Comptes Rendus
Review article
Gluing for the Einstein constraint equations
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 29-52.

Initial data for the Einstein equations must satisfy a system of nonlinear partial differential equations, the Einstein constraint equations. Constructing interesting solutions of the constraint equations can then lead to interesting spacetime evolutions. Over the past twenty-five years, various gluing methods to construct solutions of the constraints have shed light on some long-standing questions. In this article we survey some of the methods and results achieved to date.

Les données initiales des équations d’Einstein doivent satisfaire un système d’équations aux dérivées partielles non linéaires, les équations de contrainte d’Einstein. La construction de solutions intéressantes des équations de contrainte peut alors conduire à des évolutions intéressantes de l’espace-temps. Au cours des vingt-cinq dernières années, diverses méthodes de recollement permettant de construire des solutions des équations de contrainte ont permis de faire la lumière sur certaines questions de longue date. Dans cet article, nous passons en revue quelques-unes des méthodes et des résultats obtenus à ce jour.

Received:
Accepted:
Published online:
DOI: 10.5802/crmeca.275
Keywords: Einstein constraint equations, Geometric analysis, Gluing constructions
Mots-clés : Equations de contrainte d’ Einstein, Analyse géométrique, Méthodes de recollement

Justin Corvino 1

1 Lafayette College, Department of Mathematics, Easton, PA 18042, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2025__353_G1_29_0,
     author = {Justin Corvino},
     title = {Gluing for the {Einstein} constraint equations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {29--52},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.275},
     language = {en},
}
TY  - JOUR
AU  - Justin Corvino
TI  - Gluing for the Einstein constraint equations
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 29
EP  - 52
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.275
LA  - en
ID  - CRMECA_2025__353_G1_29_0
ER  - 
%0 Journal Article
%A Justin Corvino
%T Gluing for the Einstein constraint equations
%J Comptes Rendus. Mécanique
%D 2025
%P 29-52
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.275
%G en
%F CRMECA_2025__353_G1_29_0
Justin Corvino. Gluing for the Einstein constraint equations. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 29-52. doi : 10.5802/crmeca.275. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.275/

[1] Y. Choquet-Bruhat General Relativity and the Einstein Equations, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2009, xxvi + 785 pages

[2] Y. Choquet-Bruhat The Cauchy problem, Gravitation: An Introduction to Current Research (L. Witten, ed.), John Wiley & Sons, Inc., New York-London, 1962, pp. 130-168

[3] Y. Choquet-Bruhat; J. W. York Jr The Cauchy problem, General Relativity and Gravitation (A. Held, ed.), Plenum Press, New York-London, 1980, pp. 99-172

[4] Y. Choquet-Bruhat Beginnings of the Cauchy problem for Einstein’s field equations, Surv. Differ. Geom., Volume 20 (2015), pp. 1-16

[5] Y. Fourès-Bruhat Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires, Acta Math., Volume 88 (1952), pp. 141-225 | DOI

[6] J. W. York Jr Gravitational degrees of freedom and the initial-value problem, Phys. Rev. Lett., Volume 26 (1971), pp. 1656-1658

[7] D. Maxwell Initial data in general relativity described by expansion, conformal deformation and drift, Comm. Anal. Geom., Volume 29 (2021) no. 1, pp. 207-281

[8] A. Lichnerowicz L’intégration des équations de la gravitation relativiste et le problème des n corps, J. Math. Pures Appl., Volume 23 (1944) no. 9, pp. 37-63

[9] P. Hintz Gluing small black holes along timelike geodesics I: formal solution, preprint, 2023 | arXiv

[10] P. Hintz Gluing small black holes into initial data sets, Commun. Math. Phys., Volume 405 (2024) no. 5, 114 | DOI

[11] S. Aretakis; S. Czimek; I. Rodnianski The characteristic gluing problem for the Einstein equations and applications, preprint, 2022 | arXiv | DOI

[12] P. T. Chruściel; J. Corvino; J. Isenberg Initial data for the relativistic gravitational N-body problem, Class. Quantum Gravity, Volume 27 (2010) no. 22, p. 6

[13] P. T. Chruściel; R. Mazzeo On “many-black-hole” vacuum spacetimes, Class. Quantum Gravity, Volume 20 (2003) no. 4, pp. 729-754 | DOI

[14] P. T. Chruściel; J. Corvino; J. Isenberg Construction of N-body time-symmetric initial data sets in general relativity, Complex Analysis and Dynamical Systems IV. Part 2 (Contemporary Mathematics), Volume 554, American Mathematical Society, Providence, RI, 2011, pp. 83-92 | DOI

[15] P. T. Chruściel; J. Corvino; J. Isenberg Construction of N-body initial data sets in general relativity, Commun. Math. Phys., Volume 304 (2011) no. 3, pp. 637-647 | DOI

[16] A. Carlotto; R. Schoen Localizing solutions of the Einstein constraint equations, Invent. Math., Volume 205 (2016) no. 3, pp. 559-615 | DOI

[17] J. Anderson; J. Corvino; F. Pasqualotto Multi-localized time-symmetric initial data for the Einstein vacuum equations, J. Reine Angew. Math. (Crelle’s Journal), Volume 808 (2024), pp. 67-110

[18] C. Racine Le problème des N corps dans la théorie de la relativité, Thèse, Gauthier-Villars, Paris (1934)

[19] G. Darmois Les équations de la gravitation einsteinienne, Mémor. Sci. Math., Volume 25 (1927), 58

[20] J. Isenberg; R. Mazzeo; D. Pollack Gluing and wormholes for the Einstein constraint equations, Commun. Math. Phys., Volume 231 (2002) no. 3, pp. 529-568 | DOI

[21] P. T. Chruściel; E. Delay On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications, Mém. Soc. Math. Fr. (N.S.), Volume 94 (2003), p. vi + 103 | DOI

[22] J. Corvino Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., Volume 214 (2000) no. 1, pp. 137-189 | DOI

[23] J. Corvino; R. M. Schoen On the asymptotics for the vacuum Einstein constraint equations, J. Differential Geom., Volume 73 (2006) no. 2, pp. 185-217 | DOI

[24] P. T. Chruściel; J. Isenberg; D. Pollack Initial data engineering, Commun. Math. Phys., Volume 257 (2005) no. 1, pp. 29-42 | DOI

[25] J. Corvino; M. Eichmair; P. Miao Deformation of scalar curvature and volume, Math. Ann., Volume 357 (2013) no. 2, pp. 551-584 | DOI

[26] L. Mazzieri Generalized gluing for the Einstein constraint equations, Calc. Var. Partial Differ. Equ., Volume 34 (2009) no. 4, pp. 453-473

[27] E. Delay; L. Mazzieri Refined gluing for the vacuum Einstein constraint equations, Geom. Dedicata, Volume 173 (2014), pp. 393-415

[28] J. Isenberg; R. Mazzeo; D. Pollack On the topology of vacuum spacetimes, Ann. Henri Poincaré, Volume 4 (2003) no. 2, pp. 369-383

[29] I. Stavrov Allen A gluing construction regarding point particles in general relativity, Ann. Henri Poincaré, Volume 10 (2010) no. 8, pp. 1437-1486

[30] P. T. Chruściel; E. Delay Existence of non-trivial, vacuum, asymptotically simple spacetimes, Class. Quantum Gravity, Volume 19 (2002) no. 9, p. L71-L79 | DOI

[31] J. Corvino On the existence and stability of the Penrose compactification, Ann. Henri Poincaré, Volume 8 (2007) no. 3, pp. 597-620 | DOI

[32] H. Friedrich On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986), pp. 587-609

[33] R. Bartnik Quasi-spherical metrics and prescribed scalar curvature, J. Differential Geom., Volume 37 (1993) no. 1, pp. 31-71

[34] J. Isenberg; D. Maxwell A phase space approach to the conformal construction of non-vacuum initial data sets in general relativity, preprint, 2021 | arXiv

[35] D. R. Brill; R. W. Lindquist Interaction energy in geometrostatics, Phys. Rev. (2), Volume 131 (1963), pp. 471-476

[36] C. Sormani; I. Stavrov Allen Geometrostatic manifolds of small ADM mass, Comm. Pure Appl. Math., Volume 72 (2019) no. 6, pp. 1243-1287 | DOI

[37] C. W. Misner The method of images in geometrostatics, Ann. Phys., Volume 24 (1963), pp. 102-117 | DOI

[38] Y. Fourès-Bruhat Sur l’intégration des équations de la relativité génŕale, J. Ration. Mech. Anal., Volume 5 (1956) no. 6, pp. 951-966

[39] N. Ó. Murchadha; J. W. York Jr Existence and uniqueness of solutions of the Hamiltonian constraint of general relativity on compact manifolds, J. Math. Phys., Volume 14 (1973) no. 11, pp. 1151-1557

[40] N. Ó. Murchadha; J. W. York Jr Initial-value problem of general relativity. I. General formulation and physical formulation, Phys. Rev. D, Volume 10 (1974) no. 2, pp. 428-436

[41] D. Maxwell The conformal method and the conformal thin-sandwich method are the same, Class. Quantum Gravity, Volume 31 (2014) no. 14, 145006

[42] R. M. Schoen; S.-T. Yau The energy and the linear momentum of space-times in general relativity, Commun. Math. Phys., Volume 79 (1981) no. 1, pp. 47-51

[43] R. Schoen; S. T. Yau On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys., Volume 65 (1979) no. 1, pp. 45-76 | DOI

[44] H. L. Bray Proof of the Riemannian Penrose inequality using the positive mass theorem, J. Differential Geom., Volume 59 (2001), pp. 177-267

[45] M. Eichmair; L.-H. Huang; D. A. Lee; R. M. Schoen The spacetime positive mass theorem in dimensions less than eight, J. Eur. Math. Soc., Volume 18 (2016), pp. 83-121

[46] L.-H. Huang On the center of mass of isolated systems with general asymptotics, Class. Quantum Gravity, Volume 26 (2009) no. 1, 015012

[47] A. J. Fang; J. Szeftel; A. Touati Initial data for Minkowski stability with arbitrary decay, preprint, 2024 | arXiv

[48] A. J. Fang; J. Szeftel; A. Touati Spacelike initial data for black hole stability, preprint, 2024 | arXiv

[49] A. E. Fischer; J. E. Marsden Deformations of the scalar curvature, Duke Math. J., Volume 42 (1975) no. 3, pp. 519-547 | DOI

[50] A. E. Fischer; J. E. Marsden Linearization stability of the Einstein equations, Bull. Am. Meteorol. Soc., Volume 79 (1973), pp. 997-1003

[51] V. Moncrief Spacetime symmetries and linearization of the Einstein equations I, J. Math. Phys., Volume 16 (1975), pp. 493-498

[52] J. Isenberg; D. Maxwell; D. Pollack A gluing construction for non-vacuum solutions of the Einstein constraint equations, Adv. Theor. Math. Phys., Volume 9 (2005) no. 1, pp. 129-172

[53] L. Bieri; P. T. Chruściel Future-complete null hypersurfaces, interior gluing and the Trautman-Bondi mass, Nonlinear Analysis in Geometry and Applied Mathematics (L. Bieri; P. T. Chruściel; S.-T. Yau, eds.) (Harvard University Center of Mathematical Sciences and Applications Series in Mathematics), Volume 1, International Press, Somerville, MA, 2017, pp. 1-31

[54] P. T. Chruściel Long time existence from interior gluing, Class. Quantum Gravity, Volume 34 (2017) no. 14, 145016

[55] J. Corvino; L.-H. Huang Localized deformation for initial data sets with the dominant energy condition, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 1, 42 | DOI

[56] A. Douglis; L. Nirenberg Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., Volume 8 (1955), pp. 503-538

[57] J. Corvino A note on the Bartnik mass, Nonlinear Analysis in Geometry and Applied Mathematics (L. Bieri; P. T. Chruściel; S.-T. Yau, eds.) (Harvard University Center of Mathematical Sciences and Applications Series in Mathematics), Volume 1, International Press, Somerville, MA, 2017, pp. 49-75

[58] J. Corvino A short note on the Bartnik mass, Pure Appl. Math. Q., Volume 15 (2019) no. 3, pp. 827-838

[59] L.-H. Huang; D. A. Lee Bartnik mass minimizing initial data sets and improvability of the dominant energy scalar, J. Differential Geom., Volume 126 (2024) no. 2, pp. 741-800

[60] E. Delay Localized gluing of Riemannian metrics in interpolating their scalar curvature, Differ. Geom. Appl., Volume 29 (2011) no. 3, pp. 433-439 | DOI

[61] P. G. LeFloch; T.-C. Nguyen The seed-to-solution method for the Einstein constraints and the asymptotic localization problem, J. Funct. Anal., Volume 285 (2023) no. 9, 110106

[62] Y. Mao; Z. Tao Localized initial data for Einstein equations, preprint, 2022 | arXiv

[63] Y. Mao; S.-J. Oh; Z. Tao Initial data gluing in the asymptotically flat regime via solution operators with prescribed support properties, preprint, 2023 | arXiv

[64] P. T. Chruściel; A. Cogo; A. Nützi A Bogovskiǐ-type operator for Corvino–Schoen hyperbolic gluing, preprint, 2024 | arXiv

[65] L. Nirenberg Topics in Nonlinear Functional Analysis (Chapter 6 by E. Zehnder. Notes by R. A. Artino. Revised reprint of the 1974 original), Courant Lecture Notes in Mathematics, 6, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2001, p. xii + 145

[66] P. T. Chruściel; E. Delay Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature, Comm. Anal. Geom., Volume 17 (2009) no. 2, pp. 343-381

[67] J. Isenberg; J. M. Lee; I. Stavrov Allen Asymptotic gluing of asymptotically hyperbolic solutions to the Einstein constraint equations, Ann. Henri Poincaré, Volume 11 (2010) no. 5, pp. 881-927

[68] P. T. Allen; J. Isenberg; J. M. Lee; I. Stavrov Allen Asymptotic gluing of shear-free hyperboloidal initial data sets, Ann. Henri Poincaré, Volume 22 (2021) no. 3, pp. 771-819

[69] D. Giulini; G. Holzegel Corvino’s construction using Brill waves, preprint, 2005 | arXiv

[70] G. Doulis; O. Rinne Numerical construction of initial data for Einstein’s equations with static extensions to space-like infinity, Class. Quantum Gravity, Volume 33 (2016) no. 7, 075014

[71] B. Daszuta; J. Frauendiener Numerical initial data deformation exploiting a gluing construction: I. Exterior asymptotic Schwarzschild, Class. Quantum Gravity, Volume 36 (2019) no. 18, 185008

[72] D. Pook-Kolb; D. Giulini Numerical approach for Corvino-type gluing of Brill–Lindquist initial data, Class. Quantum Gravity, Volume 36 (2019) no. 4, 045011

[73] Y. Choquet-Bruhat; J. E. Marsden Solution of the local mass problem in general relativity, Commun. Math. Phys., Volume 51 (1976) no. 3, pp. 283-296

[74] D. R. Brill; S. Deser Variational methods and positive energy in general relativity, Ann. Phys., Volume 50 (1968), pp. 548-570

[75] J. Li; P. Yu Construction of Cauchy data of vacuum Einstein field equations evolving to black holes, Ann. Math. (2), Volume 181 (2015) no. 2, pp. 699-768 | DOI

[76] J. Li; H. Mei A construction of collapsing spacetimes in vacuum, Commun. Math. Phys., Volume 378 (2020) no. 2, pp. 1343-1389

[77] D. Christodoulou The Formation of Black Holes in General Relativity, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2009, x + 589 pages

[78] P. T. Chruściel; D. Pollack Singular Yamabe metrics and initial data with exactly Kottler–Schwarzschild–de Sitter ends, Ann. Henri Poincaré, Volume 9 (2008) no. 4, pp. 639-654

[79] J. Anderson; F. Pasqualotto Global stability for nonlinear wave equations with multi-localized initial data, Ann. PDE, Volume 8 (2022) no. 2, 19 | DOI

[80] A. D. Rendall Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations, Proc. R. Soc. Lond. A, Volume 427 (1990) no. 1872, pp. 221-239

[81] J. Luk On the local existence for the characteristic initial value problem in general relativity, Int. Math. Res. Not. IMRN, Volume 2012 (2012) no. 20, pp. 4625-4678

[82] S. Czimek; I. Rodnianski Obstruction-free gluing for the Einstein equations, preprint, 2022 | arXiv

[83] C. Kehle; R. Unger Gravitational collapse to extremal black holes and the third law of black hole thermodynamics, preprint, 2022 | arXiv

Cited by Sources:

Comments - Policy