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Abstract This paper sums up some recent studies related to the numerical solution of boundary value
problems deriving from Maxwell’s equations. These studies bring to light the theoretical
origins of the ‘corner paradox’ pointed out by numerical experiments for years:In a
domain surrounded by a perfect conductor, a ‘nodal’ discretization can approximate the
electromagnetic field only if the domain has no reentrant corners or edges. The explanation
lies in a mathematical curiosity: two different interpretations of the same variational
equation, which are both well-posed and lead either to thephysicalor aspurioussolution!
Two strategies which were recently proposed to remedy this flaw of nodal elements are
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domaine entouré par un conducteur parfait, une discrétisation par éléments finis « nodaux »
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1. Introduction

It may seem surprising to find a paper devoted to electromagnetism in a journal which is rather
turned towards mechanics. Apart from a ‘politically correct’ argument of interdisciplinarity, one can
motivate the reader by invoking the fact that the mathematical curiosity described here is proba-
bly not peculiar to electromagnetism (see Section 6). At first glance, it appears as awarning for
the numerical simulation of partial differential systems involving thecurl and div operators. Taking
a closer look, it shows that choosing two different finite elements for discretizing thesamevaria-
tional equation can lead to approximate two different objects among which only one is ‘physical’.
And the only way to distinguish between them is to identify the functional spaces they live in.
These objects actually are the solutions of asingle variational equation which is well-posed intwo
different spaces. In short the reader will find here a convincing illustration of the fact that some-
times only a deep mathematical understanding of the problem can lead to appropriate numerical
schemes!

In the last 30 years, various finite element methods were developed for the simulation of electromagnetic
phenomena, with more or less success. Roughly speaking, their defenders may be split in two families.

• On one hand, the ‘conservatives’ have decided to cling to the well-knownnodal finite elements, widely
used in mechanics for fluid or structure problems. Here the wordnodal refers to the nature of the
degrees of freedom: the unknowns are the values of the searched field at given points.

• On the other hand, the ‘progressives’ advocate the use ofedge elements, sometimes called Nédélec’s
elements, or Whitney’s, or. . . , depending on what community the ‘progressive’ belongs to. Here a
degree of freedom may represents some flux across an edge of an element.

For the latter family, the present paper may appear as an acknowledgement of the failure of the
former. Indeed one of its conclusions could be:Conservatives have to be very careful near ‘reentrant’
corners or edges, since a purely nodal discretization cannot in general approximate the singular
behaviour of the electromagnetic field near such geometrical singularities. But the conservatives could
retort that they have now a cure for this flaw. And the progressives could then object thattheir edge
elements allow to capture the singular behaviour of the field, provided the mesh is refined enough
near corners and edges. So why should they replace a simple refinement by a cure which is based on
an intricate mathematical study and actually brings a higher numerical complexity? The conservatives
could argue that the use of nodal elements is more appropriate in some situations. . . Our aim is not
to take part in the debate, but rather to adopt definitely a conservative point of view by presenting the
recent theoretical and numerical studies which form the different ingredients of the above mentioned
cure.

The flaw of nodal finite elements has been brought to the fore by numerical experiments for a long time:
such a discretization ‘erases’ the physical ‘corner effect’ on the electromagnetic field. But the explanation of
this flaw was understood far later thanks to the theoretical work of Costabel and Dauge [1]. The numerical
remedies that have been proposed are based on a simple idea: the field is split into the sum of aregular
part that is suited for a nodal approximation and asingular partwhose description follows from an explicit
knowledge of the corner effect.

One could be tempted to compare this strategy with the so-calledsingular function methods[2]
used for instance in elasticity to simulate cracks, since they apparently derive from the same idea. By
enriching the finite element space, they improve the quality of the numerical solution without using a
mesh refinement. More precisely they improve the poor convergence of finite element schemes due to
the singularities of the solution near the ends of the cracks. For Maxwell-like problems, the methods we
present show a basic difference: the question is no longer to obtain a better convergence, but rather to
obtain the ‘physical’ solution (the enrichment of the finite element space becomesnecessaryto attain this
solution).
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The paper is organized as follows. In Section 2, we present various formulations of a model ‘Maxwell
problem’. We precise in Section 3 the proper functional framework in which these formulations are
equivalent. In Section 4 we investigate the core of thecorner paradox, which lies in the existence of
spuriousformulations of the model problem. Section 5 shortly describes two strategies for a cure, and
refers to a more recent promising approach. Finally we mention in Section 6 some related studies.

2. A model problem

The whole paper is devoted to one of the simplest Maxwell-like problems, which describes magnetostat-
ics in a bounded domain surrounded by a perfect conductor. Despite the quite restricted physical relevance
of such a model, it contains the main features of thecorner paradox, which is essentially related to the
curl curl operator. Many other applications to more involved situations can be achieved following the same
lines (see Section 6). The main advantage of this pedagogical model lies in its simplicity.

Consider a bounded openpolyhedron�⊂ R
3 with boundary�.We denote byn the unit outer normal to

�. For technical reasons, we assume that� is connected and simply connected, i.e., it is made of a single
piece without holes (this assumption could be removed: it slightly simplifies the presentation), and that�

is a Lipschitz surface (which dismisses some very specific polyhedrons).
The question is to find a numerical approximation of a vector fieldu (which represents the potential of

the magnetic field in magnetostatics) satisfying the following equations referred to as ‘Maxwell problem’
M in the sequel:

curl curl u = f in � (1)

divu = 0 in� (2)

u × n = 0 on� (3)

for some datumf assumed divergence-free:

divf = 0 in� (4)

The finite element methods we are interested in are based on alternative formulations of this problem.
On one hand, we consider amixed interpretation of the above system. It consists in introducing a

supplementary scalar unknownp which plays the role of aLagrange multiplierfor the divergence-free
constraint (2). For the same datumf , the pair(u,p) must satisfy the following equations that will be
called ‘Lagrange problem’L:

curl curl u − gradp = f in � (5)

divu = 0 in� (6)

u × n = 0 on� (7)

p = 0 on� (8)

On the other hand, we are concerned with another formulation which may be seen as an exactpenaltyof
the divergence-free condition. Here, we searchu solution to

curl curl u − graddivu = f in � (9)

divu = 0 on� (10)

u × n = 0 on� (11)

where (9) is nothing but a vector Poisson equation since

curl curl u − graddivu = −�u (12)
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We thus call this system ‘Poisson problem’P . Let us point out that the divergence-freeconstraint is replaced
here by a simple boundary condition.

Someone who is not interested in functional details would claim

M ⇐⇒ L ⇐⇒P (13)

Indeed it is clear that a solution toM satisfiesL (with p = 0) as well asP . Conversely, assume first that
(u,p) is a solution toL.Obviouslyu satisfiesM if p ≡ 0. To prove this, it suffices to apply the divergence
operator to (5): by virtue of the assumption (4), we see thatp satisfies

�p= 0 in� (14)

p = 0 on� (15)

whose only solution is known to be 0. Similarly ifu is a solution toP, it satisfiesM if div u ≡ 0.
Settingp := divu and applying the div operator to (9) shows thatp satisfies again (14)–(15), and the
same conclusion follows.

A forewarned mathematician would temper the assertion claimed in (13), which can betrue but also
false: it depends on the functional space in whichu is searched! Indeed the uniqueness of the solution to
(14)–(15) holds providedp is regular enough. We shall see that if� is a nonconvex polyhedron, the set
of L2(�)-solutions of this homogeneous problem even consists in a space of infinite dimension! Therefore
it is necessary to precise the functional framework associated with these three problems, and the proper
interpretation of the equations. The core of thecorner paradoxis that both problemsL andP appear to be
well-posed in two neighboring function spaces which differ as soon as the domain has reentrant corners or
edges.

3. A first glance at the functional jumble

Let us introduce some notations. The space of infinitely differentiable functions with compact support in
� is referred to asD(�). Its dualD′(�) is the space of distributions in�. The spaceD(�) consists of the
restrictions to� of the functions ofD(R3). Since there is no ambiguity on the domain of integration, we
simply denote byL2 (respectively,L2) the space of square integrable scalar functions in� (respectively,
vector fields), byH 1 or H1, more generallyHn, the usual Sobolev spaces in� (i.e.,L2 partial derivatives
of orderk � n), andH 1

0 = {ψ ∈H 1; ψ|� = 0}. The usual scalar product and norm inL2 or L2 are denoted
(· , ·) and‖ · ‖.

We then consider the following (Hilbert) spaces, where the indexN means that the fields are normal to�:

HN(curl)= {
v ∈ L2; curl v ∈ L2 and(v × n)|� = 0

}
HN(curl ,div)= {

v ∈ HN(curl); divv ∈L2}
HN(curl ,div0)= {

v ∈ HN(curl); divv = 0 in�
}

The latter two can be equipped with the scalar products obtained by removing theL2 contribution in the nat-
ural ones. This is the object of the following lemma which derives from the compactness of the embedding
of HN(curl,div) in L2 (see [3,4]).

LEMMA 3.1. –The bilinear form(curl · ,curl ·)+ (div · ,div ·) defines a norm onHN(curl ,div) equivalent
to its natural norm(hence(curl · ,curl ·) defines a norm onHN(curl ,div0)).

3.1. The Maxwell problem

In the sequel we assume that the datumf belongs toL2. Integrating by parts formally the scalar product
of (1) by a test fieldv such that(v × n)|� = 0 yields the ‘natural’ variational formulation of our initial
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Maxwell-like problemM:

(M(curl)) Findu ∈ HN(curl ,div0) such that
(curl u ,curl v)= (f ,v) ∀v ∈ HN(curl)

The existence and uniqueness of the solution toM(curl) can be proved by restricting the space of test
fields toHN(curl ,div0), which is allowed by the following lemma [5]:

LEMMA 3.2. –Everyv ∈ HN(curl) can be decomposed as

v = v0 + gradϕ, where

{
v0 ∈ HN(curl ,div0) and curl v0 = curl v
ϕ ∈H 1

0 and�ϕ = divv

Noticing that for a test fieldv = gradϕ with ϕ ∈H 1
0 , both terms of the above variational equation vanish

(by virtue of (4)), this lemma shows thatM(curl) is equivalent to

(M(curl,div0)) Findu ∈ HN(curl ,div0) such that
(curl u,curl v)= (f ,v) ∀v ∈ HN(curl ,div0)

PROPOSITION 3.3. –M(curl) and M(curl ,div0) are equivalent and both well-posed. Their common
solution is the unique fieldu ∈ HN(curl ,div0) which satisfies(1) in D′(�)3 (i.e., in the sense of
distributions).

Proof. –For M(curl ,div0), this is a direct consequence of Lemma 3.1 and Riesz lemma. The
interpretation inD′(�)3 follows fromM(curl) thanks to the density [5] ofD(�)3 in HN(curl). ✷
3.2. The Lagrange problem

The variational interpretation ofL, deduced from (5)–(8) by Green’s formulas, involves now two test
functionsv andq. Depending on the equation where thegrad ↔ div integration by parts is applied, we
obtain two possible formulations:

(L(curl))
Findu ∈ HN(curl) andp ∈H 1

0 such that
(curl u,curl v)− (gradp,v)= (f ,v) ∀v ∈ HN(curl)
(gradq,u)= 0 ∀q ∈H 1

0

and

(L(curl,div))
Findu ∈ HN(curl ,div) andp ∈ L2 such that
(curl u,curl v)+ (p,divv)= (f ,v) ∀v ∈ HN(curl ,div)
(q,divu)= 0 ∀q ∈L2

In short, on can choose to exchange some regularity between divu and gradp. But fortunately these
formulations are equivalent: the following proposition precises the proper functional framework in which
the equivalenceM ⇐⇒L claimed in (13) holds.

PROPOSITION 3.4. –Both problemsL(curl) andL(curl ,div) are well-posed. Their common solution is
the pair(u ,0) whereu is the solution toM(curl) (or M(curl,div0)).

Proof. –The well-posedness follows from classical arguments of the theory ofmixedproblems [5,6].
Moreover, takingv = gradp ∈ HN(curl) in L(curl) yields‖gradp‖ = 0 by virtue of the assumption (4),
hencep ≡ 0, which shows thatu satisfiesM(curl). On the other hand, the solutionu to L(curl ,div)
obviously satisfiesM(curl ,div0) (takev such that divv = 0), andp again vanishes: it suffices to choose
v = gradϕ whereϕ ∈H 1

0 is the solution to�ϕ = p in �. ✷
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3.3. The Poisson problem

The case of the penalty formulationP of our Maxwell problem can be dealt with similarly. Here only
one variational interpretation is naturally obtained

(P(curl,div)) Findu ∈ HN(curl ,div) such that
(curl u,curl v)+ (divu,divv)= (f ,v) ∀v ∈ HN(curl ,div)

PROPOSITION 3.5. –ProblemP(curl,div) is well-posed, and its solution coincide with that toM(curl).
Proof. –As for Proposition 3.3, the well-posedness follows from Lemma 3.1 and Riesz lemma. Moreover

settingp = divu and choosing as abovev = gradϕ whereϕ ∈H 1
0 is the solution to�ϕ = p, yields again

p ≡ 0. ✷
3.4. Which ones are well suited for a numerical approximation?

Neither M(curl) nor M(curl ,div0) are appropriate for a finite element discretization. Indeed, the
divergence-free condition is taken into account in a ‘strong sense’, since it is imposed directly on the
solution, not in the variational equation. Hence a conforming approximation would require divergence-free
discrete fields. The essential interest of the alternative problemsL andP is to offer a weak interpretation
of the divergence-free condition.

But L(curl ,div) andP(curl ,div) are in general no more appropriate. From the results of the next
section, one will easily convince himself that if the domain has reentrant corners or edges, there is no
piecewise polynomial discretization which is conforming inHN(curl ,div). This is a consequence of the
non-densityof regular fields (satisfying(u × n)|� = 0) in HN(curl ,div). More intuitively one can notice
that a piecewise polynomial fieldu is such thatcurl u ∈ L2 and divu ∈ L2 if and only if it is continuous
in � (since both normal and tangential components must be continuous across elements). Hence this field
belongs toH 1. The core of the corner paradox is that such discrete fields can only approximate a genuine
subspace ofHN(curl ,div).

The sole remaining formulation is the ‘good’ one:L(curl) is the starting point of a discretization byedge
elements [7,8], which consists in aHN(curl)-conforming approximation (the tangential component of a
discrete field is continuous across elements, not the normal one).

4. A mathematical curiosity

The trouble originates from the following relation which derives immediately from (12) by Green’s
formulas: ∫

R3
(curl u · curl v + divudivv)dx =

∫
R3

gradu · gradv dx ∀u,v ∈ D
(
R

3)3

It actually shows that

H1(
R

3) = H
(

curl ,div;R
3) := {

u ∈ L2(
R

3); curl u ∈ L2(
R

3) and divu ∈L2(
R

3)}
sinceD(R3)3 is densein both spaces [5]. Such an identity is unlikely to hold for a subset� of R

3: boundary
integrals appear in the above relation when applying Green’s formulas. However these boundary terms
vanish ifu andv are normal to�. More precisely one has [9]:

LEMMA 4.1. –LetDN be the subspace ofD(�)3 consisting of the fieldsu such that(u × n)|� = 0 andu

vanishes in a(volumic) vicinity of the edges and corners of the polyhedron�. Then

(curl u ,curl v)+ (divu ,divv)= (gradu ,gradv) ∀u,v ∈ DN (16)
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Noticing in addition thatDN is dense[10] in

HN(grad) := {
v ∈ H 1; (v × n)|� = 0

}
(17)

this formula shows thatHN(grad) is aclosed subspaceof HN(curl ,div). A hasty conclusion would be
the assertion of their equality, as in the case ofR

3. This actually is true if� is convexor has aregular
boundary[5]. But for a nonconvex polyhedron,HN(grad) is agenuinesubspace ofHN(curl ,div): there
exists a non-trivial subspaceH sing of HN(curl ,div) such that the latter has thedirect decomposition

HN(curl ,div)= HN(grad)⊕ H sing (18)

The physical meaning of thesingular fieldscontained inH sing is nothing but the well-known ‘corner effect’
in electromagnetism, i.e., the high intensity of the electromagnetic field nearreentrantcorners: a metallic
knife in a microwave oven yields a convincing demonstration of this effect!

4.1. About the theory of ‘singularities’ for the scalar Laplace operator

In order to obtain a precise characterization ofH sing, we recall some essential results concerning the
singularitiesof the scalar Laplace operator in anonconvexpolyhedral domain� (see [11–13] for details).
Their definition is based on a technical result which asserts thatthe image ofH 1

0 ∩H 2 by the operator�
is a closed subspace ofL2 whose codimension is infinite.Let N denote its orthogonal complement inL2:
a functionp ∈L2 belongs toN if and only if

(p,�ψ)= 0 ∀ψ ∈H 1
0 ∩H 2 (19)

This property actually furnishes the proper interpretation ofvery weaksolutions to the homogeneous
problem (14)–(15). To see this, first chooseψ ∈ D(�), which yields�p = 0 in the sense of distributions.
The difficulty lies in the Dirichlet boundary condition (15) which cannot be understood as thetraceof a
H 1 function. Indeed ifp belonged toH 1, Green’s formula would give∫

�

p ∂nψ dγ = 0 ∀ψ ∈H 1
0 ∩H 2

which is enough to conclude thatp|� = 0 (since∂nψ can spread over a dense subset ofL2(�)), thusp ≡ 0.
However it may be seen (by a simple symmetry argument, often called the image principle) thatp is regular
up to the boundary except near corners and edges. Hence one can apply Green’s formula forψ vanishing
near these geometric singularities, which shows that thetraceof p on� exists and vanishes outside corners
and edges. This idea is related to a ‘very weak’ notion of trace, which can be more generally defined by
a duality technique. For our purposes, we may content ourselves with the following definition (see [12] in
2D, and [14] in 3D).

DEFINITION 4.2. – A functionp ∈L2\H 1 is said to be a very weak solution to the homogeneous Dirichlet
problem (14)–(15) if it satisfies (19) (i.e.,p ∈N ).

These functions play a fundamental role in the regularity of the variational solutionϕ ∈H 1
0 to the scalar

Poisson equation�ϕ = g ∈ L2, i.e.,

−(gradϕ,gradψ)= (g,ψ) ∀ψ ∈H 1
0 (20)

which will be denoted for simplicityϕ = �−1g. Projectingg along the orthogonal decompositionL2 =
�(H 1

0 ∩H 2)⊕N shows thatϕ can be split into aregularpart and asingularpart:

ϕ = ϕR + ϕS, whereϕR ∈H 1
0 ∩H 2 andϕS ∈ S :=�−1(N ). (21)

Note that by constructionS ⊂H 1
0 \H 2: this justifies the wordsingular.
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4.2. Description of the singular fields

The latter inclusion and the definition ofS clearly show that

gradS ⊂ HN(curl,div) \ HN(grad)

But do these gradients cover all possible singular fields? The first (positive) answer seems to be due to
Birman and Solomyak [15] (see also [10,16]):

THEOREM 4.3. –The spaceHN(curl ,div) has the following direct decomposition:

HN(curl ,div)= HN(grad)⊕ gradS (22)

HencegradS is a good candidate to play the role of thesingular spaceH sing in (18). Obviously this
is not the only one: the same results hold if we replaceN by any supplementary (but non orthogonal)
subspaceN ′ to�(H 1

0 ∩H 2) in L2.

4.3. Spurious interpretations ofL and P

The practical consequence of the above results is the existence ofspuriousvariational problemsL(grad)
andP(grad) deduced from the(curl ,div) interpretations ofL andP by replacingHN(curl ,div) by
HN(grad), i.e.,

(L(grad))
Findu ∈ HN(grad) andp ∈ L2 such that
(curl u,curl v)+ (p,divv)= (f ,v) ∀v ∈ HN(grad)
(q,divu)= 0 ∀q ∈ L2

and

(P(grad)) Findu ∈ HN(grad) such that
(curl u,curl v)+ (divu,divv)= (f ,v) ∀v ∈ HN(grad)

PROPOSITION 4.4. –ProblemsL(grad) andP(grad) are both well-posed.

Proof. –ForP(grad), this follows from Lemma 4.1 and Riesz lemma. ForL(grad), this can be proved
by establishing the associatedinf–supcondition [17]. ✷

Obviously, the respective solutions toL(grad) andP(grad) are unlikely to coincide with the common
‘physical’ solution to the(curl ,div) formulations since the functional spaces differ. Roughly speaking,
HN(curl ,div) plays the role of thephysicalspace, whereasHN(grad) is thespuriousone. Bothphysical
andspurioussolutions can be approximated by finite elements. And it may be proved thatedgeelements
capture the physical one: they leave the spurious solution tonodalelements. Here the ‘progressives’ are a
few points up on the ‘conservatives’!

Going back to the ‘strong’ formulations (5)–(8) and (9)–(11) ofL andP, it is now clear that the only
difference between the(curl ,div) and the(grad) formulations lies in the interpretation of the boundary
condition satisfied byp in L or divu in P . For the spurious formulations it has to be taken in the ‘very
weak’ sense of Definition 4.2 (see [10,18]): takingv = gradψ with ψ ∈H 1

0 ∩H 2 in L(grad) or P(grad)
clearly shows thatp or divu belongs toN .

5. Numerical remedies: two strategies

For the ‘conservatives’, a natural way to save theirnodalelements was to take advantage of the results
of the previous section to find a cure for the spurious formulations. Two different approaches were
independently developed in the last. . . say 6 years. The general ideas can be explained for our 3D model,
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but we describe the numerical implementation only for the 2D situation. In this case, the spaceS has afinite
dimensionwhich is exactly the number of reentrant corners [11,12]. Near each of them, the behaviour of a
functionϕ ∈ S is given by

ϕ(r, θ)= α s(r, θ)+ ϕR(r, θ), wheres(r, θ)= rπ/ω sin

(
π

ω
θ

)
(23)

and(r, θ) denote local polar coordinates with respect to the vertex of the corner, withθ ∈ [0,ω] andω is the
opening angle. The coefficientα plays the role of a ‘stress intensity factor’ whereasϕR ∈H 1

0 ∩H 2 is the
regular part ofϕ (the firstsingularpart belongs toH 1

0 \H 2 near the corner). This very simple description
of S is the very difference from 3D situations.

5.1. The mixed approach

The method proposed by Assous, Ciarlet et al. [17,19,20] is related to the following proposition [17]
which asserts that the solution to thespuriousproblemL(grad) contains all the information required to
recover thephysicalsolution.

PROPOSITION 5.1. –If (u,p) ∈ HN(grad)×L2 satisfiesL(grad), then the solution toM(curl) is given
byuM = u + uS(p) whereuS(p) ∈ HN(curl ,div0) is the solution to(

curl uS(p),curl v
) + (p,divv)= 0 ∀v ∈ HN(grad) (24)

This is the representation ofuM in the decomposition

HN(curl ,div0)= HN(grad,div0)
⊥⊕ {

uS(p); p ∈N
}

(25)

whereHN(grad,div0) = {v ∈ HN(grad); divv = 0 in �}. This decomposition is orthogonal for the
scalar product(curl ·,curl ·) (see Lemma3.1).

Equation (24) signifies thatcurl curl uS(p)= gradp, which is not an ‘optical illusion’: acurl can also
be agrad if they both live near reentrant corners! But solving such an equation actually raises higher
numerical difficulties as for our initial Maxwell problem(gradp /∈ L2 in general).

In 2D (but only in this case), we can get out of trouble thanks to an alternative characterization of
the orthogonal complement ofHN(grad,div0), related to the singularities of theNeumannLaplace
operator. Their definition is similar to the Dirichlet case recalled in Section 4, starting from the following
decomposition ofL2

0 := {p ∈L2; (p,1)= 0} (the index 0 stands for zero mean value):

L2
0 =�

(
H 2

neu

) ⊥⊕Nneu, whereH 2
neu:= {

ψ ∈H 2/R; ∂nψ|� = 0
}

The idea is to introduce this orthogonal sum in the following diagram [19] which involves the scalar and
vector curl operators and gives a precise functional context for the formula curlcurl = −� (all arrows
denote isomorphisms):

HN(curl,div0)
curl

L2
0

curl

H 1
neu:= {ψ ∈H 1/R; �ψ ∈L2 and∂nψ|� = 0}

−�neu

We obtain

HN(curl ,div0)= HN(grad,div0)
⊥⊕ curl−1(Nneu) with curl−1 = −curl ◦ �−1

neu
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Hence settinguS(p) = curl−1ϕ with ϕ ∈ Nneu in (24) shows thatcurl ϕ = gradp. As a consequence a
possible algorithm for computinguM is: first compute a basis ofN andNneu, then solveL(grad) by nodal
elements, and finally find the singular partuS using the above trick. The numerical procedures proposed in
[19,20] consist in a slight variation of this scheme. The computation of a basis ofN or Nneu is achieved
by a ‘Dirichlet-to-Neumann’ technique (based on separation of local polar coordinates near a corner, which
yields an explicit series expansion).

5.2. The penalty approach

The method adopted by the CNRS/ENSTA team [10,21–23] consists in solvingP(curl ,div) using a
direct decomposition of type (18). SinceHN(grad) can be approximated by nodal elements, it suffices to
enrich such a discretization by a basis ofH sing. The only question is: how to chooseH sing to make the
implementation easy?

In 2D, the simplest choice forH sing follows from (23) by introducing for each corner a smooth cut-
off functionsη(r) whose support is localized near the vertex. One can choose instead ofS the spaceS0
spanned by the functionsη(r) s(r, θ) corresponding to all corners (where the supports of the different
cut-off functions do not intersect). This leads to considerH sing = gradS0. In this case, the solution
u to the physicalproblemP(curl,div) can be rewrittenu = uR + gradϕS where the pair(uR,ϕS) ∈
HN(grad)× S0 satisfies

(curl uR,curl vR)+ (divuR ,divvR)+ (�ϕS ,divvR)= (f ,divvR) ∀vR ∈ HN(grad)

(divuR,�ψS)+ (�ϕS,�ψS)= (f ,�ψS) ∀ψS ∈ S0

Using a nodal discretization ofHN(grad) and the basis ofS0 formed by the localized singular functions
ηs, we are led to a coupled problem between the discrete regular part and the ‘stress intensity factors’. The
latter can be solved by ablockmethod involving a solver of the discrete problemP(grad).

The flaw of this method is. . . its inaccuracy! Indeed the use of cut-off functions introduces high variations
of the regular part (in the region where these functions vary from 0 to 1), hence a poor convergence of the
finite element scheme. In order to get rid of these undesirable functions, the idea [23] is to construct an
orthogonaldecomposition (18) by solving a problem of typeP(grad) with non-homogeneousboundary
conditions. It may be seen that for each corner (to which corresponds the singular functions given in (23)),
the fieldu + grads is orthogonal toHN(grad) (for the scalar product of Lemma 3.1) ifu ∈ H1 satisfies

(curl u,curl v)+ (divu ,divv)= 0 ∀v ∈ HN(grad)

u × n = −grads × n on�

This problem is well suited for a nodal finite element scheme, which yields an approximation ofH⊥
sing.

In this case, the physical problemP(curl ,div) turns into the uncoupled computations of the regular part
(by solvingP(grad)) and the ‘stress intensity factors’. This version of thesingular field methodis easy to
implement, and. . . accurate!

The recent work by Assous et al. [24,25] consists in an extension of this approach for the time-dependent
Maxwell’s equations in the presence of charges, i.e., for a non-homogeneousdivergence condition divu = g

instead of (2). The latter is taken into account by introducing a Lagrange multiplier in thepenalty
formulation, which may be seen as an augmented lagrangian technique. But this multiplier plays a different
role from themixedapproach: here we are interested in the multiplier of thephysicalformulation, not of
thespuriousone.

5.3. What about 3D problems?

TheL-approach does not seem adapted to the treatment of 3D problems since it involves the solution of
the ‘stiff’ problem (24). On the other hand, the first 3D implementation of theP-approach has been carried
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out very recently for an axisymmetric conical point [26]: in this case, the singular fields still live in a space
of finite dimension. This does not hold for a polyhedral corner: the implementation seems possible, but at
what price?

Can we conclude by the defeat of the ‘conservatives’ in 3D? Not yet: Costabel and Dauge [27] proposed
an alternative cure for the failure of nodal elements, whose implementation in 3D seems easy. Apparently
close to theP-approach, it actually involves special weights inside the divergence integral, depending only
on the distance from reentrant singularities. By a simple refinement of the mesh near the latters, nodal
elements become capable of capturing the singular behaviour of the field. This ‘weighted regularization’ is
justified by density arguments which go beyond the framework of the present paper.

6. Possible extensions and related topics

The corner paradoxdescribed here for a ‘schoolish’ model occurs for most problems deriving from
Maxwell’s equations, either for electric or magnetic boundary conditions near a perfect conductor, or
transmission conditions across discontinuities of the medium [10,16,28], as well as for time-dependent
problems [24,25,20] (see also [29,30]). The situation is quite different if animpedanceboundary condition
is used: in theory, the addition of singular fields is no longer required (which follows from the density
of smooth fields in the involved function space [31,32]). But in practice [33], a poor convergence of the
numerical scheme can be observed.

One could be tempted to compare thecorner paradoxwith theplate paradox[34] which is known to oc-
cur in the Kirchhoff model of the plate-bending problem, when ahardsupport is used: on a sequence ofcon-
vexpolygonal domains converging to a regular one, the solutions to the polygonal plate-bending problem do
not converge to the solution to the limit problem! However the explanation of this paradox is quite different
(although a similar phenomenon exists for Maxwell’s equations [35]): the limit problem has two possible
interpretations again related to boundary conditions, whereas for a polygonal domain, both coincide.

On the other hand, in the context of linear aeroacoustics, Galbrun’s equation is dealt with in [36] by a
penalty technique similar to ourP-approach, but where the roles of the operatorscurl curl andgraddiv
are exchanged. As for Maxwell’s equations, the presence of reentrant corners can break the equivalence
between the penalty problem and the initialphysicalproblem, but the influence of singularities has not
been studied yet.
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