Time modulation of the physical parameters offers interesting new possibilities for wave control. Examples include amplification of waves, harmonic generation and non-reciprocity, without resorting to non-linear mechanisms. Most of the recent studies focus on the time-modulation of the bulk physical properties. However, as the temporal modulation of these properties is difficult to achieve experimentally, we will concentrate here on the special case of an interface with time-varying jump conditions, which is simpler to implement. This work is focused on wave propagation in a one-dimensional medium containing one modulated interface. Properties of the scattered waves are investigated theoretically: energy balance, generation of harmonics, impedance matching and non-reciprocity. A fourth-order numerical method is also developed to simulate transient scattering. Numerical experiments are conducted to validate the numerical scheme and to illustrate the theoretical findings.
La modulation temporelle des propriétés d’un milieu de propagation offre de nouvelles possibilités intéressantes pour le contrôle des ondes. Les exemples incluent l’amplification des ondes, la génération d’harmoniques et la non-réciprocité, sans avoir recours à des mécanismes non linéaires. La plupart des études récentes se concentrent sur la modulation temporelle des propriétés physiques volumiques d’un milieu de propagation. Cependant, cette modulation étant difficile à réaliser expérimentalement, on se concentre ici sur le cas particulier d’une interface avec des conditions de saut variables en temps, plus simple à mettre en œuvre. Ce travail se concentre sur la propagation des ondes dans un milieu monodimensionnel contenant une interface modulée. On étudie théoriquement de nombreuses propriétés des ondes diffusées : bilan d’énergie, génération d’harmoniques, adaptation d’impédance et non-réciprocité. Une méthode numérique d’ordre 4 est développée pour simuler les ondes transitoires diffractées. Des expériences numériques sont menées pour valider le schéma numérique et illustrer les résultats théoriques attendus.
Revised:
Accepted:
Published online:
Mots-clés : Ondes élastiques, conditions de sauts imparfaites, milieux modulés en temps, non-réciprocité, méthodes numériques pour les équations hyperboliques
Michaël Darche 1; Raphaël Assier 2; Sébastien Guenneau 3, 4; Bruno Lombard 1; Marie Touboul 3, 5, 6
CC-BY 4.0
@article{CRMECA_2025__353_G1_923_0,
author = {Micha\"el Darche and Rapha\"el Assier and S\'ebastien Guenneau and Bruno Lombard and Marie Touboul},
title = {Scattering of transient waves by an interface with time-modulated jump conditions},
journal = {Comptes Rendus. M\'ecanique},
pages = {923--951},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.317},
language = {en},
}
TY - JOUR AU - Michaël Darche AU - Raphaël Assier AU - Sébastien Guenneau AU - Bruno Lombard AU - Marie Touboul TI - Scattering of transient waves by an interface with time-modulated jump conditions JO - Comptes Rendus. Mécanique PY - 2025 SP - 923 EP - 951 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.317 LA - en ID - CRMECA_2025__353_G1_923_0 ER -
%0 Journal Article %A Michaël Darche %A Raphaël Assier %A Sébastien Guenneau %A Bruno Lombard %A Marie Touboul %T Scattering of transient waves by an interface with time-modulated jump conditions %J Comptes Rendus. Mécanique %D 2025 %P 923-951 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.317 %G en %F CRMECA_2025__353_G1_923_0
Michaël Darche; Raphaël Assier; Sébastien Guenneau; Bruno Lombard; Marie Touboul. Scattering of transient waves by an interface with time-modulated jump conditions. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 923-951. doi: 10.5802/crmeca.317
[1] Acoustic metamaterials: absorption, cloaking, imaging, time-modulated media, and topological crystals (Richard V. Craster; Sébastien Guenneau, eds.), Springer Series in Materials Science, 345, Springer, 2024, xxxvi+541 pages | DOI
[2] Spacetime metamaterials—Part I: General concepts, IEEE Trans. Antennas Propag., Volume 68 (2019) no. 3, pp. 1569-1582 | DOI
[3] Spacetime metamaterials—Part II: Theory and applications, IEEE Trans. Antennas Propag., Volume 68 (2019) no. 3, pp. 1583-1598 | DOI
[4] Photonics of time-varying media, Adv. Photonics, Volume 4 (2022) no. 1, 014002 | DOI
[5] Temporal refraction and reflection in modulated mechanical metabeams: theory and physical observation (2025) | arXiv | DOI
[6] Bulk elastic waves with unidirectional backscattering-immune topological states in a time-dependent superlattice, J. Appl. Phys., Volume 118 (2015) no. 6, 063103 | DOI
[7] Topological aspects of photonic time crystals, Optica, Volume 5 (2018) no. 11, 1390 | DOI
[8] Frequency conversion in time-varying graphene microribbon arrays, Opt. Express, Volume 30 (2022) no. 18, 32061 | DOI
[9] Frequency conversion induced by time-space modulated media, Phys. Rev. B, Volume 96 (2017) no. 10, 104110 | DOI
[10] Loss compensation in time-dependent elastic metamaterials, Phys. Rev. B, Volume 97 (2018) no. 1, 014105 | DOI
[11] Dynamics of time-modulated, nonlinear phononic lattices, Phys. Rev. E, Volume 107 (2023) no. 3, 034211 | DOI
[12] Transient amplification in stable Floquet media, Phys. Rev. B, Volume 110 (2024) no. 13, 134315 | DOI
[13] A travelling-wave parametric amplifier, Nature, Volume 181 (1958) no. 4605, p. 332-332 | DOI
[14] Velocity modulation of electromagnetic waves, IRE Trans. Microwave Theory Tech., Volume 6 (1958) no. 2, pp. 167-172 | DOI
[15] Parametric amplification and frequency mixing in propagating circuits, J. Appl. Phys., Volume 29 (1958) no. 9, pp. 1347-1357 | DOI | Zbl
[16] Dispersion relations in time-space periodic media: Part I—Stable interactions, Proc. IEEE, Volume 51 (1963) no. 10, pp. 1342-1359 | DOI
[17] Dispersion relations in time-space periodic media: Part II—Unstable interactions, Proc. IEEE, Volume 55 (1967) no. 7, pp. 1154-1168 | DOI
[18] Transmission of electromagnetic waves into time-varying media, IEEE Trans. Antennas Propag., Volume 19 (1971) no. 3, pp. 417-424 | DOI
[19] Wave propagation and dispersion in space-time periodic media, Proc. Inst. Electr. Eng., Volume 119 (1972) no. 7, pp. 797-806 | DOI
[20] Numerical computation of wave propagation in dynamic materials, Appl. Numer. Math., Volume 37 (2001) no. 4, pp. 417-440 | DOI | MR | Zbl
[21] A spatio-temporal design problem for a damped wave equation, SIAM J. Appl. Math., Volume 68 (2007) no. 1, pp. 109-132 | DOI | MR | Zbl
[22] An introduction to the mathematical theory of dynamic materials, Advances in Mechanics and Mathematics, 15, Springer, 2007, xviii+181 pages | MR | Zbl
[23] Dynamic materials for an optimal design problem under the two-dimensional wave equation, Discrete Contin. Dyn. Syst., Volume 23 (2008) no. 3, pp. 973-990 | DOI | Zbl
[24] Space-time topology optimization for one-dimensional wave propagation, Comput. Methods Appl. Mech. Eng., Volume 198 (2009) no. 5-8, pp. 705-715 | DOI | Zbl
[25] Homogenization of dynamic laminates, J. Math. Anal. Appl., Volume 354 (2009) no. 2, pp. 518-538 | MR | Zbl
[26] Optimization of space-time material layout for 1D wave propagation with varying mass and stiffness parameters, Control Cybern., Volume 39 (2010) no. 3, pp. 599-614 | MR | Zbl
[27] The homogenized equations of motion for an activated elastic lamination in plane strain, Z. Angew. Math. Mech., Volume 91 (2011) no. 12, pp. 944-956 | DOI | MR | Zbl
[28] Realizing effective magnetic field for photons by controlling the phase of dynamic modulation, Nature Photon., Volume 6 (2012) no. 11, pp. 782-787 | DOI
[29] Photonic gauge potential in a system with a synthetic frequency dimension, Opt. Lett., Volume 41 (2016) no. 4, pp. 741-744 | DOI
[30] Field patterns: a new mathematical object, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 473 (2017) no. 2198, 20160819 | MR | Zbl
[31] Frontal waves and transmissions for temporal laminates and imperfect chiral interfaces, Philos. Trans. R. Soc. Lond., Ser. A, Volume 380 (2022) no. 2231, 20210385 | DOI | MR
[32] Transmission properties of time-dependent one-dimensional metamaterials, J. Math. Phys., Volume 64 (2023) no. 12, 121502 | DOI | MR | Zbl
[33] Nonreciprocal wave propagation in space-time modulated media, Multiscale Model. Simul., Volume 20 (2022) no. 4, pp. 1228-1250 | Zbl | MR | DOI
[34] Modulated phononic crystals: non-reciprocal wave propagation and Willis materials, J. Mech. Phys. Solids, Volume 101 (2017), pp. 10-29 | DOI | MR
[35] Fresnel drag in space-time-modulated metamaterials, Proc. Natl. Acad. Sci. USA, Volume 116 (2019) no. 50, pp. 24943-24948 | DOI
[36] Spacetime modulation in floating thin elastic plates, Phys. Rev. B, Volume 104 (2021) no. 1, 014308 | DOI
[37] Homogenization theory of space-time metamaterials, Phys. Rev. Appl., Volume 16 (2021) no. 1, 014044 | DOI
[38] Diffraction grating with space-time modulation, J. Comput. Phys., Volume 469 (2022), 111528 | DOI | MR | Zbl
[39] Space-time Fresnel prism, Phys. Rev. Appl., Volume 20 (2023) no. 5, 054029 | DOI
[40] High-order homogenization of the time-modulated wave equation: non-reciprocity for a single varying parameter, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 480 (2024) no. 2289, 20230776, 29 pages | DOI | MR | Zbl
[41] Parametric amplification of space charge waves, J. Appl. Phys., Volume 29 (1958) no. 12, pp. 1646-1651 | DOI
[42] Walking and orbiting droplets, Nature, Volume 437 (2005) no. 7056, p. 208-208 | DOI
[43] Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip, Phys. Rev. Lett., Volume 109 (2012) no. 3, 033901 | DOI
[44] Mixer-duplexer-antenna leaky-wave system based on periodic space-time modulation, IEEE Trans. Antennas Propag., Volume 65 (2016) no. 2, pp. 442-452 | DOI
[45] From Loschmidt daemons to time-reversed waves, Philos. Trans. R. Soc. Lond., Ser. A, Volume 374 (2016) no. 2069, 20150156 | MR | Zbl
[46] Scattering from time-modulated transmission-line loads: theory and experiments in acoustics, Phys. Rev. Appl., Volume 19 (2023) no. 6, 064012 | DOI
[47] Experimental evidence of nonreciprocal propagation in space-time modulated piezoelectric phononic crystals, Appl. Phys. Lett., Volume 123 (2023) no. 20, 201701 | DOI
[48] Saturable time-varying mirror based on an epsilon-near-zero material, Phys. Rev. Appl., Volume 18 (2022) no. 5, 054067 | DOI
[49] Observation of temporal reflection and broadband frequency translation at photonic time interfaces, Nat. Phys., Volume 19 (2023) no. 6, pp. 863-868 | DOI
[50] Time-refraction optics with single cycle modulation, Nanophotonics, Volume 12 (2023) no. 12, pp. 2221-2230 | DOI
[51] Super-luminal synthetic motion with a space-time optical metasurface (2024) | arXiv
[52] Green’s function approach to model vibrations of beams with spatio-temporally modulated properties, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 481 (2025), 20240580 | DOI | MR
[53] Nonreciprocity and mode conversion in a spatiotemporally modulated elastic wave circulator, Phys. Rev. Appl., Volume 17 (2022) no. 3, 034050 | DOI
[54] Unidirectional amplification with acoustic non-hermitian space-time varying metamaterial, Commun. Phys., Volume 5 (2022) no. 1, pp. 1-7 | DOI
[55] Optical coherent perfect absorption and amplification in a time-varying medium (2024) | arXiv
[56] Non-reciprocal behavior of one-dimensional piezoelectric structures with space-time modulated electrical boundary conditions, J. Appl. Phys., Volume 126 (2019) no. 14, 145108 | DOI
[57] Nonreciprocity in acoustic and elastic materials, Nat. Rev. Mater., Volume 5 (2020) no. 9, pp. 667-685 | DOI
[58] Reflection and transmission of waves incident on time-space modulated media, Phys. Rev. B, Volume 98 (2018) no. 5, 054109 | DOI
[59] Tunable unidirectional compact acoustic amplifier via space-time modulated membranes, Phys. Rev. B, Volume 102 (2020) no. 2, 024309 | DOI
[60] Non-reciprocal acoustic transmission via space-time modulated membranes, Appl. Phys. Lett., Volume 116 (2020) no. 3, 034101 | DOI
[61] Floquet scattering of shallow water waves by a vertically oscillating plate, Wave Motion, Volume 136 (2025), 103530, 10 pages | DOI | MR | Zbl
[62] A multiple scattering formulation for elastic wave propagation in space-time modulated metamaterials, J. Sound Vib., Volume 573 (2024), 118199 | DOI
[63] Scattering from time-modulated subwavelength resonators, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 480 (2024) no. 2289, 20240177 | DOI | MR | Zbl
[64] Space–time wave localization in systems of subwavelength resonators, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 481 (2025), 20240698 | DOI | MR
[65] High-frequency homogenization in periodic media with imperfect interfaces, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 476 (2020) no. 2244, 20200402 | DOI | MR | Zbl
[66] How to incorporate the spring-mass conditions in finite-difference schemes, SIAM J. Sci. Comput., Volume 24 (2003) no. 4, pp. 1379-1407 | DOI | MR | Zbl
[67] Numerical modeling of elastic waves across imperfect contacts, SIAM J. Sci. Comput., Volume 28 (2006) no. 1, pp. 172-205 | DOI | MR | Zbl
[68] Wave propagation in a fractional viscoelastic Andrade medium: diffusive approximation and numerical modeling, Wave Motion, Volume 51 (2014) no. 6, pp. 994-1010 | DOI | MR | Zbl
[69] Time-domain simulation of wave propagation across resonant meta-interfaces, J. Comput. Phys., Volume 414 (2020), 109474 | DOI | MR | Zbl
[70] Linear and weakly nonlinear instability of a premixed curved flame under the influence of its spontaneous acoustic field, J. Fluid Mech., Volume 758 (2014), pp. 180-220 | DOI | MR | Zbl
[71] Effective dynamics for low-amplitude transient elastic waves in a 1D periodic array of non-linear interfaces, J. Mech. Phys. Solids, Volume 149 (2021), 104321 | DOI | MR
[72] Effective medium theory for time-modulated subwavelength resonators (2024) | arXiv
[73] Effective models of metasurface/metainterface made of three-dimensional Helmholtz resonators, INTER-NOISE24 (INTER-NOISE and NOISE-CON Congress and Conference Proceedings), Institute of Noise Control Engineering (2024), pp. 784-788 | DOI
[74] Modeling 1-D elastic P-waves in a fractured rock with hyperbolic jump conditions, J. Comput. Appl. Math., Volume 204 (2007) no. 2, pp. 292-305 | DOI | MR
Cited by Sources:
Comments - Policy
