Modern electronic devices are naturally exposed to radiative environments, particularly in aerospace and avionics applications. This radiation is a major challenge, as it can lead to breakdowns and long-term degradation of electronic components. It comes from galactic cosmic rays (GCRs), the Sun and the Earth’s radiation belts. They give rise to three main families of malfunctions: Total Ionizing Dose (TID), Displacement Damage (DD) and Single Event Effects (SEEs).
SEEs, in particular Single Event Upsets (SEUs), are of particular concern, as a single particle can alter the information in a memory bit, leading to critical errors. Monte Carlo simulations are widely used to predict and mitigate these effects. These probabilistic methods can be used to estimate SEU rates and develop hardening strategies. Monte Carlo predictive tools simulate the interaction of particles with electronic devices to assess their vulnerability.
Although Monte Carlo simulations have their limitations, particularly in modeling sensitive volumes and nuclear interactions, they remain essential for the aerospace and automotive industries. With the miniaturization of components, susceptibility to SEUs is increasing, underlining the need to improve these prediction tools and to pursue research into the reliability of components exposed to radiation.
Les dispositifs électroniques modernes sont naturellement exposés à des environnements radiatifs, notamment dans l’aérospatial et les applications avioniques. Ces radiations constituent un défi majeur, car elles peuvent provoquer des pannes et une dégradation à long terme des composants électroniques. Elles proviennent des rayons cosmiques galactiques (GCRs), du Soleil et les ceintures de radiations terrestres. Elles engendrent trois familles de dysfonctionnements principaux : la dose ionisante totale (TID), les effets de déplacement (DD) et les effets singuliers (SEEs).
Les SEEs, en particulier les Single Event Upsets (SEUs), sont préoccupants, car une seule particule peut modifier l’information d’un bit de mémoire, entraînant des erreurs critiques. Pour prédire et atténuer ces effets, les simulations de type Monte Carlo sont largement utilisées. Ces méthodes probabilistes permettent d’estimer les taux de SEU et d’élaborer des stratégies de durcissement. Les outils, dits de prédiction, simulent l’interaction des particules avec les dispositifs électroniques afin d’évaluer leur vulnérabilité.
Bien que les simulations Monte Carlo présentent des limites, notamment dans la modélisation des volumes sensibles et des interactions nucléaires, elles restent essentielles pour l’industrie aérospatiale et automobile. Avec la miniaturisation des composants, la susceptibilité aux SEUs augmente, soulignant la nécessité d’améliorer ces outils de prédiction et de poursuivre les recherches sur la fiabilité des composants exposés aux radiations.
Accepted:
Published online:
Mots-clés : Radiations, Evénement Singulier, Simulations Monte Carlo, Fiabilité électronique
Frédéric Wrobel 1
CC-BY 4.0
@article{CRMECA_2025__353_G1_989_0,
author = {Fr\'ed\'eric Wrobel},
title = {An introduction to natural radiations and their detrimental effects on electronic devices},
journal = {Comptes Rendus. M\'ecanique},
pages = {989--997},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.310},
language = {en},
}
Frédéric Wrobel. An introduction to natural radiations and their detrimental effects on electronic devices. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 989-997. doi: 10.5802/crmeca.310
[1] Basic mechanisms and modeling of single-event upset in digital microelectronics, IEEE Trans. Nucl. Sci., Volume 50 (2003) no. 3, pp. 583-602 | DOI
[2] Radiation-induced soft errors in advanced semiconductor technologies, IEEE Trans. Dev. Mater. Reliab., Volume 5 (2005) no. 3, pp. 305-316 | DOI
[3] The origin of galactic cosmic rays, Astron. Astrophys. Rev., Volume 21 (2013), 70 | DOI
[4] Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., Volume 128 (1958), pp. 664-676 | DOI
[5] Discovering Earth’s radiation belts, Phys. Today, Volume 70 (2017) no. 12, pp. 46-51 | DOI
[6] The geomagnetically trapped corpuscular radiation, J. Geophy. Res., Volume 64 (1959), pp. 1683-1689 | DOI
[7] Space radiation dosimetry in low-Earth orbit and beyond, Nucl. Instrum. Methods Phys. Res. Sect. B, Volume 184 (2001) no. 1–2, pp. 255-294 (ISSN 0168-583X) | DOI
[8] Single event upset error rates, Springer, Boston, MA (1997) | DOI
[9] Review of displacement damage effects in silicon devices, IEEE Trans. Nucl. Sci., Volume 50 (2003) no. 3, pp. 653-670 | DOI
[10] Radiation effects in optoelectronic devices, IEEE Trans. Nucl. Sci., Volume 60 (2013) no. 3, pp. 2054-2073 | DOI
[11] Single event upsets in avionics, IEEE Trans. Nucl. Sci., Volume 528 (1993), pp. 120-125 | DOI
[12] Extensions of the FOM method-proton SEL and atmospheric neutron SEU, IEEE Trans. Nucl. Sci., Volume 51 (2004) no. 6, pp. 3494-3504 | DOI
[13] Single-event burnout mechanisms in SiC power MOSFETs, IEEE Trans. Nucl. Sci., Volume 65 (2018) no. 8, pp. 1951-1955 | DOI
[14] The impact of single event gate rupture in linear devices, IEEE Trans. Nucl. Sci., Volume 47 (2000) no. 6, pp. 2373-2379 | DOI
Cited by Sources:
Comments - Policy
