We consider a one-dimensional fracture problem modelled using either the phase-field or lip-field approach. In both cases, we optimise the incremental potential with respect to the displacement and damage fields and the nodal coordinates of the mesh. This is thus a variational mesh study. We observe that, as the damage reaches its maximum value, the optimisation drives the most damaged element to zero size as the damage reaches its maximum value. This peculiar element provides a precise displacement jump representation as the bar breaks. The overall solution is also shown to be much more accurate than the fixed mesh solution. This work forms part of an exploration into the capabilities of extreme meshes in computational mechanics (X-Mesh).
Nous considérons un problème unidimensionnel de rupture modélisé à l’aide de l’approche phase-field ou lip-field. Dans les deux cas, nous optimisons le potentiel incrémental par rapport aux champs de déplacement et d’endommagement ainsi qu’aux coordonnées nodales du maillage. Il s’agit donc d’une étude variationnelle du maillage. Nous observons que, lorsque l’endommagement atteint sa valeur maximale, l’optimisation réduit à zéro la taille de l’élément le plus endommagé. Cet élément particulier permet une représentation précise du saut de déplacement lorsque la barre se rompt. La solution globale s’avère également beaucoup plus précise qu’avec un maillage fixe. Ce travail s’inscrit dans une exploration des capacités des maillages extrêmes en mécanique numérique (X-Mesh).
Revised:
Accepted:
Published online:
Mots-clés : Phase-field, lip-field, fissure franche, X-Mesh
Nicolas Moës 1; Benoît Lé 2; Nicolas Chevaugeon 3; Jean-François Remacle 4
CC-BY 4.0
@article{CRMECA_2025__353_G1_1027_0,
author = {Nicolas Mo\"es and Beno{\^\i}t L\'e and Nicolas Chevaugeon and Jean-Fran\c{c}ois Remacle},
title = {Phase-field and lip-field approaches for fracture with extreme mesh deformation {(X-Mesh):} a one-dimensional study},
journal = {Comptes Rendus. M\'ecanique},
pages = {1027--1051},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {353},
doi = {10.5802/crmeca.318},
language = {en},
}
TY - JOUR AU - Nicolas Moës AU - Benoît Lé AU - Nicolas Chevaugeon AU - Jean-François Remacle TI - Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study JO - Comptes Rendus. Mécanique PY - 2025 SP - 1027 EP - 1051 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.318 LA - en ID - CRMECA_2025__353_G1_1027_0 ER -
%0 Journal Article %A Nicolas Moës %A Benoît Lé %A Nicolas Chevaugeon %A Jean-François Remacle %T Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study %J Comptes Rendus. Mécanique %D 2025 %P 1027-1051 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.318 %G en %F CRMECA_2025__353_G1_1027_0
Nicolas Moës; Benoît Lé; Nicolas Chevaugeon; Jean-François Remacle. Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1027-1051. doi: 10.5802/crmeca.318
[1] Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI | MR | Zbl
[2] Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., Volume 87 (2001) no. 4, 045501, 4 pages | DOI
[3] The variational approach to fracture, J. Elasticity, Volume 91 (2008), pp. 5-148 | DOI | MR | Zbl
[4] Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., Volume 83 (2010) no. 10, pp. 1273-1311 | DOI | MR
[5] Lipschitz regularization for softening material models: the Lip-field approach, C. R. Méc., Volume 349 (2021) no. 2, pp. 415-434 | DOI
[6] Lipschitz regularization for fracture: The Lip-field approach, Comput. Methods Appl. Mech. Eng., Volume 402 (2022), 115644, 20 pages | DOI | MR | Zbl
[7] Fragmentation analysis of a bar with the Lip-field approach, Mech. Mater., Volume 172 (2022), 104365, 20 pages | DOI
[8] Fracture models as -limits of damage models, Commun. Pure Appl. Anal., Volume 12 (2013) no. 4, pp. 1657-1686 | DOI | MR | Zbl
[9] Graded damage in quasi‐brittle solids, Int. J. Numer. Methods Eng., Volume 123 (2022) no. 11, pp. 2467-2498 | DOI | MR | Zbl
[10] Optimization of finite element grids based on minimum potential energy, J. Eng. Ind., Volume 95 (1973) no. 1, pp. 186-190 | DOI
[11] Optimization of finite element grids by direct energy search, Appl. Math. Modelling, Volume 1 (1976) no. 2, pp. 93-96 | DOI | Zbl
[12] Numerical experiments in finite element grid optimization by direct energy search, Appl. Math. Modelling, Volume 1 (1977) no. 5, pp. 239-244 | DOI
[13] An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 39-41, pp. 4207-4222 | DOI | MR | Zbl
[14] An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 39–41, pp. 4223-4245 | DOI | MR | Zbl
[15] On the numerical implementation of variational arbitrary Lagrangian-Eulerian (VALE) formulations, Int. J. Numer. Methods Eng., Volume 67 (2006) no. 9, pp. 1272-1289 | DOI | MR | Zbl
[16] Variational r-adaption in elastodynamics, Int. J. Numer. Methods Eng., Volume 74 (2008) no. 7, pp. 1162-1197 | DOI | MR | Zbl
[17] On a constraint-based regularization technique for configurational r-adaptivity and 3D shape optimization, IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics (Paul Steinmann, ed.) (IUTAM Bookseries), Springer, 2008 no. 17, pp. 11-25
[18] A variationally consistent mesh adaptation method for triangular elements in explicit Lagrangian dynamics, Int. J. Numer. Methods Eng., Volume 82 (2010) no. 9, pp. 1073-1113 | DOI | MR | Zbl
[19] R-adaptivity in limit analysis, Advances in direct methods for materials and structures (Olga Barrera; Alan Cocks; Alan Ponter, eds.), Springer, 2017, pp. 73-84
[20] R-adaptive multisymplectic and variational integrators, Mathematics, Volume 7 (2019) no. 7, 642, 52 pages | DOI
[21] An adaptive kinematic approach for 3D limit analysis, Comput. Geotech., Volume 124 (2020), 103531 | DOI
[22] Configurational forces induced by finite-element discretization, Proc. Est. Acad. Sci., Phys. Math., Volume 46 (1997) no. 1/2, pp. 24-31 | Zbl
[23] Configurational forces in discrete elastic systems, Arch. Appl. Mech., Volume 77 (2007), pp. 85-93 | DOI | Zbl
[24] Secret and joy of configurational mechanics: From foundations in continuum mechanics to applications in computational mechanics, Z. Angew. Math. Mech., Volume 89 (2009) no. 8, pp. 614-630 | DOI
[25] Sixty years of configurational mechanics (1950–2010), Mech. Res. Commun., Volume 50 (2013), pp. 39-49 | DOI
[26] Theoretical and computational aspects of configurational forces in three-dimensional crack problems, Int. J. Solids Struct., Volume 282 (2023), 112456 | DOI
[27] A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment, Int. J. Numer. Methods Eng., Volume 72 (2007) no. 2, pp. 127-155 | DOI | MR | Zbl
[28] Energy-based r-adaptivity: A solution strategy and applications to fracture mechanics, Int. J. Fract., Volume 147 (2007), pp. 117-132 | DOI | Zbl
[29] Circumventing mesh bias by r- and h-adaptive techniques for variational eigenfracture, Int. J. Fract., Volume 220 (2019), pp. 129-142 | DOI
[30] Discrete crack path prediction by an adaptive cohesive crack model, Eng. Fract. Mech., Volume 77 (2010) no. 18, pp. 3541-3557 | DOI
[31] A combined ALE-cohesive fracture approach for the arbitrary crack growth analysis, Eng. Fract. Mech., Volume 301 (2024), 109996, 17 pages | DOI
[32] Variational h-adaption method for the phase field approach to fracture, Int. J. Fract., Volume 217 (2019), pp. 83-103 | DOI
[33] Adaptive mesh refinement for the phase field method: A FEniCS implementation, Appl. Eng. Sci., Volume 14 (2023), 100127, 12 pages | DOI
[34] A hybrid XFEM-Phase field (Xfield) method for crack propagation in brittle elastic materials, Comput. Methods Appl. Mech. Eng., Volume 320 (2017), pp. 396-420 | DOI | MR | Zbl
[35] An optimization-based phase-field method for continuous-discontinuous crack propagation, Int. J. Numer. Methods Eng., Volume 116 (2018) no. 1, pp. 1-20 | DOI | MR | Zbl
[36] A combined XFEM phase-field computational model for crack growth without remeshing, Comput. Mech., Volume 67 (2021), pp. 231-249 | DOI | MR | Zbl
[37] A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model, Eng. Fract. Mech., Volume 271 (2022), 108621 | DOI
[38] A level set based model for damage growth: The thick level set approach, Int. J. Numer. Methods Eng., Volume 86 (2011) no. 3, pp. 358-380 | DOI | Zbl | MR
[39] Damage growth modeling using the Thick Level Set (TLS) approach: Efficient discretization for quasi-static loadings, Comput. Methods Appl. Mech. Eng., Volume 233–236 (2012), pp. 11-27 | DOI | MR | Zbl
[40] Skeleton curve and phantom node method for the Thick Level Set approach to fracture, Eng. Fract. Mech., Volume 268 (2022), 108443, 24 pages | DOI
[41] Damage driven crack initiation and propagation in ductile metals using XFEM, Comput. Mech., Volume 52 (2013), pp. 161-179 | DOI | MR | Zbl
[42] A new continuous-discontinuous damage model: cohesive cracks via an accurate energy-transfer process, Theor. Appl. Fract. Mech., Volume 69 (2014), pp. 90-101 | DOI
[43] From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Eng., Volume 299 (2016), pp. 57-89 | DOI | MR | Zbl
[44] A simplified continuous-discontinuous approach to fracture based on decoupled localizing gradient damage method, Comput. Methods Appl. Mech. Eng., Volume 383 (2021), 113893 | MR | Zbl
[45] A continuous-discontinuous localizing gradient damage framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Eng., Volume 390 (2022), 114434 | MR | Zbl
[46] A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999) no. 1, pp. 131-150 | DOI | MR | Zbl
[47] The eXtreme Mesh deformation approach (X-MESH) for the Stefan phase change model, J. Comput. Phys., Volume 477 (2023), 111878, 30 pages | MR | Zbl
[48] X-Mesh: A new approach for the simulation of two-phase flow with sharp interface, J. Comput. Phys., Volume 501 (2024), 112775 | MR | Zbl
[49] Solving the porous medium equation with the eXtreme Mesh deformation approach (X-Mesh) (2025) | arXiv
[50] A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, Volume 103 (2017), pp. 72-99 | DOI | MR
[51] SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, Volume 17 (2020) no. 3, pp. 261-272 | DOI
Cited by Sources:
Comments - Policy
