Comptes Rendus
Climate models
Comptes Rendus. Mécanique, More than a half century of Computational Fluid Dynamics, Volume 350 (2022) no. S1, pp. 219-232.

The first climate models have emerged in the 60s and have been continuously developed since then. They have progressively included the representation of all the climate system components: the atmosphere, the ocean, the cryosphere and the biosphere. Inside each component, they have also been enriched by the representation of more processes with the aim of improving their realism. These models are used to make climate projections over the coming century but they are above all a laboratory tool to improve our understanding of the climate system.

Les premiers modèles climatiques sont apparus dans les années 60 et n’ont cessé d’être développés depuis. Ils ont progressivement inclus la représentation de toutes les composantes du système climatique : l’atmosphère, l’océan, la cryosphère et la biosphère. Au sein de chaque composante, ils ont également été enrichis par la représentation d’un plus grand nombre de processus dans le but d’améliorer leur réalisme. Ces modèles sont utilisés pour faire des projections climatiques sur le siècle à venir mais ils sont surtout un outil de laboratoire pour améliorer notre compréhension du système climatique.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.247
Keywords: Climate, Ocean, Atmosphere, Biosphere, Projection
Mots-clés : Climat, Océan, Atmosphère, Biosphère, Projections

Aurore Voldoire 1

1 CNRM, Université de Toulouse, MétéoFrance, CNRS, Toulouse, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_219_0,
     author = {Aurore Voldoire},
     title = {Climate models},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {219--232},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     number = {S1},
     year = {2022},
     doi = {10.5802/crmeca.247},
     language = {en},
}
TY  - JOUR
AU  - Aurore Voldoire
TI  - Climate models
JO  - Comptes Rendus. Mécanique
PY  - 2022
SP  - 219
EP  - 232
VL  - 350
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.247
LA  - en
ID  - CRMECA_2022__350_S1_219_0
ER  - 
%0 Journal Article
%A Aurore Voldoire
%T Climate models
%J Comptes Rendus. Mécanique
%D 2022
%P 219-232
%V 350
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.247
%G en
%F CRMECA_2022__350_S1_219_0
Aurore Voldoire. Climate models. Comptes Rendus. Mécanique, More than a half century of Computational Fluid Dynamics, Volume 350 (2022) no. S1, pp. 219-232. doi : 10.5802/crmeca.247. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.247/

[1] J. Smagorinski; S. Manabe; J. L. Holloway Jr. Numerical results from a nine-level general circulation model of the atmosphere, Mon. Weather Rev., Volume 93 (1965) no. 12, pp. 727-768 (Retrieved Nov 22, 2021, from https://journals.ametsoc.org/view/journals/mwre/93/12/1520-0493_1965_093_0727_nrfanl_2_3_co_2.xml) | DOI

[2] J. G. Charney; N. A. Phillips Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows, J. Atmos. Sci., Volume 10 (1953), pp. 71-99 | DOI | MR

[3] S. Manabe; R. T. Wetherald The effects of doubling the CO 2 concentration on the climate of a general circulation model, J. Atmos. Sci., Volume 32 (1975), pp. 3-15 | DOI

[4] S. Manabe; K. Bryan Climate calculations with a combined ocean-atmosphere model, J. Atmos. Sci., Volume 26 (1969) no. 4, p. 786-89 | DOI

[5] A. Voldoire; D. Saint-Martin Climate models, Encyclopedia of the Environment, 2021 ([online ISSN 2555-0950] https://www.encyclopedie-environnement.org/en/climate/climate-models/, under a creative Commons BY-NC-SA license)

[6] Ocean Modeling and Parameterization (E. P. Chassignet; J. Verron, eds.), Nato Science Series C, Springer Science & Business Media, Dordrecht, 1998, VIII, 451 pages | DOI

[7] E. Kalnay Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, 2003, 364 pages

[8] H. Goosse; P. Y. Barriat; W. Lefebvre; M. F. Loutre; V. Zunz Introduction to climate dynamics and climate modeling, 2008–2010 (Online textbook available at http://www.climate.be/textbook)

[9] T. Dubos; S. Dubey; M. Tort; R. Mittal; Y. Meurdesoif; F. Hourdin DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., Volume 8 (2015), pp. 3131-3150 | DOI

[10] Q. Wang; S. Danilov; D. Sidorenko; R. Timmermann; C. Wekerle; X. Wang; T. Jung; J. Schröter The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., Volume 7 (2014), pp. 663-693 | DOI

[11] J. Mak; J. R. Maddison; D. P. Marshall; D. R. Munday Implementation of a geometrically informed and energetically constrained mesoscale eddy parameterization in an ocean circulation model, J. Phys. Oceanogr., Volume 48 (2018) no. 10, pp. 2363-2382 | DOI

[12] G. J. Boer; D. M. Smith; C. Cassou; F. Doblas-Reyes; G. Danabasoglu; B. Kirtman; Y. Kushnir; M. Kimoto; G. A. Meehl; R. Msadek; W. A. Mueller; K. E. Taylor; F. Zwiers; M. Rixen; Y. Ruprich-Robert; R. Eade The Decadal Climate Prediction Project (DCPP) contribution to CMIP6, Geosci. Model Dev., Volume 9 (2016), pp. 3751-3777 | DOI

[13] H.-T. Lee; NOAA CDR Program NOAA Climate Data Record (CDR) of Monthly Outgoing Longwave Radiation (OLR), Version 2.7, 2018 (NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5W37TKD [2020-05-29])

[14] R. D. Brown; D. A. Robinson Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty, The Cryosphere, Volume 5 (2011), pp. 219-229 | DOI

[15] P. Zuidema et al. Challenges and prospects for reducing coupled climate model SST biases in the eastern tropical Atlantic and Pacific Oceans: the US CLIVAR eastern tropical oceans synthesis working group, Bull. Am. Meterol. Soc., Volume 97 (2016) no. 12, pp. 2305-2327 | DOI

[16] B. C. O’Neill; C. Tebaldi; D. P. van Vuuren; V. Eyring; P. Friedlingstein; G. Hurtt; R. Knutti; E. Kriegler; J.-F. Lamarque; J. Lowe; G. A. Meehl; R. Moss; K. Riahi; B. M. Sanderson The scenario model intercomparison project (ScenarioMIP) for CMIP6, Geosci. Model Dev., Volume 9 (2016), pp. 3461-3482 | DOI

[17] M. D. Zelinka; T. A. Myers; D. T. McCoy; S. Po-Chedley; P. M. Caldwell; P. Ceppi et al. Causes of higher climate sensitivity in CMIP6 models, Geophys. Res. Lett., Volume 47 (2020), e2019GL085782 | DOI

Cited by Sources:

Comments - Policy