Within the framework of second-order gradient theory and the multi-scale modeling approach for periodic composite materials, a key challenge lies in determining the four tensors: $\mathbb{A}^{0,0}$, $\mathbb{B}^{0,1}$, $\mathbb{C}^{0,0}$, and $\mathbb{D}^{0,0}$, which appear in the asymptotic expansion of the energy. This paper presents the numerical evaluation and simulation of these tensors across various geometric configurations, employing a modified Green’s kernel-accelerated scheme to efficiently handle high-contrast cases. Extensive 3D simulations are conducted for multiple distinct geometries, accompanied by a detailed analysis of tensor values, computational efficiency, and classification. The results provide valuable insights into the behavior of these tensors across different morphological structures, contributing to a deeper understanding of advanced composite material modeling.
Dans le cadre de la théorie du gradient d’ordre deux et de l’approche de modélisation multi-échelle des matériaux composites périodiques, un défi majeur réside dans la détermination des quatre tenseurs : $\mathbb{A}^{0,0}$, $\mathbb{B}^{0,1}$, $\mathbb{C}^{0,0}$, et $\mathbb{D}^{0,0}$ qui apparaissent dans le développement asymptotique de l’énergie. Cet article présente l’évaluation numérique et la simulation de ces tenseurs pour différentes configurations géométriques, en utilisant un schéma modifié accéléré par le noyau de Green pour traiter efficacement les cas à fort contraste. De nombreuses simulations 3D sont menées pour plusieurs géométries distinctes, accompagnées d’une analyse détaillée des valeurs des tenseurs, de l’efficacité numérique et d’une classification. Les résultats fournissent des informations précieuses sur le comportement de ces tenseurs selon différentes structures morphologiques, contribuant ainsi à une meilleure compréhension de la modélisation avancée des matériaux composites.
Revised:
Accepted:
Published online:
Mots-clés : Gradient d’ordre deux, fort contraste, matériaux composites périodiques, modélisation multi-échelle, simulation, FFT, FEM
Alioune Nacro 1; Philippe Karamian-Surville 1; Sophie Lemaitre 1
CC-BY 4.0
@article{CRMECA_2025__353_G1_815_0,
author = {Alioune Nacro and Philippe Karamian-Surville and Sophie Lemaitre},
title = {Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory},
journal = {Comptes Rendus. M\'ecanique},
pages = {815--862},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.307},
language = {en},
}
TY - JOUR AU - Alioune Nacro AU - Philippe Karamian-Surville AU - Sophie Lemaitre TI - Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory JO - Comptes Rendus. Mécanique PY - 2025 SP - 815 EP - 862 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.307 LA - en ID - CRMECA_2025__353_G1_815_0 ER -
%0 Journal Article %A Alioune Nacro %A Philippe Karamian-Surville %A Sophie Lemaitre %T Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory %J Comptes Rendus. Mécanique %D 2025 %P 815-862 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.307 %G en %F CRMECA_2025__353_G1_815_0
Alioune Nacro; Philippe Karamian-Surville; Sophie Lemaitre. Multi-scale modeling and simulation of high-contrast periodic composite materials: second-order gradient theory. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 815-862. doi: 10.5802/crmeca.307
[1] Modélisation des matériaux composites multiphasiques à microstructures complexes. Étude des propriétés effectives par des méthodes d’homogénéisation, Ph. D. Thesis, Université de CAEN Normandie (France) (2017)
[2] Nonlocal polar elastic continua, Int. J. Eng. Sci., Volume 10 (1972) no. 1, pp. 1-16 | DOI | MR | Zbl
[3] On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split, J. Micromech. Mol. Phys., Volume 3 (2018) no. 03n04, 1840008 | DOI
[4] Mathematical modeling of the elastic properties of cubic crystals at small scales based on the Toupin–Mindlin anisotropic first strain gradient elasticity, Contin. Mech. Thermodyn., Volume 34 (2022) no. 1, pp. 107-136 | DOI | MR | Zbl
[5] The Green tensor of Mindlin’s anisotropic first strain gradient elasticity, Mater. Theory, Volume 3 (2019), pp. 1-16 | DOI
[6] Homogénéisation d’ordre supérieur de composites élastiques (2005) (7e Colloque National en Calcul des Structures)
[7] Quelques remarques sur les méthodes d’homogénéisation, Rev. Franc. Géotech. (1989) no. 49, pp. 43-50 | DOI
[8] Modélisation numérique et caractérisation expérimentale de matériaux architecturés au comportement élastique de second gradient, Ph. D. Thesis, École des Ponts ParisTech (France) (2022)
[9] Effective properties of composite materials with periodic microstructure: a computational approach, Comput. Methods Appl. Mech. Eng., Volume 172 (1999) no. 1-4, pp. 109-143 | DOI | MR | Zbl
[10] The Mori–Tanaka method applied to textile composite materials, Acta Mater., Volume 46 (1998) no. 6, pp. 2223-2235 | DOI
[11] On the range of validity of the Mori–Tanaka method, J. Mech. Phys. Solids, Volume 40 (1992) no. 1, pp. 69-73 | DOI
[12] Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., Volume 21 (1973) no. 5, pp. 571-574 | DOI
[13] A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., Volume 49 (2012) no. 5, pp. 783-792 | DOI
[14] Convergence of FFT-based homogenization for strongly heterogeneous media, Math. Methods Appl. Sci., Volume 38 (2015) no. 13, pp. 2761-2778 | DOI | MR | Zbl
[15] On the convergence test of FFT-based methods, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering (2016)
[16] A fast numerical method for computing the linear and nonlinear mechanical properties of composites, C. R. Méc., Volume 318 (1994), pp. 1417-1423 | Zbl
[17] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1-2, pp. 69-94 | DOI | MR | Zbl
[18] A review of nonlinear FFT-based computational homogenization methods, Acta Mech., Volume 232 (2021) no. 6, pp. 2051-2100 | DOI | MR | Zbl
[19] FFT based approaches in micromechanics: fundamentals, methods and applications, Model. Simul. Mat. Sci. Eng., Volume 30 (2021) no. 2, 023002, 98 pages | DOI
[20] Homogénéisation en mécanique des matériaux, Hermès Science, 2001, 250 pages
[21] Elasticity theory of materials with long range cohesive forces, Int. J. Solids Struct., Volume 3 (1967) no. 5, pp. 731-742 | DOI | Zbl
[22] Some considerations of the relation between solid state physics and generalized continuum mechanics, Mechanics of Generalized Continua: Proceedings of the IUTAM-Symposium on the Generalized Cosserat Continuum and the Continuum Theory of Dislocations with Applications, Freudenstadt and Stuttgart (Germany) 1967, Springer (1968), pp. 298-311 | DOI | Zbl
[23] On nonlocal elasticity, Int. J. Eng. Sci., Volume 10 (1972) no. 3, pp. 233-248 | MR | DOI | Zbl
[24] Enhanced damage modelling for fracture and fatigue, Ph. D. Thesis, Eindhoven University of Technology (The Netherlands) (1999)
[25] Some observations on localisation in non-local and gradient damage models, Eur. J. Mech. A Solids, Volume 15 (1996), pp. 937-953 | Zbl
[26] Gradient enhanced damage for quasi-brittle materials, Int. J. Numer. Methods Eng., Volume 39 (1996) no. 19, pp. 3391-3403 | Zbl | DOI
[27] A critical comparison of nonlocal and gradient-enhanced softening continua, Int. J. Solids Struct., Volume 38 (2001) no. 44-45, pp. 7723-7746 | DOI | Zbl
[28] Multipolar continuum mechanics, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 113-147 | DOI | MR | Zbl
[29] Explicit and implicit gradient series in damage mechanics, Eur. J. Mech. A Solids, Volume 21 (2002) no. 3, pp. 379-390 | DOI | Zbl
[30] Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., Volume 11 (1962) no. 1, pp. 385-414 | DOI | MR | Zbl
[31] Theories of elasticity with couple-stress, Arch. Ration. Mech. Anal., Volume 17 (1964) no. 2, pp. 85-112 | DOI | MR | Zbl
[32] Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., Volume 1 (1965) no. 4, pp. 417-438 | DOI
[33] Construction et analyse de modèles d’endommagement à gradient, Ph. D. Thesis, Université Pierre et Marie Curie–Paris VI (France) (2010)
[34] Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652 | DOI
[35] From the onset of damage to rupture: construction of responses with damage localization for a general class of gradient damage models, Contin. Mech. Thermodyn., Volume 25 (2013), pp. 147-171 | DOI | MR | Zbl
[36] Bifurcation and stability issues in gradient theories with softening, Model. Simul. Mat. Sci. Eng., Volume 15 (2006) no. 1, p. S283-S295 | DOI
[37] Homogénéisation de composites élastiques périodiques à fort contraste: conception de métamatériaux de second gradient, Ph. D. Thesis, Université de Toulon (France) (2018)
[38] Milieux à double gradient pour matériaux renforcés. Modélisation théorique et expérimentale, CFM 2011-20ème Congrès Français de Mécanique, AFM, 2011, 6 pages
[39] On first strain-gradient theories in linear elasticity, Int. J. Solids Struct., Volume 4 (1968) no. 1, pp. 109-124 | DOI | Zbl
[40] Méthodes d’homogénéisation d’ordre supérieur pour les matériaux architecturés, Ph. D. Thesis, École Nationale Supérieure des Mines de Paris (France) (2011)
[41] Comportement homogénéisé des matériaux composites: prise en compte de la taille des éléments microstructuraux et des gradients de la déformation, Ph. D. Thesis, Université Paris-Est (France) (2013)
[42] Non-local modeling with asymptotic expansion homogenization of random materials, Mech. Mater., Volume 147 (2020), 103459, 18 pages
[43] Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties, Phys. B: Condens. Matter, Volume 338 (2003) no. 1-4, pp. 58-60 | DOI
[44] Modélisation non-locale et stochastique de matériaux à fort gradient de propriétés par développement asymptotique, Ph. D. Thesis, ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique, Poitiers (France) (2019)
[45] Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc., Volume 343 (2015) no. 3, pp. 232-245 | DOI
[46] A fast and robust discrete FFT-based solver for computational homogenization (2024) | arXiv | Zbl
[47] Tenseurs en mécanique (2018) (Lecture notes “M2 Mécanique et fiabilité des structures”)
[48] Determination of the symmetries of an experimentally determined stiffness tensor: application to acoustic measurements, Int. J. Solids Struct., Volume 35 (1998) no. 31-32, pp. 4091-4106 | DOI | Zbl
[49] Symmetry classes and harmonic decomposition for photoelasticity tensors, Int. J. Eng. Sci., Volume 35 (1997) no. 14, pp. 1317-1326 | DOI | MR | Zbl
[50] Asymptotic analysis for periodic structures, AMS Chelsea Publishing, Providence, RI, 2011, xii+398 pages (Corrected reprint of the 1978 original) | MR | Zbl | DOI
[51] Asymptotic expansions in perforated media with a periodic structure, Rocky Mt. J. Math., Volume 10 (1980) no. 1, pp. 125-140 | MR | Zbl
[52] Non-homogeneous media and vibration theory, Lecture Notes in Physics, 320, Springer, 1980, 406 pages | MR | Zbl
[53] Comportements local et macroscopique d’un type de milieux physiques heterogenes, Int. J. Eng. Sci., Volume 12 (1974) no. 4, pp. 331-351 | Zbl | DOI | MR
[54] Introduction aux méthodes asymptotiques et à l’homogénéisation, Masson, 1992, 280 pages
[55] Asymptotic analysis of linearly elastic shells, Asymptotic Anal., Volume 12 (1996) no. 1, pp. 41-54 | MR | Zbl | DOI
[56] Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., Volume 11 (1962) no. 1, pp. 385-414 | DOI | MR | Zbl
[57] Micro-structure in linear elasticity, Arch. Ration. Mech. Anal., Volume 16 (1964), pp. 51-78 | DOI | MR | Zbl
[58] A note on the higher order strain and stress tensors within deformation gradient elasticity theories: Physical interpretations and comparisons, Int. J. Solids Struct., Volume 90 (2016), pp. 116-121 | DOI
[59] Microstructure in linear elasticity and scale effects: a reconsideration of basic rock mechanics and rock fracture mechanics, Tectonophysics, Volume 335 (2001) no. 1-2, pp. 81-109 | DOI
[60] Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity, Int. J. Eng. Sci., Volume 43 (2005) no. 13-14, pp. 1157-1184 | DOI | MR | Zbl
[61] A micromechanics-based approach for the derivation of constitutive elastic coefficients of strain-gradient media, Int. J. Solids Struct., Volume 49 (2012) no. 5, pp. 783-792 | DOI
[62] Homogenization computations in the elastic or plastic collapse range applications to unidirectional composites and perforated sheets, Proceedings of the 4th International Symposium Innovative Numerical Methods in Engineering, Springer (1986), pp. 453-458
[63] Multipolar continuum mechanics, Arch. Ration. Mech. Anal., Volume 17 (1964), pp. 113-147 | DOI | MR | Zbl
[64] Centre Régional Informatique et d’Applications Numériques de Normandie (CRIANN) https://www.criann.fr (Accessed 2024-10-01)
[65] Guide d’utilisation du calculateur Myria https://services.criann.fr/... (Accessed 2024-10-01)
[66] Guide d’utilisation du cluster Austral https://services.criann.fr/... (Accessed 2024-10-01)
[67] Modules https://services.criann.fr/... (Accessed 2024-10-01)
[68] Description de la configuration https://services.criann.fr/... (Accessed 2024-10-01)
[69] Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures, Int. J. Solids Struct., Volume 136 (2018), pp. 60-76 | DOI
[70] Verification of asymptotic homogenization method developed for periodic architected materials in strain gradient continuum, Int. J. Solids Struct., Volume 238 (2022), 111386, 19 pages | DOI
[71] Strain-gradient homogenization: a bridge between the asymptotic expansion and quadratic boundary condition methods, Mech. Mater., Volume 143 (2020), 103309, 22 pages
[72] A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. Mech. Phys. Solids, Volume 44 (1996) no. 4, pp. 497-524 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy
