Initial data for the Einstein equations must satisfy a system of nonlinear partial differential equations, the Einstein constraint equations. Constructing interesting solutions of the constraint equations can then lead to interesting spacetime evolutions. Over the past twenty-five years, various gluing methods to construct solutions of the constraints have shed light on some long-standing questions. In this article we survey some of the methods and results achieved to date.
Les données initiales des équations d’Einstein doivent satisfaire un système d’équations aux dérivées partielles non linéaires, les équations de contrainte d’Einstein. La construction de solutions intéressantes des équations de contrainte peut alors conduire à des évolutions intéressantes de l’espace-temps. Au cours des vingt-cinq dernières années, diverses méthodes de recollement permettant de construire des solutions des équations de contrainte ont permis de faire la lumière sur certaines questions de longue date. Dans cet article, nous passons en revue quelques-unes des méthodes et des résultats obtenus à ce jour.
Accepted:
Published online:
Mots-clés : Equations de contrainte d’ Einstein, Analyse géométrique, Méthodes de recollement
Justin Corvino 1
@article{CRMECA_2025__353_G1_29_0, author = {Justin Corvino}, title = {Gluing for the {Einstein} constraint equations}, journal = {Comptes Rendus. M\'ecanique}, pages = {29--52}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.275}, language = {en}, }
Justin Corvino. Gluing for the Einstein constraint equations. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 29-52. doi : 10.5802/crmeca.275. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.275/
[1] General Relativity and the Einstein Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2009, xxvi + 785 pages
[2] The Cauchy problem, Gravitation: An Introduction to Current Research (L. Witten, ed.), John Wiley & Sons, Inc., New York-London, 1962, pp. 130-168
[3] The Cauchy problem, General Relativity and Gravitation (A. Held, ed.), Plenum Press, New York-London, 1980, pp. 99-172
[4] Beginnings of the Cauchy problem for Einstein’s field equations, Surv. Differ. Geom., Volume 20 (2015), pp. 1-16
[5] Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI
[6] Gravitational degrees of freedom and the initial-value problem, Phys. Rev. Lett., Volume 26 (1971), pp. 1656-1658
[7] Initial data in general relativity described by expansion, conformal deformation and drift, Comm. Anal. Geom., Volume 29 (2021) no. 1, pp. 207-281
[8] L’intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl., Volume 23 (1944) no. 9, pp. 37-63
[9] Gluing small black holes along timelike geodesics I: formal solution, preprint, 2023 | arXiv
[10] Gluing small black holes into initial data sets, Commun. Math. Phys., Volume 405 (2024) no. 5, 114 | DOI
[11] The characteristic gluing problem for the Einstein equations and applications, preprint, 2022 | arXiv | DOI
[12] Initial data for the relativistic gravitational N-body problem, Class. Quantum Gravity, Volume 27 (2010) no. 22, p. 6
[13] On “many-black-hole” vacuum spacetimes, Class. Quantum Gravity, Volume 20 (2003) no. 4, pp. 729-754 | DOI
[14] Construction of N-body time-symmetric initial data sets in general relativity, Complex Analysis and Dynamical Systems IV. Part 2 (Contemporary Mathematics), Volume 554, American Mathematical Society, Providence, RI, 2011, pp. 83-92 | DOI
[15] Construction of N-body initial data sets in general relativity, Commun. Math. Phys., Volume 304 (2011) no. 3, pp. 637-647 | DOI
[16] Localizing solutions of the Einstein constraint equations, Invent. Math., Volume 205 (2016) no. 3, pp. 559-615 | DOI
[17] Multi-localized time-symmetric initial data for the Einstein vacuum equations, J. Reine Angew. Math. (Crelle’s Journal), Volume 808 (2024), pp. 67-110
[18] Le problème des N corps dans la théorie de la relativité, Thèse, Gauthier-Villars, Paris (1934)
[19] Les équations de la gravitation einsteinienne, Mémor. Sci. Math., Volume 25 (1927), 58
[20] Gluing and wormholes for the Einstein constraint equations, Commun. Math. Phys., Volume 231 (2002) no. 3, pp. 529-568 | DOI
[21] On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. Fr. (N.S.), Volume 94 (2003), p. vi + 103 | DOI
[22] Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 137-189 | DOI
[23] On the asymptotics for the vacuum Einstein constraint equations, J. Differential Geom., Volume 73 (2006) no. 2, pp. 185-217 | DOI
[24] Initial data engineering, Commun. Math. Phys., Volume 257 (2005) no. 1, pp. 29-42 | DOI
[25] Deformation of scalar curvature and volume, Math. Ann., Volume 357 (2013) no. 2, pp. 551-584 | DOI
[26] Generalized gluing for the Einstein constraint equations, Calc. Var. Partial Differ. Equ., Volume 34 (2009) no. 4, pp. 453-473
[27] Refined gluing for the vacuum Einstein constraint equations, Geom. Dedicata, Volume 173 (2014), pp. 393-415
[28] On the topology of vacuum spacetimes, Ann. Henri Poincaré, Volume 4 (2003) no. 2, pp. 369-383
[29] A gluing construction regarding point particles in general relativity, Ann. Henri Poincaré, Volume 10 (2010) no. 8, pp. 1437-1486
[30] Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 9, p. L71-L79 | DOI
[31] On the existence and stability of the Penrose compactification, Ann. Henri Poincaré, Volume 8 (2007) no. 3, pp. 597-620 | DOI
[32] On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986), pp. 587-609
[33] Quasi-spherical metrics and prescribed scalar curvature, J. Differential Geom., Volume 37 (1993) no. 1, pp. 31-71
[34] A phase space approach to the conformal construction of non-vacuum initial data sets in general relativity, preprint, 2021 | arXiv
[35] Interaction energy in geometrostatics, Phys. Rev. (2), Volume 131 (1963), pp. 471-476
[36] Geometrostatic manifolds of small ADM mass, Comm. Pure Appl. Math., Volume 72 (2019) no. 6, pp. 1243-1287 | DOI
[37] The method of images in geometrostatics, Ann. Phys., Volume 24 (1963), pp. 102-117 | DOI
[38] Sur l’intégration des équations de la relativité génŕale, J. Ration. Mech. Anal., Volume 5 (1956) no. 6, pp. 951-966
[39] Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds, J. Math. Phys., Volume 14 (1973) no. 11, pp. 1151-1557
[40] Initial-value problem of general relativity. I. General formulation and physical formulation, Phys. Rev. D, Volume 10 (1974) no. 2, pp. 428-436
[41] The conformal method and the conformal thin-sandwich method are the same, Class. Quantum Gravity, Volume 31 (2014) no. 14, 145006
[42] The energy and the linear momentum of space-times in general relativity, Commun. Math. Phys., Volume 79 (1981) no. 1, pp. 47-51
[43] On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979) no. 1, pp. 45-76 | DOI
[44] Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom., Volume 59 (2001), pp. 177-267
[45] The spacetime positive mass theorem in dimensions less than eight, J. Eur. Math. Soc., Volume 18 (2016), pp. 83-121
[46] On the center of mass of isolated systems with general asymptotics, Class. Quantum Gravity, Volume 26 (2009) no. 1, 015012
[47] Initial data for Minkowski stability with arbitrary decay, preprint, 2024 | arXiv
[48] Spacelike initial data for black hole stability, preprint, 2024 | arXiv
[49] Deformations of the scalar curvature, Duke Math. J., Volume 42 (1975) no. 3, pp. 519-547 | DOI
[50] Linearization stability of the Einstein equations, Bull. Am. Meteorol. Soc., Volume 79 (1973), pp. 997-1003
[51] Spacetime symmetries and linearization of the Einstein equations I, J. Math. Phys., Volume 16 (1975), pp. 493-498
[52] A gluing construction for non-vacuum solutions of the Einstein constraint equations, Adv. Theor. Math. Phys., Volume 9 (2005) no. 1, pp. 129-172
[53] Future-complete null hypersurfaces, interior gluing and the Trautman-Bondi mass, Nonlinear Analysis in Geometry and Applied Mathematics (L. Bieri; P. T. Chruściel; S.-T. Yau, eds.) (Harvard University Center of Mathematical Sciences and Applications Series in Mathematics), Volume 1, International Press, Somerville, MA, 2017, pp. 1-31
[54] Long time existence from interior gluing, Class. Quantum Gravity, Volume 34 (2017) no. 14, 145016
[55] Localized deformation for initial data sets with the dominant energy condition, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 1, 42 | DOI
[56] Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., Volume 8 (1955), pp. 503-538
[57] A note on the Bartnik mass, Nonlinear Analysis in Geometry and Applied Mathematics (L. Bieri; P. T. Chruściel; S.-T. Yau, eds.) (Harvard University Center of Mathematical Sciences and Applications Series in Mathematics), Volume 1, International Press, Somerville, MA, 2017, pp. 49-75
[58] A short note on the Bartnik mass, Pure Appl. Math. Q., Volume 15 (2019) no. 3, pp. 827-838
[59] Bartnik mass minimizing initial data sets and improvability of the dominant energy scalar, J. Differential Geom., Volume 126 (2024) no. 2, pp. 741-800
[60] Localized gluing of Riemannian metrics in interpolating their scalar curvature, Differ. Geom. Appl., Volume 29 (2011) no. 3, pp. 433-439 | DOI
[61] The seed-to-solution method for the Einstein constraints and the asymptotic localization problem, J. Funct. Anal., Volume 285 (2023) no. 9, 110106
[62] Localized initial data for Einstein equations, preprint, 2022 | arXiv
[63] Initial data gluing in the asymptotically flat regime via solution operators with prescribed support properties, preprint, 2023 | arXiv
[64] A Bogovskiǐ-type operator for Corvino–Schoen hyperbolic gluing, preprint, 2024 | arXiv
[65] Topics in Nonlinear Functional Analysis (Chapter 6 by E. Zehnder. Notes by R. A. Artino. Revised reprint of the 1974 original), Courant Lecture Notes in Mathematics, 6, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001, p. xii + 145
[66] Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature, Comm. Anal. Geom., Volume 17 (2009) no. 2, pp. 343-381
[67] Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations, Ann. Henri Poincaré, Volume 11 (2010) no. 5, pp. 881-927
[68] Asymptotic gluing of shear-free hyperboloidal initial data sets, Ann. Henri Poincaré, Volume 22 (2021) no. 3, pp. 771-819
[69] Corvino’s construction using Brill waves, preprint, 2005 | arXiv
[70] Numerical construction of initial data for Einstein’s equations with static extensions to space-like infinity, Class. Quantum Gravity, Volume 33 (2016) no. 7, 075014
[71] Numerical initial data deformation exploiting a gluing construction: I. Exterior asymptotic Schwarzschild, Class. Quantum Gravity, Volume 36 (2019) no. 18, 185008
[72] Numerical approach for Corvino-type gluing of Brill–Lindquist initial data, Class. Quantum Gravity, Volume 36 (2019) no. 4, 045011
[73] Solution of the local mass problem in general relativity, Commun. Math. Phys., Volume 51 (1976) no. 3, pp. 283-296
[74] Variational methods and positive energy in general relativity, Ann. Phys., Volume 50 (1968), pp. 548-570
[75] Construction of Cauchy data of vacuum Einstein field equations evolving to black holes, Ann. Math. (2), Volume 181 (2015) no. 2, pp. 699-768 | DOI
[76] A construction of collapsing spacetimes in vacuum, Commun. Math. Phys., Volume 378 (2020) no. 2, pp. 1343-1389
[77] The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009, x + 589 pages
[78] Singular Yamabe metrics and initial data with exactly Kottler–Schwarzschild–de Sitter ends, Ann. Henri Poincaré, Volume 9 (2008) no. 4, pp. 639-654
[79] Global stability for nonlinear wave equations with multi-localized initial data, Ann. PDE, Volume 8 (2022) no. 2, 19 | DOI
[80] Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations, Proc. R. Soc. Lond. A, Volume 427 (1990) no. 1872, pp. 221-239
[81] On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not. IMRN, Volume 2012 (2012) no. 20, pp. 4625-4678
[82] Obstruction-free gluing for the Einstein equations, preprint, 2022 | arXiv
[83] Gravitational collapse to extremal black holes and the third law of black hole thermodynamics, preprint, 2022 | arXiv
Cited by Sources:
Comments - Policy