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Abstract A novel collision strategy has been implemented for simulation of particulate flows using
a Lagrange multiplier/fictitious domain method. In this Note, we present this new collision
strategy that is based on Newton’s principle of transfer of momentum. With this method,
we have simulated motion of two discs under the influence of gravity in a viscous fluid, and
the motion of 1008 discs under the effect of gravity. To cite this article: P. Parthasarathy,
C. R. Mecanique 330 (2002) 77–81.  2002 Académie des sciences/Éditions scientifiques
et médicales Elsevier SAS

fluid mechanics

Sur le traitement des collisions lors de la simulation numérique des
écoulements particulaires

Résumé Dans cette Note on présente une nouvelle méthode pour le trai tment des collisions lors
de la simulation numérique des écoulements particulaires. Cette méthode est basée sur le
principe de Newton sur le transfert d es moments. Ce traitment des collisions a été combiné
avec des méthodes de domaines fictifs avec multiplicateurs de Lagrange afin de simuler
numérique ment des écoulement de mélanges de particules solides/fluides Newtoniens
vis queux incompressibles. La méthodologie ci-dessus a été validée en simulant la
sédimentation de deux disques rigides dans un fluide Newtonien visqueux incompressible,
puis appliquée à la sédimentation de 1008 disques dans un fluide de même type. Pour citer
cet article : P. Parthasarathy, C. R. Mecanique 330 (2002) 77–81.  2002 Académie des
sciences/Éditions scientifiques et médicales Elsevier SAS

mécanique des fluides

1. Introduction

In [1] and [2] a distributed Lagrange multiplier/fictitious domain method was presented for simulation
of the motion of rigid bodies in a Newtonian fluid. In this Note, we present results using this formulation
for several discs moving due to gravity in a Newtonian fluid with a novel, more physical, collision strategy
implementation. In our work, we use the principle of conservation of momentum to come up with impulses
that originate due to collisions and use these impulses to accurately move the particles in the simulation.
Results for the motion of two particles falling due to gravity in a fluid and the motion of 1008 discs falling
under gravity are shown to highlight the accuracy and robustness of the algorithm have been presented in
this Note.
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2. Combined formulation

Let � ⊂ R
d (in our case d = 2; see Fig. 1) be a region filled with a Newtonian, viscous, incompressible

fluid of density ρf and viscosity νf . Let there be N moving bodies {Bj }Nj=1 in this fluid with density

{ρj }Nj=1. For this system, the flow of the fluid is described by the Navier–Stokes equations while the motion
of rigid bodies is described by Newton–Euler’s equations. To obtain a combined weak formulation for
this problem, we define the following functional spaces Wg0(t) = {v | v ∈ (H 1(�))d, v = g0(t) on �},
L2

0(�) = {q | q ∈ L2(�),
∫
�
q dx = 0}, and �j (t) = H 1(Bj (t)

d ), ∀j = 1, . . . ,N.

With these spaces, we define the fictitious domain formulation with distributed Lagrange multipliers for
our problem as:

For t > 0, find u(t), p(t),
{

Vj (t),Gj (t),ωj (t), λj (t)
}N

j=1, such that

u(t) ∈ Wg0(t), p(t) ∈ L2
0(�),

{
Vj (t) ∈ R

d, Gj (t) ∈ R
d, ωj (t) ∈ R

3, λj (t) ∈ �j(t)
}N

j=1 (2.1)

and 


ρf

∫
�

(
∂u
∂t

+ u∇u
)

· v dx + 2νf

∫
�

D(u) : D(v)dx −
N∑

j=1

〈
λj ,v − Yj − θ j × −−→

Gjx
〉
j

−
∫
�

p∇ · v dx +
N∑

j=1

(
1 − ρf

ρj

)[
Mj

dVj

dt
· Y +

(
I j

dωj

dt
+ ωj × I jωj

)
· θj

]

=
N∑

j=1

(
1 − ρf

ρj

)
Mjg · Yj , ∀v ∈ (

H 1
0 (�)

)d
, ∀Yj ∈ R

d, ∀θ j ∈ R
3

(2.2)

∫
�

q∇ · u(t)dx = 0, ∀q ∈ L2(�) (2.3)

dGj

dt
= Vj , ∀j = 1, . . . ,N (2.4)

〈
µj ,u(t) − Vj (t) − ωj (t) × −−−−→

Gj (t)x
〉
j
= 0, ∀µj ∈ �j (t), ∀j = 1, . . . ,N (2.5)

Vj (0) = V0
j , ωj (0) = ω0

j , Gj (0) = G0
j , ∀j = 1, . . . ,N (2.6)

u(x,0) = u0(x), ∀x ∈ � \
N⋃

j=1

Bj (0) and u(x,0) = V0
j + ω0

j × −−→
G0

jx, ∀x ∈ Bj (0) (2.7)

In Eqs. (2.1)–(2.7), u (= {ui}di=1) and p are the velocity and pressure of the fluid. Vj , ωj , Mj , I j , Gj

are the translational velocity, rotational velocity, mass, moment of inertia (about Gj ) and center of mass
of the j th particle respectively. {λj }Nj=1 is a family of Lagrange multipliers, D(v) = (∇v + ∇vt )/2 is the
strain-rate tensor, and g is the acceleration due to gravity.

Figure 1. Example of a two-dimenional flow region with two discs.
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3. Collision model

To time-discretize the system we employ the Marchuk–Yanenko splitting (more details on this particular
implementation of the M–Y scheme can be found in [1] and [2]). In our implementation, the velocity of
particles and their positional change are computed at different steps and hence, there needs to be a good
model for detecting collisions so that the particles do not overlap each other’s boundary. We use the principle
of conservation of momentum applied on inelastic collision as shown here.

Consider discs 1 and 2 that are about to collide as in Fig. 1. Let their pre-collisional velocities in the
normal and tangential directions be Vn1, Vn2, Vt1, Vt2. Let ω1 and ω2 be the pre-collisional rotational
velocities and r1 and r2 be their radii. The relative velocities are given by

Vrn = Vn1 − Vn2, Vrt = Vt1 − Vt2 + r1�1 − r2�2 (3.1)

At the time of collision, impulses are generated both in the normal and tangential direction and let these
be represented by Jn and Jt respectively. The impulses are given by,

Jn = −m(1 + en)Vrn and Jt = etVrt (3.2)

where

m = m1m2

m1 + m2
, en = − vn1 − vn2

Vn1 − Vn2

m1 and m2 are the respective masses of the particles, and en is the coefficient of restitution that takes into
account inelasticity in collisions. et is given by,

et = µk
Jn

|Vrt | , if |Jtmax| > µs |Jn|, else et = −1

3
m (3.3)

where Jtmax = −2mVrt , and µs and µk are the coefficients of static and kinetic frictions respectively. The
“else” part in (3.3) signifies the occurence of zero post-collisional tangential relative velocity. Now the new
velocities are given by,

vn1 = Vn1 + Jn

m1
, vt1 = Vt1 + Jt

m1
, ω1 = ω1 + Jt

I1

vn2 = Vn2 − Jn

m2
, vt2 = Vt2 − Jt

m2
, ω2 = ω2 + Jt

I2

(3.4)

where I1 and I2 are the moments of inertia of the two bodies and the lower case symbols indicate velocities
after collision. A 3-dimensional variant of this method can be found in [3]. Extension of this method to
wall-particle collisions is straightforward.

This model has been implemented in such a way that each collision in a time step )t is tracked and the
collisions proceed from the earliest to the last, taking into account the changes in the system due to each
collision. This is achieved by detecting the first collision, moving all particles to the time instan t of that
particular collision and applying the collision model to the particles involved. This process of detecting the
first collision and applying the collision model is repeated until all collisions within )t have been detected.

4. Numerical experiments

We simulated the well documented case of two discs, one on top of another separated by a small distance,
falling under the effect of gravity. It has been seen that the top disc accelerates due to lower drag and the
drafting, kissing and tumbling phenomenon occurs. We have compared our results with the results of [1].
For this simulation, we used a uniform grid of gridlength )h = 1/192 and timestep )t = 0.001. Discs
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of density ρj = 1.5 and diameter D = 0.25 were dropped in a fluid of density ρf = 1.0 and viscosity
νf = 0.01 contained in a domain � = (0,2) × (0,6).

The comparison shown in Fig. 2 shows a very different behaviour after the discs collide while the pre-
collisional development is very similar. Since in our collision scheme we take into account friction between
the discs during collision, angular velocity increases rapidly after collision. Due to the conversion some part
of the energy from translational to rotational, we see that translational velocity reduces in our simulation in
comparison to [1]. The maximum Reynolds number (based on particle diameter Re = Du/νf ) reached was
418.

To test the robustness of our algorithm, we simulated the sedimentation of 1008 discs. With the fluid
properties remaining the same as in the previous experiment, we used the following parameters, ρj = 1.5

Figure 2. Velocity versus time plots of
two particles. From left to right:

(1) velocity in the direction
perpendicular to gravity (2) velocity in

the direction of gravity and (3) rotational
velocity (solid lines indicate present
work and dashed lines (- -) indicate

results from [1]).

Figure 3. Evolution of motion of 1008 particles of specific gravity 1.5 sedimenting in a viscous fluid under the effect
of gravity. From left to right, evolution traced at t = 0, t = 1.0, t = 2.0, t = 3.0 and t = 3.28 time units.
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for all particles, D = 0.09, )h = 1/128, )t = 0.001 and � = (0,2) × (0,7). Fig. 3 shows the progress of
the sedimentation. The algorithm was able to handle effectively a large number of collisions, in the order of
tens of thousands in one time step. The advantage of our algorithm is that there is no possibility of two discs
overlapping each other at any point and no checks have to be introduced for this. The collision parameters
used in all our experiments are en = 0.95, µk = 0.2 and µs = 0.2.
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