Comptes Rendus
Research article
Efficient FFT solver for discrete dislocation dynamics with sharp field description of plastic strain in FCC metals
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1005-1025

Discrete Dislocation Dynamics (DDD) is an established mesoscopic numerical method for simulating dislocation motion to determine the plastic behaviour of metals. However, DDD’s reliance on analytical expressions for internal stress fields limits its application to infinite isotropic media. The Discrete-Continuous Model (DCM), which couples DDD with a finite element elastic solver, has been proposed to handle more complex boundary conditions by regularising plastic strain using the eigenstrain formalism. However, this model still relies on analytical solutions for short-range dislocation interactions, making it unsuitable for anisotropic media. In this work, we present an improved DCM framework that replaces the FE solver with a Fast Fourier transform (FFT) solver for improved computational efficiency and full numerical calculation of stress fields, eliminating the need for analytical corrections. The proposed FFT solver employs a discrete theory of Green’s operators and uses a sharp eigenstrain field to describe dislocations. The solver mesh is aligned with the face-centred cubic (fcc) lattice of the DDD, forming an octahedral cell to address symmetry artefacts around $\lbrace 111\rbrace $ slip planes. Our FFT-based approach successfully maintains numerical stability by representing fcc dislocations as sharp fields without generating oscillations. This coupling allows the study of plasticity in anisotropic materials and interactions between dislocations and diffuse inclusions, such as precipitates, without short-range stress corrections.

La dynamique des dislocations discrètes (DDD) est une méthode numérique mésoscopique bien établie pour simuler le mouvement des dislocations et déterminer le comportement plastique des métaux. Toutefois, elle repose généralement sur les expressions analytiques des champs de contraintes obtenues dans des milieux isotropes infinis, ce qui en limite l’application. Le modèle discret-continu (DCM), qui couple la DDD avec un solveur élastique par éléments finis (EF) grâce au formalisme des déformations libres, avait été proposé pour traiter des conditions aux limites plus complexes. Cependant, ce modèle utilise également des solutions analytiques pour les interactions à courte portée, ce qui le rend inadapté aux milieux anisotropes. Dans ce travail, nous présentons une version améliorée du DCM en remplaçant le solveur EF par un solveur utilisant les transformées de Fourier rapides (FFT), plus efficace et supprimant la nécessité des corrections analytiques à courte portée. Pour cela, ce solveur s’appuie sur trois ingrédients  : (i) un champ de déformation propre abrupt (discontinu à l’échelle du maillage) pour décrire les dislocations  ; (ii) un maillage CFC conforme à celui du code DDD sur lequel un “stencil” octaédrique est utilisé pour préserver les symétries des plans de glissement $\lbrace 111\rbrace $  ; (iii) enfin un opérateur de Green discret. Ce solveur parvient ainsi à gérer des dislocations décrites par des champs abrupts sans générer d’oscillations. Couplé à la DDD, il permet d’étudier la plasticité dans les matériaux anisotropes et les interactions entre dislocations et des inclusions diffuses, sans corriger les contraintes aux cœurs des dislocations comme ce qui est fait habituellement.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.306
Keywords: Discrete dislocation dynamics, fast Fourier transform, eigenstrain, sharp
Mots-clés : Dynamique des dislocations discrètes, transformée de Fourier rapide (FFT), déformation propre (eigenstrain), champ abrupt

Luis Eon 1; Benoît Appolaire 2; Riccardo Gatti 1

1 Université Paris-Saclay, ONERA, CNRS, Laboratoire d’Étude des Microstructures (LEM), 92322 Châtillon, France
2 Université de Lorraine, CNRS, IJL, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2025__353_G1_1005_0,
     author = {Luis Eon and Beno{\^\i}t Appolaire and Riccardo Gatti},
     title = {Efficient {FFT} solver for discrete dislocation dynamics with sharp field description of plastic strain in {FCC} metals},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1005--1025},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.306},
     language = {en},
}
TY  - JOUR
AU  - Luis Eon
AU  - Benoît Appolaire
AU  - Riccardo Gatti
TI  - Efficient FFT solver for discrete dislocation dynamics with sharp field description of plastic strain in FCC metals
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1005
EP  - 1025
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.306
LA  - en
ID  - CRMECA_2025__353_G1_1005_0
ER  - 
%0 Journal Article
%A Luis Eon
%A Benoît Appolaire
%A Riccardo Gatti
%T Efficient FFT solver for discrete dislocation dynamics with sharp field description of plastic strain in FCC metals
%J Comptes Rendus. Mécanique
%D 2025
%P 1005-1025
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.306
%G en
%F CRMECA_2025__353_G1_1005_0
Luis Eon; Benoît Appolaire; Riccardo Gatti. Efficient FFT solver for discrete dislocation dynamics with sharp field description of plastic strain in FCC metals. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1005-1025. doi: 10.5802/crmeca.306

[1] John Price Hirth; Jens Lothe Theory of dislocations, Materials Science and Engineering Series, McGraw-Hill, 1967, viii+780 pages | Zbl

[2] Benoît Devincre Three-dimensional stress field expressions for straight dislocation segments, Solid State Commun., Volume 93 (1995), pp. 875-878 | DOI

[3] W. Cai; A. Arsenlis; C. R. Weinberger; V. V. Bulatov A non-singular continuum theory of dislocations, J. Mech. Phys. Solids, Volume 54 (2006), pp. 561-587 | DOI | MR | Zbl

[4] Aurélien J. Vattré; Benoît Devincre; Frédéric Feyel; Riccardo Gatti; Sébastien Groh; Olivier Jamond; Arjen Roos Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: the discrete-continuous model revisited, J. Mech. Phys. Solids, Volume 63 (2014), pp. 491-505 | DOI | MR

[5] Olivier Jamond; Riccardo Gatti; Arjen Roos; Benoît Devincre Consistent formulation for the discrete-continuous model: improving complex dislocation dynamics simulations, Int. J. Plast., Volume 80 (2016), pp. 19-37 | DOI

[6] Toshio Mura Micromechanics of defects in solids, Mechanics of Elastic and Inelastic Solids, 3, Martinus Nijhoff Publishers, 1987, xii+489 pages | DOI | Zbl

[7] H. Moulinec; P. Suquet A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998), pp. 69-94 | DOI | MR | Zbl

[8] F. Willot; B. Abdallah; Y.-P. Pellegrini Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields, Int. J. Numer. Methods Eng., Volume 98 (2014), pp. 518-533 | DOI | MR | Zbl

[9] F. Willot Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc., Volume 343 (2015), pp. 232-245 | DOI

[10] M. Schneider; F. Ospald; M. Kabel Computational homogenization of elasticity on a staggered grid, Int. J. Numer. Methods Eng., Volume 105 (2016), pp. 693-720 | DOI | MR | Zbl

[11] P.-L. Valdenaire Plasticité cristalline – Équations de transport et densités de dislocations, Ph. D. Thesis, Université de recherche Paris Sciences et Lettres (France) (2016)

[12] M. Schneider A review of nonlinear FFT-based computational homogenization methods, Acta Mech., Volume 232 (2021), pp. 2051-2100 | DOI | MR | Zbl

[13] N. Bertin; M. V. Upadhyay; C. Pradalier; Laurent Capolungo A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics, Model. Simul. Mat. Sci. Eng., Volume 23 (2015), 065009 | DOI

[14] N. Bertin; Laurent Capolungo A FFT-based formulation for discrete dislocation dynamics in heterogeneous media, J. Comput. Phys., Volume 355 (2018), pp. 366-384 | DOI | MR | Zbl

[15] A. Ruffini; Y. Le Bouar; A. Finel Three-dimensional phase-field model of dislocations for a heterogeneous face-centered cubic crystal, J. Mech. Phys. Solids, Volume 105 (2017), pp. 95-115 | DOI | MR

[16] M. Schneider; D. Merkert; M. Kabel FFT-based homogenization for microstructures discretized by linear hexahedral elements, Int. J. Numer. Methods Eng., Volume 109 (2017), pp. 1461-1489 | DOI | MR | Zbl

[17] Komlavi Senyo Eloh; Alain Jacques; Gabor Ribarik; Stéphane Berbenni The effect of crystal defects on 3D high-resolution diffraction peaks: a FFT-based method, Materials, Volume 11 (2018) no. 9, 1669

[18] Komlavi Senyo Eloh; Alain Jacques; Stéphane Berbenni Development of a new consistent discrete green operator for FFT-based methods to solve heterogeneous problems with eigenstrains, Int. J. Plast., Volume 116 (2019), pp. 1-23 | DOI

[19] Stéphane Berbenni; Vincent Taupin; Komlan Sénam Djaka; Claude Fressengeas A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics, Int. J. Solids Struct., Volume 51 (2014) no. 23, pp. 4157-4175 | DOI

[20] Komlan Sénam Djaka; Aurélien Villani; Vincent Taupin; Laurent Capolungo; Stéphane Berbenni Field Dislocation Mechanics for heterogeneous elastic materials: a numerical spectral approach, Comput. Methods Appl. Mech. Eng., Volume 315 (2017), pp. 921-942 | DOI | MR | Zbl

[21] L. Korzeczek Modélisation mésoscopique en 3D par le modèle discret-continu de la stabilité des fissures courtes dans les métaux CFC, Ph. D. Thesis, Université de Paris-Saclay (France) (2017)

[22] Benoît Devincre; Ronan Madec; G. Monnet; Sylvain Queyreau; Riccardo Gatti; Ladislas P. Kubin Modeling crystal plasticity with dislocation dynamics simulations: the ‘microMegas’ code, Mechanics of nano-objects (Olivier Thomas; Anne Ponchet; Samuel Forest, eds.) (Sciences de la Matière), Presses des Mines, 2011, pp. 81-99

[23] Armen Gurgenovich Khachaturyan Theory of structural transformation in solids, John Wiley & Sons, 1983

[24] J. C. Michel; H. Moulinec; P. Suquet A computational scheme for linear and non-linear composites with arbitrary phase contrast, Int. J. Numer. Methods Eng., Volume 52 (2001), pp. 139-160 | DOI

[25] H. Moulinec; F. Silva Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, Int. J. Numer. Methods Eng., Volume 97 (2014), pp. 960-985 | DOI | MR | Zbl

[26] W. H. Müller Fourier transforms and their application to the formation of textures and changes of morphology in solids, IUTAM Symposium on Transformation Problems in Composite and Active Materials (Yehia A. Bahei-El-Din; George J. Dvorak, eds.) (Solid Mechanics and Its Applications), Springer, 1998 no. 60, pp. 61-72

[27] F. Willot; Y.-P. Pellegrini Fast Fourier transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media, Continuum Models and Discrete Systems CMDS 11 (Sciences de la Matière), Presses des Mines, 2008, pp. 443-449

[28] D. Pekurovsky P3DFFT: a framework for parallel computations of Fourier transforms in three dimensions, SIAM J. Sci. Comput., Volume 34 (2012), p. C192-C209 | DOI | MR | Zbl

[29] S. Aubry; S. P. Fitzgerald; S. L. Dudarev; W. Cai Equilibrium shape of dislocation shear loops in anisotropic α-Fe, Model. Simul. Mat. Sci. Eng., Volume 19 (2011), 065006 | DOI

[30] Markus Lazar; Giacomo Po Non-singular straight dislocations in anisotropic crystals, J. Mater. Sci.: Mater. Theory, Volume 8 (2024), 5

[31] K. Ammar; B. Appolaire; G. Cailletaud; Samuel Forest Combining phase field approach and homogenization methods for modelling phase transformation in elastoplastic media, Eur. J. Comput. Mech., Volume 18 (2009) no. 5-6, pp. 485-523 | DOI | Zbl

[32] K. Ammar; B. Appolaire; Samuel Forest Splitting of dissolving precipitates during plastic shear: a phase field study, C. R. Phys. (2021), pp. 1-18

[33] M. Cottura; B. Appolaire; A. Finel; Y. Le Bouar Microstructure evolution under [110] creep in Ni-base superalloys, Acta Mater., Volume 212 (2021), 116851 | DOI

[34] L. Morin; R. Brenner; K. Derrien; K. Dorhmi Periodic smoothing splines for FFT-based solvers, Comput. Methods Appl. Mech. Eng., Volume 373 (2021), 113549 | DOI | MR | Zbl

[35] D. Schneider; O. Tschukin; A. Choudhury; M. Selzer; T. Böhlke; B. Nestler Phase-field elasticity model based on mechanical jump conditions, Comput. Mech., Volume 55 (2015), pp. 887-901 | DOI | MR | Zbl

[36] C. Mareau; C. Robert Different composite voxel methods for the numerical homogenization of heterogeneous inelastic materials with FFT-based techniques, Mech. Mater., Volume 105 (2017), pp. 157-165 | DOI

[37] L. Eon Modélisation de la propagation d’une fissure courte en matériau ductile par couplage entre champ de phase et dynamique des dislocations, Ph. D. Thesis, Université de Paris-Saclay (France) (2022)

Cited by Sources:

Comments - Policy