Comptes Rendus
Research article
Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1027-1051

We consider a one-dimensional fracture problem modelled using either the phase-field or lip-field approach. In both cases, we optimise the incremental potential with respect to the displacement and damage fields and the nodal coordinates of the mesh. This is thus a variational mesh study. We observe that, as the damage reaches its maximum value, the optimisation drives the most damaged element to zero size as the damage reaches its maximum value. This peculiar element provides a precise displacement jump representation as the bar breaks. The overall solution is also shown to be much more accurate than the fixed mesh solution. This work forms part of an exploration into the capabilities of extreme meshes in computational mechanics (X-Mesh).

Nous considérons un problème unidimensionnel de rupture modélisé à l’aide de l’approche phase-field ou lip-field. Dans les deux cas, nous optimisons le potentiel incrémental par rapport aux champs de déplacement et d’endommagement ainsi qu’aux coordonnées nodales du maillage. Il s’agit donc d’une étude variationnelle du maillage. Nous observons que, lorsque l’endommagement atteint sa valeur maximale, l’optimisation réduit à zéro la taille de l’élément le plus endommagé. Cet élément particulier permet une représentation précise du saut de déplacement lorsque la barre se rompt. La solution globale s’avère également beaucoup plus précise qu’avec un maillage fixe. Ce travail s’inscrit dans une exploration des capacités des maillages extrêmes en mécanique numérique (X-Mesh).

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.318
Keywords: Phase-field, lip-field, sharp crack, X-Mesh
Mots-clés : Phase-field, lip-field, fissure franche, X-Mesh

Nicolas Moës 1; Benoît Lé 2; Nicolas Chevaugeon 3; Jean-François Remacle 4

1 Institute of Mechanics, Materials and Civil Engineering (iMMC), avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
2 École Centrale de Nantes, GeM Institute, UMR CNRS 6183, 1 rue de la Noë, 44321 Nantes, France
3 Nantes Université, GeM Institute, 2 rue de la Houssinière, 44322 Nantes Cedex 3, France
4 Institute of Mechanics, Materials and Civil Engineering (iMMC), avenue Georges Lemaître 4, 1348 Louvain-la-Neuve, Belgium
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2025__353_G1_1027_0,
     author = {Nicolas Mo\"es and Beno{\^\i}t L\'e and Nicolas Chevaugeon and Jean-Fran\c{c}ois Remacle},
     title = {Phase-field and lip-field approaches for fracture with extreme mesh deformation {(X-Mesh):} a one-dimensional study},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1027--1051},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     doi = {10.5802/crmeca.318},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Moës
AU  - Benoît Lé
AU  - Nicolas Chevaugeon
AU  - Jean-François Remacle
TI  - Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 1027
EP  - 1051
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.318
LA  - en
ID  - CRMECA_2025__353_G1_1027_0
ER  - 
%0 Journal Article
%A Nicolas Moës
%A Benoît Lé
%A Nicolas Chevaugeon
%A Jean-François Remacle
%T Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study
%J Comptes Rendus. Mécanique
%D 2025
%P 1027-1051
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.318
%G en
%F CRMECA_2025__353_G1_1027_0
Nicolas Moës; Benoît Lé; Nicolas Chevaugeon; Jean-François Remacle. Phase-field and lip-field approaches for fracture with extreme mesh deformation (X-Mesh): a one-dimensional study. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 1027-1051. doi: 10.5802/crmeca.318

[1] Blaise Bourdin; Gilles A. Francfort; Jean-Jacques Marigo Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826 | DOI | MR | Zbl

[2] Alain Karma; David Kessler; Herbert Levine Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., Volume 87 (2001) no. 4, 045501, 4 pages | DOI

[3] Blaise Bourdin; Gilles A. Francfort; Jean-Jacques Marigo The variational approach to fracture, J. Elasticity, Volume 91 (2008), pp. 5-148 | DOI | MR | Zbl

[4] Christian Miehe; Fabian Welschinger; Martina Hofacker Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng., Volume 83 (2010) no. 10, pp. 1273-1311 | DOI | MR

[5] Nicolas Moës; Nicolas Chevaugeon Lipschitz regularization for softening material models: the Lip-field approach, C. R. Méc., Volume 349 (2021) no. 2, pp. 415-434 | DOI

[6] Nicolas Chevaugeon; Nicolas Moës Lipschitz regularization for fracture: The Lip-field approach, Comput. Methods Appl. Mech. Eng., Volume 402 (2022), 115644, 20 pages | DOI | MR | Zbl

[7] Nicolas Moës; Benoît Lé; Andrew Stershic Fragmentation analysis of a bar with the Lip-field approach, Mech. Mater., Volume 172 (2022), 104365, 20 pages | DOI

[8] Gianni Dal Maso; Flaviana Iurlano Fracture models as Γ-limits of damage models, Commun. Pure Appl. Anal., Volume 12 (2013) no. 4, pp. 1657-1686 | DOI | MR | Zbl

[9] Nunziante Valoroso; Claude Stolz Graded damage in quasi‐brittle solids, Int. J. Numer. Methods Eng., Volume 123 (2022) no. 11, pp. 2467-2498 | DOI | MR | Zbl

[10] Gregory M. McNeice; Pedro V. Marcal Optimization of finite element grids based on minimum potential energy, J. Eng. Ind., Volume 95 (1973) no. 1, pp. 186-190 | DOI

[11] Carlos A. Felippa Optimization of finite element grids by direct energy search, Appl. Math. Modelling, Volume 1 (1976) no. 2, pp. 93-96 | DOI | Zbl

[12] Carlos A. Felippa Numerical experiments in finite element grid optimization by direct energy search, Appl. Math. Modelling, Volume 1 (1977) no. 5, pp. 239-244 | DOI

[13] Ellen Kuhl; Harm Askes; Paul Steinmann An ALE formulation based on spatial and material settings of continuum mechanics. Part 1: Generic hyperelastic formulation, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 39-41, pp. 4207-4222 | DOI | MR | Zbl

[14] Harm Askes; Ellen Kuhl; Paul Steinmann An ALE formulation based on spatial and material settings of continuum mechanics. Part 2: Classification and applications, Comput. Methods Appl. Mech. Eng., Volume 193 (2004) no. 39–41, pp. 4223-4245 | DOI | MR | Zbl

[15] Jörn Mosler; Michael Ortiz On the numerical implementation of variational arbitrary Lagrangian-Eulerian (VALE) formulations, Int. J. Numer. Methods Eng., Volume 67 (2006) no. 9, pp. 1272-1289 | DOI | MR | Zbl

[16] Matias G. Zielonka; Michael Ortiz; J. Ellen Marsden Variational r-adaption in elastodynamics, Int. J. Numer. Methods Eng., Volume 74 (2008) no. 7, pp. 1162-1197 | DOI | MR | Zbl

[17] Michael Scherer; Ralf Denzer; Paul Steinmann On a constraint-based regularization technique for configurational r-adaptivity and 3D shape optimization, IUTAM Symposium on Progress in the Theory and Numerics of Configurational Mechanics (Paul Steinmann, ed.) (IUTAM Bookseries), Springer, 2008 no. 17, pp. 11-25

[18] Sudeep K. Lahiri; Javier Bonet; Jaume Peraire A variationally consistent mesh adaptation method for triangular elements in explicit Lagrangian dynamics, Int. J. Numer. Methods Eng., Volume 82 (2010) no. 9, pp. 1073-1113 | DOI | MR | Zbl

[19] José J. Muñoz; James P. Hambleton; Scott W. Sloan R-adaptivity in limit analysis, Advances in direct methods for materials and structures (Olga Barrera; Alan Cocks; Alan Ponter, eds.), Springer, 2017, pp. 73-84

[20] Tomasz M. Tyranowski; Mathieu Desbrun R-adaptive multisymplectic and variational integrators, Mathematics, Volume 7 (2019) no. 7, 642, 52 pages | DOI

[21] Zhenhao Shi; James P. Hambleton An r-h adaptive kinematic approach for 3D limit analysis, Comput. Geotech., Volume 124 (2020), 103531 | DOI

[22] Manfred Braun Configurational forces induced by finite-element discretization, Proc. Est. Acad. Sci., Phys. Math., Volume 46 (1997) no. 1/2, pp. 24-31 | Zbl

[23] Manfred Braun Configurational forces in discrete elastic systems, Arch. Appl. Mech., Volume 77 (2007), pp. 85-93 | DOI | Zbl

[24] Paul Steinmann; Michael Scherer; Ralf Denzer Secret and joy of configurational mechanics: From foundations in continuum mechanics to applications in computational mechanics, Z. Angew. Math. Mech., Volume 89 (2009) no. 8, pp. 614-630 | DOI

[25] Gérard A. Maugin Sixty years of configurational mechanics (1950–2010), Mech. Res. Commun., Volume 50 (2013), pp. 39-49 | DOI

[26] Kevin Schmitz; Andreas Ricoeur Theoretical and computational aspects of configurational forces in three-dimensional crack problems, Int. J. Solids Struct., Volume 282 (2023), 112456 | DOI

[27] Christian Miehe; Ercan Gürses A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment, Int. J. Numer. Methods Eng., Volume 72 (2007) no. 2, pp. 127-155 | DOI | MR | Zbl

[28] Michael Scherer; Ralf Denzer; Paul Steinmann Energy-based r-adaptivity: A solution strategy and applications to fracture mechanics, Int. J. Fract., Volume 147 (2007), pp. 117-132 | DOI | Zbl

[29] Aurel Qinami; Eric Cushman Bryant; Wai Ching Sun; Michael Kaliske Circumventing mesh bias by r- and h-adaptive techniques for variational eigenfracture, Int. J. Fract., Volume 220 (2019), pp. 129-142 | DOI

[30] G. Geißler; C. Netzker; Michael Kaliske Discrete crack path prediction by an adaptive cohesive crack model, Eng. Fract. Mech., Volume 77 (2010) no. 18, pp. 3541-3557 | DOI

[31] Umberto De Maio; Fabrizio Greco; Paolo Lonetti; Andrea Pranno A combined ALE-cohesive fracture approach for the arbitrary crack growth analysis, Eng. Fract. Mech., Volume 301 (2024), 109996, 17 pages | DOI

[32] Yihuan Li; Wenyu Lai; Yongxing Shen Variational h-adaption method for the phase field approach to fracture, Int. J. Fract., Volume 217 (2019), pp. 83-103 | DOI

[33] Francesco Freddi; Lorenzo Mingazzi Adaptive mesh refinement for the phase field method: A FEniCS implementation, Appl. Eng. Sci., Volume 14 (2023), 100127, 12 pages | DOI

[34] Bianca Giovanardi; Anna Scotti; Luca Formaggia A hybrid XFEM-Phase field (Xfield) method for crack propagation in brittle elastic materials, Comput. Methods Appl. Mech. Eng., Volume 320 (2017), pp. 396-420 | DOI | MR | Zbl

[35] Rudy J. M. Geelen; Yingjie Liu; John E. Dolbow; Antonio Rodríguez-Ferran An optimization-based phase-field method for continuous-discontinuous crack propagation, Int. J. Numer. Methods Eng., Volume 116 (2018) no. 1, pp. 1-20 | DOI | MR | Zbl

[36] Alba Muixí; Onofre Marco; Antonio Rodríguez-Ferran; Sonia Fernández-Méndez A combined XFEM phase-field computational model for crack growth without remeshing, Comput. Mech., Volume 67 (2021), pp. 231-249 | DOI | MR | Zbl

[37] JiaNing Zhang; Hao Yu; WenLong Xu; ChengSi Lv; Marembo Micheal; Fang Shi; HengAn Wu A hybrid numerical approach for hydraulic fracturing in a naturally fractured formation combining the XFEM and phase-field model, Eng. Fract. Mech., Volume 271 (2022), 108621 | DOI

[38] Nicolas Moës; Claude Stolz; Paul-Émile Bernard; Nicolas Chevaugeon A level set based model for damage growth: The thick level set approach, Int. J. Numer. Methods Eng., Volume 86 (2011) no. 3, pp. 358-380 | DOI | Zbl | MR

[39] Paul-Émile Bernard; Nicolas Moës; Nicolas Chevaugeon Damage growth modeling using the Thick Level Set (TLS) approach: Efficient discretization for quasi-static loadings, Comput. Methods Appl. Mech. Eng., Volume 233–236 (2012), pp. 11-27 | DOI | MR | Zbl

[40] Luiz A. T. Mororó; Anne Poot; Frans P. van der Meer Skeleton curve and phantom node method for the Thick Level Set approach to fracture, Eng. Fract. Mech., Volume 268 (2022), 108443, 24 pages | DOI

[41] Mariana R. R. Seabra; Primož Šuštarič; Jose M. A. Cesar de Sa; Tomaž Rodič Damage driven crack initiation and propagation in ductile metals using XFEM, Comput. Mech., Volume 52 (2013), pp. 161-179 | DOI | MR | Zbl

[42] Elena Tamayo-Mas; Antonio Rodríguez-Ferran A new continuous-discontinuous damage model: cohesive cracks via an accurate energy-transfer process, Theor. Appl. Fract. Mech., Volume 69 (2014), pp. 90-101 | DOI

[43] Yongxiang Wang; Haim Waisman From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Eng., Volume 299 (2016), pp. 57-89 | DOI | MR | Zbl

[44] Subrato Sarkar; Indra Vir Singh; B. K. Mishra A simplified continuous-discontinuous approach to fracture based on decoupled localizing gradient damage method, Comput. Methods Appl. Mech. Eng., Volume 383 (2021), 113893 | MR | Zbl

[45] Alok Negi; Sachin Kumar A continuous-discontinuous localizing gradient damage framework for failure analysis of quasi-brittle materials, Comput. Methods Appl. Mech. Eng., Volume 390 (2022), 114434 | MR | Zbl

[46] Nicolas Moës; John E. Dolbow; Ted Belytschko A finite element method for crack growth without remeshing, Int. J. Numer. Methods Eng., Volume 46 (1999) no. 1, pp. 131-150 | DOI | MR | Zbl

[47] Nicolas Moës; Jean-François Remacle; Jonathan Lambrechts; Benoît Lé; Nicolas Chevaugeon The eXtreme Mesh deformation approach (X-MESH) for the Stefan phase change model, J. Comput. Phys., Volume 477 (2023), 111878, 30 pages | MR | Zbl

[48] Antoine Quiriny; Jonathan Lambrechts; Nicolas Moës; Jean-François Remacle X-Mesh: A new approach for the simulation of two-phase flow with sharp interface, J. Comput. Phys., Volume 501 (2024), 112775 | MR | Zbl

[49] Alexandre Chemin; Jonathan Lambrechts; Nicolas Moës; Jean-François Remacle Solving the porous medium equation with the eXtreme Mesh deformation approach (X-Mesh) (2025) | arXiv

[50] Jian-Ying Wu A unified phase-field theory for the mechanics of damage and quasi-brittle failure, J. Mech. Phys. Solids, Volume 103 (2017), pp. 72-99 | DOI | MR

[51] Pauli Virtanen; Ralf Gommers; Travis E. Oliphant; Matt Haberland; Tyler Reddy; David Cournapeau; Evgeni Burovski; Pearu Peterson; Warren Weckesser; Jonathan Bright; Stéfan J. van der Walt; Matthew Brett; Joshua Wilson; K. Jarrod Millman; Nikolay Mayorov; Andrew R. J. Nelson; Eric Jones; Robert Kern; Eric Larson; C. J. Carey; Ilhan Polat; Yu Feng; Eric W. Moore; Jake VanderPlas; Denis Laxalde; Josef Perktold; Robert Cimrman; Ian Henriksen; E. A. Quintero; Charles R. Harris; Anne M. Archibald; Antônio H. Ribeiro; Fabian Pedregosa; Fabian Pedregosa; SciPy 1.0 Contributors SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, Volume 17 (2020) no. 3, pp. 261-272 | DOI

Cited by Sources:

Comments - Policy