The first climate models have emerged in the 60s and have been continuously developed since then. They have progressively included the representation of all the climate system components: the atmosphere, the ocean, the cryosphere and the biosphere. Inside each component, they have also been enriched by the representation of more processes with the aim of improving their realism. These models are used to make climate projections over the coming century but they are above all a laboratory tool to improve our understanding of the climate system.
Les premiers modèles climatiques sont apparus dans les années 60 et n’ont cessé d’être développés depuis. Ils ont progressivement inclus la représentation de toutes les composantes du système climatique : l’atmosphère, l’océan, la cryosphère et la biosphère. Au sein de chaque composante, ils ont également été enrichis par la représentation d’un plus grand nombre de processus dans le but d’améliorer leur réalisme. Ces modèles sont utilisés pour faire des projections climatiques sur le siècle à venir mais ils sont surtout un outil de laboratoire pour améliorer notre compréhension du système climatique.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Climat, Océan, Atmosphère, Biosphère, Projections
Aurore Voldoire 1
@article{CRMECA_2022__350_S1_219_0, author = {Aurore Voldoire}, title = {Climate models}, journal = {Comptes Rendus. M\'ecanique}, pages = {219--232}, publisher = {Acad\'emie des sciences, Paris}, volume = {350}, number = {S1}, year = {2022}, doi = {10.5802/crmeca.247}, language = {en}, }
Aurore Voldoire. Climate models. Comptes Rendus. Mécanique, More than a half century of Computational Fluid Dynamics, Volume 350 (2022) no. S1, pp. 219-232. doi : 10.5802/crmeca.247. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.247/
[1] Numerical results from a nine-level general circulation model of the atmosphere, Mon. Weather Rev., Volume 93 (1965) no. 12, pp. 727-768 (Retrieved Nov 22, 2021, from https://journals.ametsoc.org/view/journals/mwre/93/12/1520-0493_1965_093_0727_nrfanl_2_3_co_2.xml) | DOI
[2] Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows, J. Atmos. Sci., Volume 10 (1953), pp. 71-99 | DOI | MR
[3] The effects of doubling the CO concentration on the climate of a general circulation model, J. Atmos. Sci., Volume 32 (1975), pp. 3-15 | DOI
[4] Climate calculations with a combined ocean-atmosphere model, J. Atmos. Sci., Volume 26 (1969) no. 4, p. 786-89 | DOI
[5] Climate models, Encyclopedia of the Environment, 2021 ([online ISSN 2555-0950] https://www.encyclopedie-environnement.org/en/climate/climate-models/, under a creative Commons BY-NC-SA license)
[6] Ocean Modeling and Parameterization (E. P. Chassignet; J. Verron, eds.), Nato Science Series C, Springer Science & Business Media, Dordrecht, 1998, VIII, 451 pages | DOI
[7] Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, 2003, 364 pages
[8] Introduction to climate dynamics and climate modeling, 2008–2010 (Online textbook available at http://www.climate.be/textbook)
[9] DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., Volume 8 (2015), pp. 3131-3150 | DOI
[10] The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., Volume 7 (2014), pp. 663-693 | DOI
[11] Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model, J. Phys. Oceanogr., Volume 48 (2018) no. 10, pp. 2363-2382 | DOI
[12] The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., Volume 9 (2016), pp. 3751-3777 | DOI
[13] NOAA Climate Data Record (CDR) of Monthly Outgoing Longwave Radiation (OLR), Version 2.7, 2018 (NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5W37TKD [2020-05-29])
[14] Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, Volume 5 (2011), pp. 219-229 | DOI
[15] et al. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: the US CLIVAR eastern tropical oceans synthesis working group, Bull. Am. Meterol. Soc., Volume 97 (2016) no. 12, pp. 2305-2327 | DOI
[16] The scenario model intercomparison project (ScenarioMIP) for CMIP6, Geosci. Model Dev., Volume 9 (2016), pp. 3461-3482 | DOI
[17] et al. Causes of higher climate sensitivity in CMIP6 models, Geophys. Res. Lett., Volume 47 (2020), e2019GL085782 | DOI
Cited by Sources:
Comments - Policy