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz, Z. Angew. Math. Mech., Volume 5 (1925) no. 1, pp. 136-139 | DOI | Zbl

[71] P. Y. Chou On the velocity correlations and the solution of equations of turbulence fluctuations, Q. Appl. Math., Volume 3 (1945), pp. 38-54 | DOI | Zbl

[72] L. Prandtl Über ein neues Formelsystem für die ausgebildete Turbulenz, Nachrichten der Akademie der Wissenschaften, Göttingen, Math. Phys Kl., Volume 6 (1945)

[73] J. C. Rotta Statistische theorie Nichthomogener turbulenz, Z. Phys., Volume 129 (1951), pp. 547-572 (131, p. 51-77 [Translated into English by W. Rodi as Imperial College Mech. Eng. Dept. Tech. Notes TWF/TN/38 and TWF/TN/39]) | DOI | MR | Zbl

[74] B. I. Davidov On the statistical dynamics of an incompressible turbulent fluid, Dokl. Akad. Nauk SSSR, Volume 136 (1961) no. 1, pp. 47-50 | Zbl

[75] F. H. Harlow; P. I. Nakayama Transport of turbulence energy decay rate. LA-3854, 1968 (Los Alamos Scientific Laboratory, University of California)

[76] B. E. Launder; D. B. Spalding Mathematical Models of Turbulence, Academic Press, London, 1972

[77] P. G. Saffman Development of a complete model for the calculation of turbulent shear flows, Symposium on Turbulence and Dynamical Systems, Duke University, Durham, NC, 1976 | Zbl

[78] D. C. Wilcox Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, CA-91011, 2006

[79] M. Kadivar; D. Tormey; G. McGranaghan A comparison of RANS Models used for CFD prediction of turbulent flow and heat transfer in rough and smooth channels, Int. J. Thermofluids, Volume 20 (2023), 100399 (ISSN 2666-2027) | DOI

[80] J.-P. Bonnet Experimental and computational fluid dynamics: decades of turbulent EFD/CFD complementarity, C. R. Méc., Volume 350 (2022) no. S1, pp. 1-14 (online first) | DOI

[81] C. Cambon; A. A. Laguna; Y. Zhou CFD for turbulence from fundamentals to geophysics and astrophysics, C. R. Méc., Volume 350 (2022) no. S1, pp. 1-20 (online first) | DOI

[82] R. Schiestel; B. Chaouat Turbulence modeling and simulation advances in CFD during the past 50 years, C. R. Méc., Volume 350 (2022) no. S1, pp. 1-29 (online first) | DOI

[83] M. Visonneau; G. Deng; E. Guilmineau; A. Leroyer; P. Queutey; J. Wackers Computational fluid dynamics for naval hydrodynamics, C. R. Méc., Volume 350 (2022) no. S1, pp. 1-19 (online first) | DOI

[84] R. Li; Z. Li; R. Wang Performance comparison of RANS and DES turbulence models for simulating transonic turbulent boundary layer flows, Int. J. Heat Mass Transf., Volume 169 (2021), 120891

[85] C. Ye; F. Wang; C. Wang; B. P. van Esch Assessment of turbulence models for the boundary layer transition flow simulation around a hydrofoil, Ocean Eng., Volume 217 (2020), 108124

[86] S. N. A. Yusuf; Y. Asako; N. A. C. Sidik; S. B. Mohamed; W. M. A. A. Japar A short review on rans turbulence models, CFD Lett., Volume 12 (2020) no. 11, pp. 83-96

[87] K. Duraisamy; G. Iaccarino; H. Xiao Turbulence modeling in the age of data, Annu. Rev. Fluid Mech., Volume 51 (2019), pp. 357-377 | DOI | Zbl

[88] P. A. Durbin Some recent developments in turbulence closure modeling, Annu. Rev. Fluid Mech., Volume 50 (2018), pp. 77-103 | DOI | Zbl

[89] C. D. Argyropoulos; N. C. Markatos Recent advances on the numerical modelling of turbulent flows, Appl. Math. Model., Volume 39 (2015) no. 2, pp. 693-732 | DOI | MR | Zbl

[90] R. Schiestel Modeling and Simulation of Turbulent Flows, ISTE, London, 2010 (and John Wiley & Sons, Hoboken, NJ)

[91] J. E. Jaramillo; C. D. Pérez-Segarra; A. Oliva; K. Claramunt Analysis of different RANS models applied to turbulent forced convection, Int. J. Heat Mass Transf., Volume 50 (2007) no. 19–20, pp. 3749-3766 | DOI | Zbl

[92] P. J. Roache Computational Fluid Dynamics, Hermosa Publishers, Socorro, NM, 1972

[93] IMARC Group Computational fluid dynamics market: global industry trends, share, size, growth, opportunity and forecast 2019–2024, 2019 https://www.prnewswire.com/news-releases/the-global-computational-fluid-dynamics-market-2019-2024-industry-trends-share-size-growth-opportunities--forecasts-300877835.html

[94] J. Smagorinsky General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev., Volume 91 (1963) no. 3, pp. 99-164 | DOI

[95] P. Lynch Emergence of Numerical Weather Prediction—Richardson’s Dream, Cambridge University Press, Cambridge, 2006 (ISBN: 978-1-107-41483-9)

[96] P. N. Edwards History of Climate Modeling. WIREs Climate Change, 2, John Wiley & Sons, Hoboken, NJ, 2011, pp. 128-139 | DOI

[97] Z. Pu; E. Kalnay Numerical weather prediction basics: models, numerical methods, and data assimilation, Handbook of Hydrometeorological Ensemble Forecasting (Q. Duan; F. Pappenberger; J. Thielen; A. Wood; H. Cloke; J. Schaake, eds.), Springer, Berlin, Heidelberg, 2018 | DOI

[98] P. J. Richards; R. P. Hoxey Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model, J. Wind Eng. Indust. Aerodynam., Volume 46 (1993), pp. 145-153 | DOI

[99] K. W. Ayotte Computational modelling for wind energy assessment, J. Wind Eng. Indust. Aerodyn., Volume 96 (2008) no. 10–11, pp. 1571-1590 | DOI

[100] J. Sumner; C. Sibuet Watters; C. Masson CFD in wind energy: the virtual, multiscale wind tunnel, Energies, Volume 3 (2010) no. 5, pp. 989-1013 | DOI

[101] T. Yamada; K. Koike Downscaling mesoscale meteorological models for computational wind engineering applications, J. Wind Eng. Indust. Aerodynam., Volume 99 (2011) no. 4, pp. 199-216 | DOI

[102] L. J. Vermeer; J. N. Sørensen; A. Crespo Wind turbine wake aerodynamics, Progr. Aerosp. Sci., Volume 39 (2003) no. 6–7, pp. 467-510 | DOI

[103] B. Sanderse; S. P. Van der Pijl; B. Koren Review of computational fluid dynamics for wind turbine wake aerodynamics, Wind Energy, Volume 14 (2011) no. 7, pp. 799-819 | DOI | Zbl

[104] B. Blocken 50 years of computational wind engineering: past, present and future, J. Wind Eng. Indust. Aerodyn., Volume 129 (2014), pp. 69-102 | DOI

[105] R. Lange ADPIC - a three-dimensional computer code, 1973 (Lawrence Livermore Laboratory Report UCRL-51462)

[106] R. C. Joynt; D. R. Blackman A numerical model of pollutant transport, Atmos. Environ., Volume 10 (1976), pp. 433-442

[107] A. K. Runchal; A. W. Bealer; G. S. Segal A completely Lagrangian random-walk model for atmospheric dispersion, Atmospheric Pollution (M. M. Benarie, ed.), Elsevier, Amsterdam, 1978, pp. 137-142

[108] D. W. Pepper; R. E. Cooper Preliminary analysis of four numerical models for calculating the mesoscale transport of Kr-85, Atmos. Environ., Volume 17 (1983) no. 10, pp. 1881-1895 | DOI

[109] S. Di; R. Sabatino; B. Buccolieri; Pulvirenti; R. Britter Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models, Atmos. Environ., Volume 41 (2007) no. 37, pp. 8316-8329

[110] Y. Tominaga; A. Mochida; R. Yoshie; H. Kataoka; T. Nozu; M. Yoshikawa; T. Shirasawa AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Indust. Aerodynam., Volume 96 (2008) no. 10–11, pp. 1749-1761 | DOI

[111] D. W. Pepper; D. B. Carrington Modeling Indoor Air Pollution, Imperial College Press, London, 2009, 346 pages | DOI

[112] J. Franke; A. Hellsten; K. H. Schlunzen; B. Carissimo The COST 732 best practice guideline for CFD simulation of flows in the urban environment: a summary, Int. J. Environ. Pollut., Volume 44 (2011) no. 1–4, pp. 419-427 | DOI

[113] A. Leelossy; I. Lagzi; A. Kovács; R. Mészáros A review of numerical models to predict the atmospheric dispersion of radionuclides, J. Environ. Radioact., Volume 182 (2018), pp. 20-33 | DOI

[114] F. Toja-Silva; T. Kono; C. Peralta; O. Lopez-Garcia; J. Chen A review of computational fluid dynamics (CFD) simulations of the wind flow around buildings for urban wind energy exploitation, J. Wind Eng. Indust. Aerodynam., Volume 180 (2018), pp. 66-87 | DOI

[115] R. Kadaverugu; A. Sharma; C. Matli; R. Biniwale High resolution urban air quality modeling by coupling CFD and mesoscale models: a review, Asia. Pac. J. Atmos. Sci., Volume 55 (2019), pp. 539-556 (ISSN 1976-7951) | DOI

[116] R. M. Rotty Waste heat disposal from nuclear power plants, 1974 (NOAA Tech. Memorandum ERL ARL-47)

[117] S. S. Lee; S. Sengupta Editors: proceedings of the conference on waste heat management and utilization, 1976 (NASA TM 74100 Vol. I to III)

[118] A. K. Runchal Mathematical modelling study of a large water body, Proceedings of the ASCE Symposium on Coastal Zone 1978, March 14–16, San Francisco, 1978, pp. 1897-1916

[119] L. Zhao; Z. Chen; K. Lee Modelling the dispersion of waste water discharges from offshore outfalls: a review, Environ. Rev., Volume 19 (2011), pp. 107-120 | DOI

[120] A. Mohammadian; H. K. Gildeh; I. Nistor CFD modeling of effluent discharges: a review of past numerical studies, Water, Volume 12 (2020), 856 | DOI

[121] A. Miller; B. Chang; R. Issa; G. Chen Review of computer-aided numerical simulation in wind energy, Renew. Sustain. Energy Rev., Volume 25 (2013), pp. 122-134 | DOI

[122] J. J. Leendertse A Water Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas: Vol I, Principles of Computation, RM-6230-RC, Rand Corporation, Santa Monica, California, 1970

[123] A. K. Runchal Numerical model for storm surge and tidal run-up studies, Proceedings ASCE Modelling 75: Symposium on Modelling Techniques, San Francisco, September 3–9, 1975, pp. 1516-1534

[124] N. Mori; T. Takahashi; T. Yasuda; H. Yanagisawa Survey of 2011 Tohoku earthquake tsunami inundation and run-up, Geophys. Res. Lett., Volume 38 (2011), L00G14 | DOI

[125] K. Goda; P. M. Mai; T. Yasuda; N. Mori Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake, Earth Planets Space, Volume 66 (2014) no. 1, pp. 1-20 | DOI

[126] S. Marras; K. T. Mandli Modeling and simulation of tsunami impact: a short review of recent advances and future challenges, Geosciences, Volume 11 (2020) no. 1, 5 | DOI

[127] R. A. Freeze; P. A. Witherspoon Theoretical analysis of regional groundwater flow: 1. Analytical and numerical solutions to the mathematical model, Water Resour. Res., Volume 2 (1966) no. 4, pp. 641-656 | DOI

[128] S. P. Neuman; P. A. Witherspoon Finite element method of analyzing steady seepage with a free surface, Water Resour. Res., Volume 6 (1970) no. 3, pp. 889-897 | DOI

[129] J. D. Bredehoeft; G. F. Pinder Mass transport in flowing groundwater, Water Resour. Res., Volume 9 (1973) no. 1, pp. 194-210 | DOI

[130] G. E. Pinder A Galerkin-finite element simulation of groundwater contamination on Long Island, New York, Water Resour. Res., Volume 9 (1973) no. 6, pp. 1657-1669 | DOI

[131] P. C. Trescott; G. F. Pinder; S. P. Larson Finite-difference model for aquifer simulation in two-dimensions with results of numerical experiments, 1976 (Techniques of Water Resources Investigations of the U.S.G.S. Book 7, p. 116)

[132] R. T. Dillon; R. B. Lanz; S. B. Pahwa A model for calculating radioactive waste migration: SANDIA waste isolation flow and transport (SWIFT) model, 1978 (Sandia National Laboratory, SAND-78-L1267)

[133] T. N. Narasimhan; P. A. Witherspoon; A. L. Edwards Numerical model for saturated-unsaturated flow in deformable porous media: 2. The algorithm, Water Resour. Res., Volume 14 (1978) no. 2, pp. 255-261 | DOI

[134] A. K. Runchal; T. Maini The impact of a high level radioactive waste repository on the regional ground water flow, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., Volume 17 (1980), pp. 253-264 | DOI

[135] M. Reeves; D. S. Ward; N. D. Johns; R. M. Cranwell Theory and implementation for SWIFT II, the sandia waste-isolation flow and transport model for fractured media. NUREG/CR-3328, SAND83-1159, 1986 (Sandia National Laboratories, Albuquerque, NM)

[136] A. K. Runchal Theory and application of the PORFLOW model for analysis of coupled fluid flow, heat and radionuclide transport in porous media, Coupled Processes Associated with Nuclear Waste Repositories (C.-F. Tsang, ed.), Academic Press, Cambridge, MA, 1985, pp. 495-516

[137] Y. Zhou; W. Li A review of regional groundwater flow modelling, Geosci. Frontiers, Volume 2 (2011) no. 2, pp. 205-214 | DOI

[138] C. T. Miller; C. N. Dawson; M. W. Farthing; T. Y. Hou; J. Huang; C. E. Kees; C. T. Kelley; H. P. Langtangen Numerical simulation of water resources problems: models, methods, and trends, Adv. Water Resour., Volume 51 (2013), pp. 405-437 | DOI

[139] S. B. Patil; H. S. Chore Contaminant transport through porous media: an overview of experimental and numerical studies, Adv. Environ. Res., Volume 3 (2014) no. 1, pp. 45-69 | DOI

[140] B.-A. Aderemi; T. O. Olwal; J. M. Ndambuki; S. S. Rwanga A review of groundwater management models with a focus on IoT-based systems, Sustainability, Volume 14 (2022), 148

[141] G. Yan; Z. Li; S. A. G. Torres; A. Scheuermann; L. Li Transient two-phase flow in porous media: a literature review and engineering application in geotechnics, Geotechnics, Volume 2 (2022), pp. 32-90 | DOI

[142] P. M. Congedo; G. Colangelo; G. Starace CFD simulations of horizontal ground heat exchangers: a comparison among different configurations, Appl. Therm. Eng., Volume 33 (2012), pp. 24-32 | DOI

[143] J. Luo; J. Rohn; W. Xiang; M. Bayer; A. Priess; L. Wilkmann; R. Zorn Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers, Energy, Volume 84 (2015), pp. 473-484 | DOI

[144] X. Wang; Y. Wang; Z. Wang; Y. Liu; Y. Zhu; H. Chen Simulation-based analysis of a ground source heat pump system using super-long flexible heat pipes coupled borehole heat exchanger during heating season, Energy Conv. Manag., Volume 164 (2018), pp. 132-143 | DOI

[145] D. H. J. Chung; M. L. L. Choo Computational fluid dynamics for urban design: the prospects for greater integration, Int. J. Archit. Comput., Volume 9 (2011) no. 1, pp. 33-53

[146] T. Lawson; T. V. Lawson Building Aerodynamics, 10, Imperial College Press, London, 2001 | DOI

[147] G. H. Yeoh; K. K. Yuen Computational Fluid Dynamics in Fire Engineering: Theory, Modelling and Practice, Butterworth-Heinemann, Oxford, 2009, 166 pages (Also 2009 ISBN: 9780750685894. Elsevier, Amsterdam)

[148] K. McGrattan; S. Hostikka; R. Mcdermott; J. Floyd; C. Weinschenk; K. Overholt Fire Dynamics Simulator User’s Guide, NIST Special Publication 1019, National Institute of Standards and Technology, Gaithersburg, MD, 2013

[149] C. J. Wang; J. X. Wen; Z. B. Chen Simulation of large-scale LNG pool fires using FireFoam, Combust. Sci. Technol., Volume 186 (2014) no. 10–11, pp. 1632-1649 | DOI

[150] J. M. Epstein; R. Pankajakshan; R. A. Hammond Combining computational fluid dynamics and agent-based modeling: a new approach to evacuation planning, PLoS One, Volume 6 (2011) no. 5, e20139 | DOI

[151] T. Sastrohartono; M. V. Karwe; Y. Jaluria; T. H. Kwon Numerical simulation of fluid flow and heat transfer in a twin-screw extruder, Food Extrusion Sci. Technol. (1992), pp. 89-104

[152] C. Anandharamakrishnan Computational Fluid Dynamics Applications in Food Processing, Springer, New York, 2013

[153] Y. Jaluria Advanced Materials Processing and Manufacturing, Springer, Cham, 2018

[154] D. Manoharan; M. Radhakrishnan Computational cold plasma dynamics and its potential application in food processing, Rev. Chem. Eng., Volume 38 (2022) no. 8, pp. 1089-1105 | DOI

[155] R. K. Hanna CFD in sport—a retrospective; 1992–2012, Proc. Eng., Volume 34 (2012), pp. 622-627 | DOI

[156] K. L. Hedges; P. J. Richards; G. D. Mallinson Computer modelling of downwind sails, J. Wind Eng. Indust. Aerodyn., Volume 63 (1996) no. 1–3, pp. 95-110 | DOI

[157] W. Shyy; H. S. Udaykumar; M. M. Rao; R. W. Smith Computational Fluid Dynamics with Moving Boundaries, Dover, New York, 2007 Taylor & Francis, Washington DC (1996)

[158] M. Peters Computational Fluid Dynamics for Sport Simulation, Springer, Berlin, 2009 (ISBN: 978-3-642-04465-6) | DOI

[159] P. Jalilian; P. K. Kreun; M. M. Makhmalbaf; W. W. Liou Computational aerodynamics of baseball, soccer ball and volleyball, Am. J. Sports Sci., Volume 2 (2014) no. 5, pp. 115-121 | DOI

[160] T. Wei; R. Mark; S. Hutchison The fluid dynamics of competitive swimming, Annu. Rev. Fluid Mech., Volume 46 (2014), pp. 547-565 | DOI | Zbl

[161] J. E. Goff A review of recent research into aerodynamics of sport projectiles, Sports Eng., Volume 16 (2013) no. 3, pp. 137-154 | DOI

[162] E. Immonen Optimal design for disc golf by computational fluid dynamics and machine learning, Struct. Multidiscip. Optim., Volume 65 (2022) no. 1, pp. 1-17 | DOI

[163] L. Bourouiba The fluid dynamics of disease transmission, Annu. Rev. Fluid Mech., Volume 53 (2021), pp. 473-508 | DOI | Zbl

[164] Mariam; A. Magar; M. Joshi; P. S. Rajagopal; A. Khan; M. M. Rao; B. K. Sapra CFD simulation of the airborne transmission of COVID-19 vectors emitted during respiratory mechanisms: Revisiting the concept of safe distance, ACS Omega, Volume 6 (2021) no. 26, pp. 16876-16889 | DOI

[165] L. Bourouiba Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19, JAMA, Volume 323 (2020) no. 18, pp. 1837-1838

[166] C. S. Ng; K. L. Chong; R. Yang; M. Li; R. Verzicco; D. Lohse Growth of respiratory droplets in cold and humid air, Phys. Rev. Fluids, Volume 6 (2021) no. 5, 054303

[167] R. Biswas; A. R. Pal; S. Sarkar; A. Mukhopadhyay Risk assessment of COVID infection by respiratory droplets from cough for various ventilation scenarios inside an elevator: an OpenFOAM-based computational fluid dynamics analysis, Phys. Fluids, Volume 34 (2022) no. 1, 013318 | DOI

[168] A. Pavansai; P. Deepak; S. R. Hari; R. Harish; M. S. Kumar Analyzing social distancing policy effectiveness using computational fluid dynamics inside a bus to prevent COVID-19 airborne transmission, IOP Conference Series: Materials Science and Engineering, Volume 1128, IOP Publishing, 2021 no. 1, p. 012005 | DOI

[169] Z. Wang; E. R. Galea; A. Grandison; J. Ewer; F. Jia A coupled computational fluid dynamics and Wells-Riley model to predict COVID-19 infection probability for passengers on long-distance trains, Safety Sci., Volume 147 (2022), 105572 | DOI

[170] F. Mohamadi; A. Fazeli A review on applications of CFD modeling in COVID-19 pandemic, Arch. Comput. Methods Eng., Volume 29 (2022) no. 6, pp. 3567-3586 | DOI

[171] D. Jeong; H. Yi; J. H. Park; H. W. Park; K. Park A vertical laminar airflow system to prevent aerosol transmission of SARS-CoV-2 in building space: computational fluid dynamics (CFD) and experimental approach, Indoor Built Environ., Volume 31 (2022) no. 5, pp. 1319-1338 | DOI

[172] M. Zhang; J. Sun; B. Fricke; K. Nawaz; K. Gluesenkamp; B. Shen; X. Liu A study on computational fluid dynamics modeling of a refrigerated container for COVID-19 vaccine distribution with experimental validation, Int. Commun. Heat Mass Transf., Volume 130 (2022), 105749 | DOI

[173] J. Kathawate; S. Acharya Computational modeling of intra-vitreal drug delivery, Int. J. Heat Mass Transf., Volume 51 (2008) no. 23–24, pp. 5598-5609 | DOI | Zbl

[174] P. J. Haar; Z.-J. Chen; P. P. Fatouros; G. T. Gillies; F. D. Corwin; W. C. Broaddus Modelling convection-enhanced delivery in normal and oedematous brain, J. Med. Eng. Technol., Volume 38 (2014) no. 2, pp. 76-84 | DOI

[175] M. Rahimi-Gorji; C. Debbaut; G. Ghorbaniasl; S. Cosyns; W. Willaert; W. Ceelen Optimization of intraperitoneal aerosolized drug delivery using computational fluid dynamics (CFD) modelling, Sci. Rep., Volume 12 (2022) no. 1, 6305 | DOI

[176] M. Khani; G. K. Reddy Burla; L. R. Sass; O. N. Arters; T. Xing; H. Wu; B. A. Martin Human in silico trials for parametric computational fluid dynamics investigation of cerebrospinal fluid drug delivery: impact of injection location, injection protocol, and physiology, Fluids Barriers CNS, Volume 19 (2022), 8 | DOI

[177] D. N. Ku Blood flow in arteries, Annu. Rev. Fluid Mech., Volume 29 (1997) no. 1, pp. 399-434 | Zbl

[178] F. N. Van de Vosse; N. Stergiopulos Pulse wave propagation in the arterial tree, Annu. Rev. Fluid Mech., Volume 43 (2011), pp. 467-499 | DOI | Zbl

[179] T. M. van Bakel; K. D. Lau; J. Hirsch-Romano; S. Trimarchi; A. L. Dorfman; C. A. Figueroa Patient-specific modeling of hemodynamics: supporting surgical planning in a Fontan circulation correction, J. Cardiovasc. Trans. Res., Volume 11 (2018) no. 2, pp. 145-155 | DOI

[180] C. A. Taylor; C. A. Figueroa Patient-specific modeling of cardiovascular mechanics, Annu. Rev. Biomed. Eng., Volume 11 (2009), pp. 109-134 | DOI

[181] D. M. Sforza; C. M. Putman; J. R. Cebral Computational fluid dynamics in brain aneurysms, Int. J. Numer. Meth. Biomed. Eng., Volume 28 (2012) no. 6–7, pp. 801-808 | DOI

[182] A. S. Turjman; F. Turjman; E. R. Edelman Role of fluid dynamics and inflammation in intracranial aneurysm formation, Circulation, Volume 129 (2014) no. 3, pp. 373-382 | DOI

[183] D. P. Roi; J. D. Mueller; K. Lobotesis; C. Mccague; S. Memarian; F. Khan et al. Intracranial aneurysms: looking beyond size in neuroimaging: the role of anatomical factors and haemodynamics, Quant. Imag. Med. Surg., Volume 9 (2019) no. 4, pp. 537-545 | DOI

[184] Y. Qiu; J. Wang; J. Zhao; T. Wang; T. Zheng; D. Yuan Association between blood flow pattern and rupture risk of abdominal aortic aneurysm based on computational fluid dynamics, Eur. J. Vasc. Endovasc. Surg., Volume 64 (2022) no. 2–3, pp. 155-164 | DOI

[185] X. Wang; M. H. Ghayesh; A. Kotousov; A. C. Zander; P. J. Psaltis Wall shear stress for an aorta with aneurysms via computational fluid dynamics, Advances in Nonlinear Dynamics, Springer, Cham, 2022, pp. 27-37 | DOI

[186] H. Zhang; L. Li; F. Miao; J. Yu; B. Zhou; Y. Pan Computational fluid dynamics analysis of intracranial aneurysms treated with flow diverters: a case report, Neurochirurgie, Volume 68 (2022) no. 2, pp. 235-238 | DOI

[187] E. Basri; I. Basri; A. A.; V. N. Riazuddin; S. F. Shahwir; Z. Mohammad; K. A. Ahmad Computational fluid dynamics study in biomedical applications: a review, Int. J. Fluids Heat Transf., Volume 1 (2016) no. 2, pp. 2-14

[188] O. J. Ayodele; A. E. Oluwatosin; O. C. Taiwo; A. A. Dare Computational fluid dynamics modeling in respiratory airways obstruction: current applications and prospects, Int. J. Biomed. Sci. Eng., Volume 9 (2021) no. 2, pp. 16-26 | DOI

[189] M. Aoyagi; M. Oshima; M. Oishi; S. Kita; K. Fujita; H. Imai et al. Computational fluid dynamic analysis of the nasal respiratory function before and after postero-superior repositioning of the maxilla, PLoS One, Volume 17 (2022) no. 4, e0267677 | DOI

[190] J. V. Corda; B. S. Shenoy; K. A. Ahmad; L. Lewis; K. Prakashini; S. A. Khader; M. Zuber Nasal airflow comparison in neonates, infant and adult nasal cavities using computational fluid dynamics, Comput. Meth. Programs Biomed., Volume 214 (2022), 106538 | DOI

[191] T. Pires; J. W. Dunlop; P. R. Fernandes; A. P. Castro Challenges in computational fluid dynamics applications for bone tissue engineering, Proc. R. Soc. A, Volume 478 (2022) no. 2257, 20210607 | DOI

[192] S. Kumar; S. Acharya; R. Beuerman Deposition of particles on ocular tissues and the formation of Krukenberg spindle, Hyphema, and Hypopyon, ASME J. Biomech. Eng., Volume 129 (2007) no. 2, pp. 174-186 | DOI

[193] J. H. Siggers; C. R. Ethier Fluid mechanics of the eye, Annu. Rev. Fluid Mech., Volume 44 (2012), pp. 347-372 | DOI | Zbl

[194] Y. Wang; X. Shi; S. Wei; C. Yue; Z. Wang; X. Li Evaluation of flow field in the anterior segment during irrigation and aspiration in cataract surgery with three-dimensional computational simulation, Med. Eng. Phys., Volume 99 (2022), 103741 | DOI

[195] D. Obrist Flow phenomena in the inner ear, Annu. Rev. Fluid Mech., Volume 51 (2019), pp. 487-510 | DOI | Zbl

[196] J. Czochralski A new method for the measurement of the crystallization rate of metals, Z. Phys. Chem., Volume 92 (1918) no. 1, pp. 219-221

[197] G. K. Teal; J. B. Little Growth of germanium single crystals, Phys. Rev., Volume 78 (1950) no. 5, p. 647

[198] L. N. Demianets; B. P. Sobolev; K. P. Chirkina Verneuil technique for crystal growth of high temperature superconducting Bi–Sr–Ca–Cu-oxides, Solid State Ion., Volume 40–41 (1990) no. 2, pp. 836-839 | DOI

[199] H. J. Scheel Historical aspects of crystal growth technology, J. Cryst. Growth, Volume 211 (2000), pp. 1-4 (1-12) | DOI

[200] C. Prakash; M. Samonds; A. K. Singhal A fixed grid numerical methodology for phase change problems involving a moving heat source, Int. J. Heat Mass Transf., Volume 30 (1987) no. 12, pp. 2690-2694 | DOI

[201] M. El-Ganaoui; P. Bontoux A homogenisation method for solid–liquid phase change during directional solidification, ASME H.T.D., Numer. Exp. Meth. Heat Transf., Volume 361 (1998), pp. 453-469

[202] M. El-Ganaoui; A. Lamazouade; P. Bontoux; D. Morvan Computational solution for fluid flow under solid/liquid phase change conditions, Comput. Fluids, Volume 31 (2002) no. 4–7, pp. 539-556 | DOI | Zbl

[203] V. V. Kolmychkov; O. S. Mazhorova; Y. P. Popov; P. Bontoux; M. El-Ganaoui Identification of the convective instability in a multi-component solution by 3D simulations, C. R. Mec., Volume 333 (2005) no. 10, pp. 739-745 | DOI

[204] A. K. Runchal; M. M. Rao CFD of the future: year 2025 and beyond, 50 Years of CFD in Engineering Sciences, Springer, Singapore, 2020, pp. 779-795 | DOI

[205] G. S. Patterson Jr. Prospects for computational fluid mechanics, Annu. Rev. Fluid Mech., Volume 10 (1978) no. 1, pp. 289-300 | DOI | Zbl

[206] A. K. Runchal The future of CFD and CFD of the future, Comput. Therm. Sci., Volume 4 (2012) no. 6, pp. 517-524 | DOI

[207] D. E. Rumelhart; G. E. Hinton; R. J. Williams Learning representations by back-propagating errors, Nature, Volume 323 (1986) no. 6088, pp. 533-536 | DOI | Zbl

[208] M. Raissi; P. Perdikaris; G. E. Karniadakis Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations, preprint, 2017 | arXiv

[209] J. N. Kani; A. H. Elsheikh DR-RNN: a deep residual recurrent neural network for model reduction, preprint, 2017 | arXiv

[210] R. Vinuesa; S. L. Brunton The potential of machine learning to enhance computational fluid dynamics, preprint, 2021 | arXiv

[211] Y. Bar-Sinai; S. Hoyer; J. Hickey; M. P. Brenner Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA, Volume 116 (2019) no. 31, pp. 15344-15349 | DOI | MR | Zbl

[212] M. Asem DiffusionNet: accelerating the solution of time-dependent partial differential equations using deep learning, preprint, 2020 | arXiv

[213] B. Stevens; T. Colonius Enhancement of shock-capturing methods via machine learning, Theoret. Comput. Fluid Dyn., Volume 34 (2020) no. 4, pp. 483-496 | DOI | MR

[214] R. Ranade; C. Hill; J. Pathak DiscretizationNet: a machine-learning based solver for Navier–Stokes equations using finite volume discretization, Comput. Meth. Appl. Mech. Eng., Volume 378 (2021), 113722 | DOI | MR | Zbl

[215] S. Maddu; D. Sturm; B. L. Cheeseman; C. L. Müller; I. F. Sbalzarini STENCIL-NET: data-driven solution-adaptive discretization of partial differential equations, preprint, 2021 | arXiv

[216] T. Kossaczká; M. Ehrhardt; M. Günther Enhanced fifth order WENO shock-capturing schemes with deep learning, Results Appl. Math., Volume 12 (2021), 100201 | DOI | MR | Zbl

[217] F. D. A. Belbute-Peres; T. Economon; Z. Kolter Combining differentiable PDE solvers and graph neural networks for fluid flow prediction, J. Mach. Learn. Res., Volume 119 (2020), pp. 2402-2411 (International Conference on Machine Learning)

[218] A. Kaneda; O. Akar; J. Chen; V. Kala; D. Hyde; J. Teran A deep gradient correction method for iteratively solving linear systms, preprint, 2022 | arXiv

[219] I. E. Lagaris; A. Likas; D. I. Fotiadis Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw., Volume 9 (1998) no. 5, pp. 987-1000 | DOI

[220] Y. Zhu; N. Zabaras; P. S. Koutsourelakis; P. Perdikaris Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data, J. Comput. Phys., Volume 394 (2019), pp. 56-81 | DOI | MR

[221] J. Ling; A. Kurzawski; J. Templeton Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., Volume 807 (2016), pp. 155-166 | DOI | MR | Zbl

[222] Z. Wang; K. Luo; D. Li; J. Tan; J. Fan Investigations of data-driven closure for subgrid-scale stress in large-eddy simulation, Phys. Fluids, Volume 30 (2018) no. 12, 125101 | DOI

[223] X. I. A. Yang; S. Zafar; J. X. Wang; H. Xiao Predictive large-eddy-simulation wall modeling via physics-informed neural networks, Phys. Rev. Fluids, Volume 4 (2019) no. 3, 034602

[224] J. M. Hanna; J. V. Aguado; S. Comas-Cardona; R. Askri; D. Borzacchiello Residual-based adaptivity for two-phase flow simulation in porous media using Physics-informed neural networks, Comput. Meth. Appl. Mech. Eng., Volume 396 (2022), 115100 | DOI | MR | Zbl

[225] S. Wang; S. Sankaran; P. Perdikaris Respecting causality is all you need for training physics-informed neural networks, preprint, 2022 | arXiv

[226] T. Lassila; A. Manzoni; A. Quarteroni; G. Rozza Model order reduction in fluid dynamics: challenges and perspectives, Reduced Order Methods for Modeling and Computational Reduction, Springer, New York, 2014, pp. 235-273 | Zbl

[227] G. Berkooz; P. Holmes; J. L. Lumley The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., Volume 25 (1993) no. 1, pp. 539-575 | DOI

[228] T. Bui-Thanh; M. Damodaran; K. Willcox Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition, AIAA J., Volume 42 (2004) no. 8, pp. 1505-1516 | DOI

[229] R. Narasimha Kosambi and proper orthogonal decomposition, Resonance, Volume 16 (2011) no. 6, pp. 574-581 | DOI

[230] J. H. Tu; C. W. Rowley; D. M. Luchtenburg; S. L. Brunton; J. N. Kutz On dynamic mode decomposition: theory and applications, preprint, 2013 | arXiv

[231] J. L. Proctor; S. L. Brunton; J. N. Kutz Dynamic mode decomposition with control, SIAM J. Appl. Dynam. Syst., Volume 15 (2016) no. 1, pp. 142-161 | DOI | MR | Zbl

[232] L. Liang; M. Liu; C. Martin; W. Sun A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis, J. R. Soc. Interface, Volume 15 (2018) no. 138, 20170844 | DOI

[233] M. Kerremans; B. Burke; D. Cearley; A. Velosa Top 10 strategic technology trends for 2019: Digital Twins, 2019 https://www.gartner.com/en/documents/3904569 (Gartner Research, Document ID: G00377678)

[234] M. Grieves; J. Vickers Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems, Transdisciplinary Perspectives on Complex Systems, Springer, New York, 2017, pp. 85-113 | DOI

[235] N. R. Reddy; L. B. Das; A. Rajesh; S. Enjapuri ASIC implementation of high speed fast Fourier transform based on Split-radix algorithm, 2014 International Conference on Embedded Systems (ICES), IEEE, Coimbatore, 2014, pp. 22-27 | DOI

[236] S. M. Noor; E. John; M. Panday Design and implementation of an ultralow-energy FFT ASIC for processing ECG in cardiac pacemakers, IEEE Trans. Very Large-Scale Integr. (VLSI) Syst., Volume 27 (2018) no. 4, pp. 983-987 | DOI

Cited by Sources:

Comments - Policy