Comptes Rendus
Research article
Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 815-862

Within the framework of second-order gradient theory and the multi-scale modeling approach for periodic composite materials, a key challenge lies in determining the four tensors: $\mathbb{A}^{0,0}$, $\mathbb{B}^{0,1}$, $\mathbb{C}^{0,0}$, and $\mathbb{D}^{0,0}$, which appear in the asymptotic expansion of the energy. This paper presents the numerical evaluation and simulation of these tensors across various geometric configurations, employing a modified Green’s kernel-accelerated scheme to efficiently handle high-contrast cases. Extensive 3D simulations are conducted for multiple distinct geometries, accompanied by a detailed analysis of tensor values, computational efficiency, and classification. The results provide valuable insights into the behavior of these tensors across different morphological structures, contributing to a deeper understanding of advanced composite material modeling.

Dans le cadre de la théorie du gradient d’ordre deux et de l’approche de modélisation multi-échelle des matériaux composites périodiques, un défi majeur réside dans la détermination des quatre tenseurs : $\mathbb{A}^{0,0}$, $\mathbb{B}^{0,1}$, $\mathbb{C}^{0,0}$, et $\mathbb{D}^{0,0}$ qui apparaissent dans le développement asymptotique de l’énergie. Cet article présente l’évaluation numérique et la simulation de ces tenseurs pour différentes configurations géométriques, en utilisant un schéma modifié accéléré par le noyau de Green pour traiter efficacement les cas à fort contraste. De nombreuses simulations 3D sont menées pour plusieurs géométries distinctes, accompagnées d’une analyse détaillée des valeurs des tenseurs, de l’efficacité numérique et d’une classification. Les résultats fournissent des informations précieuses sur le comportement de ces tenseurs selon différentes structures morphologiques, contribuant ainsi à une meilleure compréhension de la modélisation avancée des matériaux composites.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.307
Keywords: Second-order gradient, high contrast, periodic composite materials, multi-scale modeling, simulation, FFT, FEM
Mots-clés : Gradient d’ordre deux, fort contraste, matériaux composites périodiques, modélisation multi-échelle, simulation, FFT, FEM

Alioune Nacro 1; Philippe Karamian-Surville 1; Sophie Lemaitre 1

1 Normandy University, UNICAEN, UMR 6139, CNRS, Nicolas Oresme Mathematics Laboratory, 14000 Caen, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2025__353_G1_815_0,
     author = {Alioune Nacro and Philippe Karamian-Surville and Sophie Lemaitre},
     title = {Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {815--862},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.307},
     language = {en},
}
TY  - JOUR
AU  - Alioune Nacro
AU  - Philippe Karamian-Surville
AU  - Sophie Lemaitre
TI  - Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 815
EP  - 862
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.307
LA  - en
ID  - CRMECA_2025__353_G1_815_0
ER  - 
%0 Journal Article
%A Alioune Nacro
%A Philippe Karamian-Surville
%A Sophie Lemaitre
%T Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory
%J Comptes Rendus. Mécanique
%D 2025
%P 815-862
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.307
%G en
%F CRMECA_2025__353_G1_815_0
Alioune Nacro; Philippe Karamian-Surville; Sophie Lemaitre. Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 815-862. doi: 10.5802/crmeca.307

[1] Sophie Lemaitre Modélisation des matériaux composites multiphasiques à microstructures complexes. Étude des propriétés effectives par des méthodes d’homogénéisation, Ph. D. Thesis, Université de CAEN Normandie (France) (2017)

[2] A. Cemal Eringen Nonlocal polar elastic continua, Int. J. Eng. Sci., Volume 10 (1972) no. 1, pp. 1-16 | DOI | MR | Zbl

[3] Markus Lazar; Giacomo Po On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split, J. Micromech. Mol. Phys., Volume 3 (2018) no. 03n04, 1840008 | DOI

[4] Markus Lazar; Eleni Agiasofitou; Thomas Böhlke Mathematical modeling of the elastic properties of cubic crystals at small scales based on the Toupin–Mindlin anisotropic first strain gradient elasticity, Contin. Mech. Thermodyn., Volume 34 (2022) no. 1, pp. 107-136 | DOI | MR | Zbl

[5] Giacomo Po; Nikhil Chandra Admal; Markus Lazar The Green tensor of Mindlin’s anisotropic first strain gradient elasticity, Mater. Theory, Volume 3 (2019), pp. 1-16 | DOI

[6] Patrice Cartraud; Stéphane Bourgeois; M. Sharafaty-Zangeneh Homogénéisation d’ordre supérieur de composites élastiques (2005) (7e Colloque National en Calcul des Structures)

[7] J. L. Auriault; D. Caillerie Quelques remarques sur les méthodes d’homogénéisation, Rev. Franc. Géotech. (1989) no. 49, pp. 43-50 | DOI

[8] Baptiste Durand Modélisation numérique et caractérisation expérimentale de matériaux architecturés au comportement élastique de second gradient, Ph. D. Thesis, École des Ponts ParisTech (France) (2022)

[9] Jean-Claude Michel; Hervé Moulinec; Pierre Suquet Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Eng., Volume 172 (1999) no. 1-4, pp. 109-143 | DOI | MR | Zbl

[10] Bart Gommers; Ignace Verpoest; Paul Van Houtte The Mori–Tanaka method applied to textile composite materials, Acta Mater., Volume 46 (1998) no. 6, pp. 2223-2235 | DOI

[11] R. Christensen; H. Schantz; J. Shapiro On the range of validity of the Mori–Tanaka method, J. Mech. Phys. Solids, Volume 40 (1992) no. 1, pp. 69-73 | DOI

[12] Tanaka Mori; Kohichi Tanaka Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973) no. 5, pp. 571-574 | DOI

[13] Thu-Huong Tran; Vincent Monchiet; Guy Bonnet A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., Volume 49 (2012) no. 5, pp. 783-792 | DOI

[14] Matti Schneider Convergence of FFT-based homogenization for strongly heterogeneous media, Math. Methods Appl. Sci., Volume 38 (2015) no. 13, pp. 2761-2778 | DOI | MR | Zbl

[15] Hervé Moulinec; Pierre Suquet; Graeme W. Milton On the convergence test of FFT-based methods, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering (2016)

[16] Hervé Moulinec; Pierre Suquet A fast numerical method for computing the linear and nonlinear mechanical properties of composites, C. R. Méc., Volume 318 (1994), pp. 1417-1423 | Zbl

[17] Hervé Moulinec; Pierre Suquet A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1-2, pp. 69-94 | DOI | MR | Zbl

[18] Matti Schneider A review of nonlinear FFT-based computational homogenization methods, Acta Mech., Volume 232 (2021) no. 6, pp. 2051-2100 | DOI | MR | Zbl

[19] Sergio Lucarini; Manas V Upadhyay; Javier Segurado FFT based approaches in micromechanics: fundamentals, methods and applications, Model. Simul. Mat. Sci. Eng., Volume 30 (2021) no. 2, 023002, 98 pages | DOI

[20] Michel Bornert; Thierry Bretheau; Pierre Gilormini Homogénéisation en mécanique des matériaux, Hermès Science, 2001, 250 pages

[21] E. Kröner Elasticity theory of materials with long range cohesive forces, Int. J. Solids Struct., Volume 3 (1967) no. 5, pp. 731-742 | DOI | Zbl

[22] J. A. Krumhansl Some considerations of the relation between solid state physics and generalized continuum mechanics, Mechanics of Generalized Continua: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) 1967, Springer (1968), pp. 298-311 | DOI | Zbl

[23] A. Cemal Eringen; D. G. B. Edelen On nonlocal elasticity, Int. J. Eng. Sci., Volume 10 (1972) no. 3, pp. 233-248 | MR | DOI | Zbl

[24] Ronnie Henricus Johannes Peerlings Enhanced damage modelling for fracture and fatigue, Ph. D. Thesis, Eindhoven University of Technology (The Netherlands) (1999)

[25] Ronnie Henricus Johannes Peerlings; René de Borst; W. A. Marcel Brekelmans; J. H. P. de Vree; I. Spee Some observations on localisation in non-local and gradient damage models, Eur. J. Mech. A Solids, Volume 15 (1996), pp. 937-953 | Zbl

[26] Ronnie Henricus Johannes Peerlings; René de Borst; W. A. Marcel Brekelmans; J. H. P. de Vree Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Eng., Volume 39 (1996) no. 19, pp. 3391-3403 | Zbl | DOI

[27] Ronnie Henricus Johannes Peerlings; Marc G. D. Geers; René de Borst; W. A. Marcel Brekelmans A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., Volume 38 (2001) no. 44-45, pp. 7723-7746 | DOI | Zbl

[28] Albert Edward Green; Ronald S. Rivlin Multipolar continuum mechanics, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 113-147 | DOI | MR | Zbl

[29] H. Askes; L. J. Sluys Explicit and implicit gradient series in damage mechanics, Eur. J. Mech. A Solids, Volume 21 (2002) no. 3, pp. 379-390 | DOI | Zbl

[30] Richard A. Toupin Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., Volume 11 (1962) no. 1, pp. 385-414 | DOI | MR | Zbl

[31] Richard A. Toupin Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., Volume 17 (1964) no. 2, pp. 85-112 | DOI | MR | Zbl

[32] Raymond David Mindlin Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., Volume 1 (1965) no. 4, pp. 417-438 | DOI

[33] Kim Pham Construction et analyse de modèles d’endommagement à gradient, Ph. D. Thesis, Université Pierre et Marie Curie–Paris VI (France) (2010)

[34] Kim Pham; Hanen Amor; Jean-Jacques Marigo; Corrado Maurini Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652 | DOI

[35] Kim Pham; Jean-Jacques Marigo From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models, Contin. Mech. Thermodyn., Volume 25 (2013), pp. 147-171 | DOI | MR | Zbl

[36] Ahmed Benallal; Jean-Jacques Marigo Bifurcation and stability issues in gradient theories with softening, Model. Simul. Mat. Sci. Eng., Volume 15 (2006) no. 1, p. S283-S295 | DOI

[37] Houssam Abdoul Anziz Homogénéisation de composites élastiques périodiques à fort contraste: conception de métamatériaux de second gradient, Ph. D. Thesis, Université de Toulon (France) (2018)

[38] Claude Boutin; Jean Soubestre; M. Dietz Milieux à double gradient pour matériaux renforcés. Modélisation théorique et expérimentale, CFM 2011-20ème Congrès Français de Mécanique, AFM, 2011, 6 pages

[39] Raymond David Mindlin; N. N. Eshel On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., Volume 4 (1968) no. 1, pp. 109-124 | DOI | Zbl

[40] Duy-Khanh Trinh Méthodes d’homogénéisation d’ordre supérieur pour les matériaux architecturés, Ph. D. Thesis, École Nationale Supérieure des Mines de Paris (France) (2011)

[41] Thu-Huong Tran Comportement homogénéisé des matériaux composites: prise en compte de la taille des éléments microstructuraux et des gradients de la déformation, Ph. D. Thesis, Université Paris-Est (France) (2013)

[42] Sami Ben Elhaj Salah; Azdine Nait-Ali; Mikael Gueguen; Carole Nadot-Martin Non-local modeling with asymptotic expansion homogenization of random materials, Mech. Mater., Volume 147 (2020), 103459, 18 pages

[43] Hervé Moulinec; Pierre Suquet Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Phys. B: Condens. Matter, Volume 338 (2003) no. 1-4, pp. 58-60 | DOI

[44] Sami Ben Elhaj Salah Modélisation non-locale et stochastique de matériaux à fort gradient de propriétés par développement asymptotique, Ph. D. Thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique, Poitiers (France) (2019)

[45] François Willot Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc., Volume 343 (2015) no. 3, pp. 232-245 | DOI

[46] Alphonse Finel A fast and robust discrete FFT-based solver for computational homogenization (2024) | arXiv | Zbl

[47] Marc François Tenseurs en mécanique (2018) (Lecture notes “M2 Mécanique et fiabilité des structures”)

[48] Marc François; Giuseppe Geymonat; Yves Berthaud Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements, Int. J. Solids Struct., Volume 35 (1998) no. 31-32, pp. 4091-4106 | DOI | Zbl

[49] Sandra Forte; Maurizio Vianello Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Eng. Sci., Volume 35 (1997) no. 14, pp. 1317-1326 | DOI | MR | Zbl

[50] Alain Bensoussan; Jacques-Louis Lions; George Papanicolaou Asymptotic analysis for periodic structures, AMS Chelsea Publishing, Providence, RI, 2011, xii+398 pages (Corrected reprint of the 1978 original) | MR | Zbl | DOI

[51] Jacques-Louis Lions Asymptotic expansions in perforated media with a periodic structure, Rocky Mt. J. Math., Volume 10 (1980) no. 1, pp. 125-140 | MR | Zbl

[52] Enrique Sanchez-Palencia Non-homogeneous media and vibration theory, Lecture Notes in Physics, 320, Springer, 1980, 406 pages | MR | Zbl

[53] Enrique Sanchez-Palencia Comportements local et macroscopique d’un type de milieux physiques heterogenes, Int. J. Eng. Sci., Volume 12 (1974) no. 4, pp. 331-351 | Zbl | DOI | MR

[54] Jacqueline Sanchez-Hubert; Enrique Sanchez-Palencia Introduction aux méthodes asymptotiques et à l’homogénéisation, Masson, 1992, 280 pages

[55] B. Miara; Enrique Sanchez-Palencia Asymptotic analysis of linearly elastic shells, Asymptotic Anal., Volume 12 (1996) no. 1, pp. 41-54 | MR | Zbl | DOI

[56] Richard A. Toupin Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., Volume 11 (1962) no. 1, pp. 385-414 | DOI | MR | Zbl

[57] Raymond David Mindlin Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 51-78 | DOI | MR | Zbl

[58] Castrenze Polizzotto A note on the higher order strain and stress tensors within deformation gradient elasticity theories: Physical interpretations and comparisons, Int. J. Solids Struct., Volume 90 (2016), pp. 116-121 | DOI

[59] George E. Exadaktylos; Ioannis Vardoulakis Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, Volume 335 (2001) no. 1-2, pp. 81-109 | DOI

[60] Markus Lazar; Gérard A. Maugin Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Eng. Sci., Volume 43 (2005) no. 13-14, pp. 1157-1184 | DOI | MR | Zbl

[61] Thu-Huong Tran; Vincent Monchiet; Guy Bonnet A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., Volume 49 (2012) no. 5, pp. 783-792 | DOI

[62] O. Débordes Homogenization computations in the elastic or plastic collapse range applications to unidirectional composites and perforated sheets, Proceedings of the 4th International Symposium Innovative Numerical Methods in Engineering, Springer (1986), pp. 453-458

[63] Albert Edward Green; Ronald S. Rivlin Multipolar continuum mechanics, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 113-147 | DOI | MR | Zbl

[64] CRIANN Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN) https://www.criann.fr (Accessed 2024-10-01)

[65] CRIANN Guide d’utilisation du calculateur Myria https://services.criann.fr/... (Accessed 2024-10-01)

[66] CRIANN Guide d’utilisation du cluster Austral https://services.criann.fr/... (Accessed 2024-10-01)

[67] CRIANN Modules https://services.criann.fr/... (Accessed 2024-10-01)

[68] CRIANN Description de la configuration https://services.criann.fr/... (Accessed 2024-10-01)

[69] Salma Barboura; Jia Li Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures, Int. J. Solids Struct., Volume 136 (2018), pp. 60-76 | DOI

[70] Hua Yang; B. Emek Abali; Wolfgang H. Müller; Salma Barboura; Jia Li Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum, Int. J. Solids Struct., Volume 238 (2022), 111386, 19 pages | DOI

[71] Vincent Monchiet; Nicolas Auffray; Julien Yvonnet Strain-gradient homogenization: a bridge between the asymptotic expansion and quadratic boundary condition methods, Mech. Mater., Volume 143 (2020), 103309, 22 pages

[72] Walter J. Drugan; John R. Willis A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, Volume 44 (1996) no. 4, pp. 497-524 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy