# Base minimale pour les corrélations pression-déformation

# Jean Piquet

Laboratoire de mécanique des fluides, UMR 6598 CNRS, École centrale de Nantes, 1, rue de la Noe, BP 92101, 44321 Nantes cedex, France

Reçu le 28 septembre 2001 ; accepté après révision le 17 janvier 2002 Note présentée par Pierre Perrier.

| Résumé | La réduction de la modélisation classique du tenseur des corrélations pression-déformation<br>à la détermination de cinq scalaires dans une base réduite est étudiée. Grâce à cette base<br>réduite, les contraintes de réalisabilité et de géostrophie sont facilement obtenues et un<br>modèle réalisable, consistant avec la théorie de distorsion rapide, est obtenu. <i>Pour citer</i><br><i>cet article : J. Piquet, C. R. Mecanique 330 (2002) 167–173.</i> © 2002 Académie des<br>sciences/Éditions scientifiques et médicales Elsevier SAS |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | mécanique des fluides / turbulence / réalisabilité / pression-déformation / géostrophie                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

# Minimal basis for the pressure-strain correlations

Abstract The pressure-strain correlation tensor can be specified by means of five scalar functions in a reduced basis. In this basis, realisability and geostrophic constraints can be easily obtained, and the resulting realisable model is consistent with rapid distorsion theory. *To cite this article: J. Piquet, C. R. Mecanique 330 (2002) 167–173.* © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS

fluid mechanics / turbulence / realisability / pressure-strain / geostrophy

# Abridged English version

The turbulence modeling of the pressure-strain tensor  $T_{ij}$  is usually based on slow-rapid Lumley [1] splitting. The functionals that specify  $T_{ij}$  in terms of the anisotropy tensor **b** and the mean velocity gradient must be invariant through a rotation of coordinate axii, so that **T** must be an isotropic functional of its arguments, which can be shown [3] to be necessarily of the form (4). The purpose of the present note is to examine if the integrity basis  $\mathbf{V}_i$  leading to (4) produces redundancies in the physical space. We introduce an orthonormal basis  $\mathbf{A}_{\mu}$  for second-order tensors in the physical space, so that any second-order tensor can be written  $\mathbf{X} = X_{\mu} \mathbf{A}_{\mu}$ . The algebra associated to the  $\mathbf{A}_{\mu}$ 's is simple in the sense that  $(\mathbf{A}_{\mu}\mathbf{A}_{\alpha}) : \mathbf{A}_{\alpha} \neq 0$  for at most three values of  $\alpha$ . In this basis, realizable states of the anisotropy tensor **b** are located inside an equilateral triangle, and terms  $\mathbf{V}_i$  can be easily projected (see Eq. (8)). Reciprocal formulae that yield the  $\mathbf{A}_{\mu}$ 's in terms of  $\mathbf{V}_i$  are not isotropic so that the integrity basis  $\mathbf{V}_i$  does not in general suffer from redundancies. The  $\mathbf{A}_{\mu}$  basis is, however, interesting in that it allows weak realisability constraints to be satisfied directly, yielding Eqs. (12). Also, a 'geostrophic constraint' [7] is also easily

© 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés

S1631-0721(02)01439-0/FLA

Adresse e-mail : Jean.Piquet@ec-nantes.fr (J. Piquet).

#### J. Piquet / C. R. Mecanique 330 (2002) 167-173

deduced from Eq. (14). The final model (15) is made consistent with rapid-distorsion theory for irrotational flows.

#### 1. Introduction

Dans les modélisations de la turbulence, il est d'usage d'écrire que le tenseur de pression-déformation, se décompose en une partie rapide et une partie lente, sous la forme suivante :

$$T_{ij} := \rho^{-1} \overline{p(u_{i,j} + u_{j,i})} = T_{ij}^{(r)} + T_{ij}^{(s)}$$
(1)

avec :

$$T_{ij}^{(s)} = \frac{K}{\varepsilon} \mathbf{T}_{ij}^{(s)}(\mathbf{b}) ; \quad T_{ij}^{(r)} \equiv 4K(M_{ipqj} + M_{jpqi})V_{aq,p}, \quad M_{ipqj} = \mathbf{M}_{ipqj}(\mathbf{b})$$
(2)

La décomposition (1)–(2), popularisée par Lumley [1], réduit le problème de fermeture de  $T_{ij}$  à la spécification des fonctionnelles  $\mathbf{T}_{ij}^{(s)}(\mathbf{b})$  et  $\mathbf{M}_{ipqj}(\mathbf{b})$  qui sont supposées s'exprimer isotropiquement en fonction de l'anisotropie adimensionnelle, **b**, des contraintes de Reynolds (*K* est l'énergie cinétique de la turbulence,  $\varepsilon = v \overline{u_{i,j} u_{i,j}}$  son taux de dissipation),

$$b_{ij} := \overline{u_u u_j} / 2K - \frac{1}{3} \delta_{ij} \tag{3}$$

Chacune de ces fonctionnelles **T** doit être en effet invariante lors d'une rotation arbitraire des axes de coordonnées, si bien que **T** est une fonction isotrope de ses arguments. L'utilisation des théorèmes de représentation pour des fonctionnelles isotropes [2] conduit, en exploitant la linéarité de **T** par rapport au gradient de vitesse et son caractère de déviateur pur, au modèle suivant [3] :

$$\mathbf{T} = K \left\{ \beta_1 \mathbf{b} + \beta_2 \left[ \mathbf{b}^2 + \frac{2\mathbf{II}}{3} \mathbf{I} \right] + \beta_3 \mathbf{S} + \beta_4 \left[ \mathbf{b} \mathbf{S} + \mathbf{S} \mathbf{b} - \frac{2}{3} \{ \mathbf{b} \mathbf{S} \} \mathbf{I} \right] + \beta_5 \left[ \mathbf{b}^2 \mathbf{S} + \mathbf{S} \mathbf{b}^2 - \frac{2}{3} \{ \mathbf{b}^2 \mathbf{S} \} \mathbf{I} \right] \\ + \beta_6 [\mathbf{b} \mathbf{W}_a - \mathbf{W}_a \mathbf{b}] + \beta_7 \left[ \mathbf{b}^2 \mathbf{W}_a - \mathbf{W}_a \mathbf{b}^2 \right] + \beta_8 \left[ \mathbf{b}^2 \mathbf{W}_a \mathbf{b} - \mathbf{b} \mathbf{W}_a \mathbf{b}^2 \right] \right\}$$
(4a)

où les huit scalaires dépendent des invariants II :=  $-\{\mathbf{b}^2\}/2$ , III :=  $\{\mathbf{b}^3\}/3$ ,  $\{\mathbf{b}\mathbf{S}\}$ ,  $\{\mathbf{b}^2\mathbf{S}\}$  :

$$\beta_i = \beta_{i0}(\text{II}, \text{III}) + \beta_{i1}(\text{II}, \text{III})\{\mathbf{bS}\} + \beta_{i3}(\text{II}, \text{III})\{\mathbf{b}^2\mathbf{S}\}; \quad i = 1, 2; \quad \beta_i = \beta_i(\text{II}, \text{III}), \quad i = 3, \dots, 8$$
(4b)

Dans ce qui précède,  $V_a$  est la vitesse moyenne absolue, alors que **S** et  $W_a$  désignent respectivement les parties symétrique et antisymétrique de son gradient (de composantes  $V_{ap,q}$ ). On notera que  $\beta_{10}$  et  $\beta_{10}$  caractérisent la partie « lente » (2<sub>a</sub>).

#### 2. La base minimale utilisée

**T** étant un pur déviateur symétrique, il est caractérisé par cinq scalaires indépendants seulement dans une base cartésienne donnée { $\mathbf{e}_i$ , i = 1, ..., 3}. L'objet de cette Note, suivant en cela une idée récente de Girimaji [4], est d'examiner si la base d'intégrité dans l'espace fonctionnel constitue un générateur redondant dans l'espace physique. Il nous faut évidemment une décomposition d'un tenseur arbitraire du second ordre sur une base à neuf éléments. Nous exigeons pour des raisons évidentes de simplicité que cette base soit orthonormée (au sens du produit intérieur des tenseurs du second ordre) et qu'elle donne

#### Pour citer cet article : J. Piquet, C. R. Mecanique 330 (2002) 167-173

naissance à une algèbre facile à spécifier (si  $\mathbf{A}_{\beta}\mathbf{A}_{\gamma} = \Gamma^{\alpha}_{\beta\gamma}\mathbf{A}_{\alpha}$ , il existe au plus trois valeurs de  $\alpha$  telles que  $\Gamma^{\alpha}_{\beta\gamma} \neq 0$ ). Une possibilité est la suivante, si **I** est l'identité :

$$\mathbf{A}_{1} := \frac{\mathbf{I}}{\sqrt{3}}, \quad \mathbf{A}_{2} := \frac{1}{\sqrt{6}} (2\mathbf{e}_{3}\mathbf{e}_{3} - \mathbf{e}_{2}\mathbf{e}_{2} - \mathbf{e}_{1}\mathbf{e}_{1}) \mathbf{A}_{3} := \frac{1}{2} [\mathbf{e}_{1}\mathbf{e}_{3} + \mathbf{e}_{3}\mathbf{e}_{1} - \mathbf{i}(\mathbf{e}_{2}\mathbf{e}_{3} + \mathbf{e}_{3}\mathbf{e}_{2})], \quad \mathbf{A}_{4} := -\frac{1}{2} [\mathbf{e}_{1}\mathbf{e}_{3} + \mathbf{e}_{3}\mathbf{e}_{1} + \mathbf{i}(\mathbf{e}_{2}\mathbf{e}_{3} + \mathbf{e}_{3}\mathbf{e}_{2})] \mathbf{A}_{5} := \frac{1}{2} [\mathbf{e}_{1}\mathbf{e}_{1} - \mathbf{e}_{2}\mathbf{e}_{2} - \mathbf{i}(\mathbf{e}_{1}\mathbf{e}_{2} + \mathbf{e}_{2}\mathbf{e}_{1})], \quad \mathbf{A}_{6} := \frac{1}{2} [\mathbf{e}_{1}\mathbf{e}_{1} - \mathbf{e}_{2}\mathbf{e}_{2} + \mathbf{i}(\mathbf{e}_{1}\mathbf{e}_{2} + \mathbf{e}_{2}\mathbf{e}_{1})]$$
(5)  
$$\mathbf{A}_{7} := \frac{\mathbf{i}}{\sqrt{2}} (\mathbf{e}_{2}\mathbf{e}_{1} - \mathbf{e}_{1}\mathbf{e}_{2}), \quad \mathbf{A}_{8} := \frac{1}{2} [\mathbf{e}_{1}\mathbf{e}_{3} - \mathbf{e}_{3}\mathbf{e}_{1} - \mathbf{i}(\mathbf{e}_{2}\mathbf{e}_{3} - \mathbf{e}_{3}\mathbf{e}_{2})] \mathbf{A}_{9} := \frac{1}{2} [\mathbf{e}_{1}\mathbf{e}_{3} - \mathbf{e}_{3}\mathbf{e}_{1} + \mathbf{i}(\mathbf{e}_{2}\mathbf{e}_{3} - \mathbf{e}_{3}\mathbf{e}_{2})]$$

La trace d'un tenseur étant entièrement dans la composante  $A_1$ , un déviateur pur symétrique s'exprimera alors uniquement en fonction de  $A_{\mu}$ ,  $\mu = 2, ..., 6$ , un tenseur antisymétrique en fonction de  $A_{\mu}$ ,  $\mu = 7, ..., 9$ . Par convention, nous effectuerons la sommation sur des indices grecs répétés comme suit :

$$\mathbf{b} = B_{\underline{\alpha}} \mathbf{A}_{\underline{\alpha}}, \quad \text{ou } \mathbf{C} = B_{\alpha} \mathbf{A}_{\alpha} \tag{6}$$

Dans la sommation (6<sub>a</sub>), l'indice grec  $\alpha$  prend les valeurs de 2 à 6, alors que dans la sommation (6<sub>b</sub>), l'indice grec  $\alpha$  prend toutes les valeurs de 1 à 9. Il est alors facile de définir l'algèbre des  $\mathbf{A}_{\mu}$ , c'est à dire la collection des  $\Gamma^{\alpha}_{\beta\gamma}$ . Munis de ces valeurs, nous sommes en mesure de calculer automatiquement chaque terme de la décomposition (4a). Il est néanmoins intéressant de simplifier les calculs en plaçant **b** dans son repère principal où les seuls  $B_{\mu}$  non nuls sont  $B_2 = \xi\sqrt{2}$ ,  $B_5 = B_6 = \eta$ . Si  $b_1$ ,  $b_2$ ,  $b_3$  sont ses valeurs propres ( $b_1 + b_2 + b_3 = 0$ ), on vérifie aisément que :

$$b_{1} = \eta - \xi/\sqrt{3}, \quad b_{2} = -\eta - \xi/\sqrt{3}, \quad b_{3} = 2\xi/\sqrt{3}$$
  
II = -(\xi^{2} + \eta^{2}), \quad III = b\_{1}b\_{2}b\_{3} = 2\xi(\xi^{2} - 3\eta^{2})/3\sqrt{3} (7)

si bien que le diagramme {II, III} de Lumley [1] peut être redéfini en un diagramme { $\xi$ ,  $\eta$ }, Fig. 1. Les états réalisables se situent à l'intérieur du triangle équilatéral ABC, l'isotropie en étant le centre de gravité O, les sommets représentant les trois états possibles de turbulence 2*C* isotrope (II = -1/12, III = -1/108). Les cotés du triangle AB, AC, BC correspondent aux états de turbulence 2*C* (respectivement  $b_2 = -1/3$ ,  $b_1 = -1/3$ ,  $b_3 = -1/3$ ). Les médiatrices du triangle représentent la situation axisymétrique où deux valeurs propres de **b** sont égales si bien que les pieds des médiatrices sont des états de turbulence 1*C* (II = -1/3, III = 2/27). Alors, l'invariant d'axisymétrie s'écrit :

$$\Delta_a := 4II^3 + 27III^2 = -4\eta^2 (3\xi^2 - \eta^2)^2 \le 0$$

Ainsi, la représentation de l'état de turbulence au moyen des paramètres  $\xi$  et  $\eta$  est équivalente à la représentation de Lumley et nous considérons dans la suite que  $\xi$  et  $\eta$  sont des fonctions *multivoques* analytiquement connues des invariants II et III. L'univocité de  $\xi(II, III)$  et  $\eta(II, III)$  est fixée par le choix d'une racine de  $\xi^3 - 3\xi(-II)/4 - 3\sqrt{3}III/8 = 0$ . Chaque racine appartient à l'une des zones hachurées ou à l'une des zones non hachurées, selon que l'ensemble des racines implique III < 0 ou III > 0, respectivement. Plus précisément, si  $27III^2/(-4II^3) =: \sin^2 \Phi$ , avec  $|\Phi| \leq \pi/2$ , alors :

$$\xi = \sqrt{-\Pi} \sin \frac{\Phi}{3}, \quad \xi = -\sqrt{-\Pi} \sin \left(\frac{\pi + \Phi}{3}\right), \quad \xi = \sqrt{-\Pi} \sin \left(\frac{\pi - \Phi}{3}\right)$$

# J. Piquet / C. R. Mecanique 330 (2002) 167-173



Figure 1. Etats réalisables de la turbulence. Les zones grisées correspondent à III < 0. Les iso-valeurs de –II sont des cercles centrés en O.

**Figure 1.** Realizable states of turbulence. Shaded zones correspond to III < 0; Isovalues of –II are circles centered at O.

sont les trois valeurs possibles de  $\xi$ . Parce que  $(-II)^{1/2}$  est la distance à C du point P de coordonnées  $(\xi, \eta)$ , l'angle  $\Phi$  est lié à l'angle polaire  $\theta(P)$  par  $\Phi = 3\pi/2 - 3\theta$ , si bien que les trois valeurs possibles de  $\xi$  se déduisent l'une de l'autre par rotation de  $2\pi/3$  autour de C. La multivocité à-priori de  $\xi(II, III)$  et  $\eta(II, III)$  signifie que les relations (8) qui vont être établies ne sont pas isotropes. Il n'y a donc pas, en général, réduction possible des fonctionnelles T(V), bien que T(V) se projette de façon unique sur  $\{A_{\mu}, \mu = 2, ..., 6\}$ .

## 3. Décomposition dans la base minimale

Nous sommes maintenant en mesure d'étudier la décomposition (4a). Partant de  $\mathbf{b} = B_{\underline{\alpha}} \mathbf{A}_{\underline{\alpha}}$ ,  $\mathbf{S} = S_{\underline{\alpha}} \mathbf{A}_{\underline{\alpha}}$  et  $\mathbf{W} = W_7 \mathbf{A}_7 + W_8 \mathbf{A}_8 + W_9 \mathbf{A}_9$ , nous pouvons calculer chacun des termes de (4a), en particulier dans le repère principal de **b**. Le résultat est le suivant :

$$\mathbf{V}_1 := \mathbf{b} = \xi \sqrt{2} \mathbf{A}_2 + \eta (\mathbf{A}_5 + \mathbf{A}_6) \tag{8a}$$

$$\mathbf{V}_{2} := \mathbf{b}^{2} + \frac{2\Pi}{3}\mathbf{I} = \frac{\sqrt{2}}{\sqrt{3}} (\xi^{2} - \eta^{2})\mathbf{A}_{2} - \frac{2}{\sqrt{3}}\xi\eta(\mathbf{A}_{5} + \mathbf{A}_{6})$$
(8b)

$$\mathbf{V}_4 := \mathbf{bS} + \mathbf{Sb} - \frac{2}{3} \{\mathbf{bS}\}\mathbf{I} = \frac{\sqrt{2}}{\sqrt{3}} \left[\xi S_2 \sqrt{2} - \eta (S_5 + S_6)\right] \mathbf{A}_2 + \left(\frac{\xi}{\sqrt{3}} S_3 - \eta S_4\right) \mathbf{A}_3 + \left(\frac{\xi}{\sqrt{3}} S_4 - \eta S_3\right) \mathbf{A}_4$$

$$-\frac{\sqrt{2}}{\sqrt{3}}(\eta S_2 + \xi \sqrt{2}S_5)\mathbf{A}_5 - \frac{\sqrt{2}}{\sqrt{3}}(\eta S_2 + \xi \sqrt{2}S_6)\mathbf{A}_6$$
(8c)

$$\mathbf{V}_{5} := \mathbf{b}^{2}\mathbf{S} + \mathbf{S}\mathbf{b}^{2} - \frac{2}{3}\{\mathbf{b}^{2}\mathbf{S}\}\mathbf{I} = \frac{2}{3}[(3\xi^{2} + \eta^{2})S_{2} + \sqrt{2}\xi\eta(S_{5} + S_{6})]\mathbf{A}_{2} \\ + \left[\left(\frac{5\xi^{2}}{3} + \eta^{2}\right)S_{3} + \frac{2}{\sqrt{3}}\xi\eta S_{4}\right]\mathbf{A}_{3} + \left[\left(\frac{5\xi^{2}}{3} + \eta^{2}\right)S_{4} + \frac{2}{\sqrt{3}}\xi\eta S_{3}\right]\mathbf{A}_{4} \\ + 2\left[\left(\frac{\xi^{2}}{3} + \eta^{2}\right)S_{5} + \frac{\sqrt{2}}{3}\xi\eta S_{2}\right]\mathbf{A}_{5} + 2\left[\left(\frac{\xi^{2}}{3} + \eta^{2}\right)S_{6} + \frac{\sqrt{2}}{3}\xi\eta S_{2}\right]\mathbf{A}_{6}$$
(8d)

$$\mathbf{V}_{6} := \mathbf{b}\mathbf{W} - \mathbf{W}\mathbf{b} = (\eta W_{9} - \xi\sqrt{3}W_{8})\mathbf{A}_{3} - (\eta W_{8} - \xi\sqrt{3}W_{9})\mathbf{A}_{4} + \eta\sqrt{2}W_{7}(\mathbf{A}_{5} - \mathbf{A}_{6})$$
(8e)

170

To cite this article: J. Piquet, C. R. Mecanique 330 (2002) 167-173

$$\mathbf{V}_{7} := \mathbf{b}^{2} \mathbf{W} - \mathbf{W} \mathbf{b}^{2} = -\left[ \left( \xi^{2} - \eta^{2} \right) W_{8} + \frac{2}{\sqrt{3}} \xi \eta W_{9} \right] \mathbf{A}_{3} \\ + \left[ \left( \xi^{2} - \eta^{2} \right) W_{9} + \frac{2}{\sqrt{3}} \xi \eta W_{8} \right] \mathbf{A}_{4} - \frac{2\sqrt{2}}{\sqrt{3}} \xi \eta W_{7} (\mathbf{A}_{5} - \mathbf{A}_{6})$$

$$\mathbf{V}_{8} := \mathbf{b}^{2} \mathbf{W} \mathbf{b} - \mathbf{b} \mathbf{W} \mathbf{b}^{2} = -2\xi \left[ \frac{\Pi}{\sqrt{3}} W_{8} + \frac{4}{3} \xi \eta W_{9} \right] \mathbf{A}_{3} \\ + 2\xi \left[ \frac{\Pi}{\sqrt{3}} W_{9} + \frac{4}{3} \xi \eta W_{8} \right] \mathbf{A}_{4} + \eta \sqrt{2} W_{7} \left( \frac{\xi^{2}}{3} - \eta^{2} \right) (\mathbf{A}_{5} - \mathbf{A}_{6})$$
(8g)

Nous convenons de désigner l'espace engendré par  $\{V_1, V_2\}$ , comme l'hyperplan «lent», (L), l'espace engendré par { $V_{\mu}$ ,  $\mu = 3, ..., 5$ }, comme l'hyperplan «déformation», (D), et l'espace engendré par  $\{V_{\mu}, \mu = 6, 7, 8\}$ , comme l'hyperplan « rotation », (R). La base retenue place  $A_2$  et  $A_5 + A_6$  dans (L) $\cap$ (D) et A<sub>3</sub>, A<sub>4</sub>, A<sub>5</sub> – A<sub>6</sub> dans (D) $\cap$ (R). On remarque que dans le cas où S<sub>5</sub> = S<sub>6</sub> (déformation moyenne selon les directions principales  $x_1 - x_2$ ), V<sub>4</sub> et V<sub>5</sub> sont orthogonaux à A<sub>5</sub> - A<sub>6</sub> si bien qu'un V<sub> $\mu$ </sub> de (R) est indispensable dans la base. Le cas particulier  $S_3 = \pm S_4$  (glissement simple moyen dans les directions bissectrices de  $x_1 - x_3$  ou de  $x_2 - x_3$ ) implique que  $V_3$ ,  $V_4$  et  $V_5$  sont orthogonaux à  $A_3 \pm A_4$ . Enfin le cas particulier  $W_8 = \pm W_9$  (vorticité moyenne nulle selon les axes principaux  $x_1$  ou  $x_2$ ) implique que V<sub>6</sub>, V<sub>7</sub> et  $V_8$  sont orthogonaux à  $A_3 \pm A_4$ . Les simplifications relatives à ces cas particuliers (qui, pour certains, correspondent à des écoulements moyens bidimensionnels) feront l'objet d'une étude à part. Les relations (8) impliquent que réciproquement, A condition que  $\Delta_a \neq 0$  et  $\eta \neq 0$ , il est possible d'inverser les relations (8) et d'en déduire les  $A_i$  en fonction des  $V_i$ . Ces relations, qui sont omises pour des raisons de concision, montrent que la base minimale est de  $V_i$ , i = 1, ..., 5, dans le cas d'un écoulement moyen irrotationnel. Dans le cas général d'un écoulement moyen rotationnel, il n'existe aucune modalité possible de dépendance des coefficients  $\beta_i$  en fonction des invariants mettant en jeu  $W_{\mu}$ . La donnée de  $\mathbf{V}_1$  et de  $\mathbf{V}_2$  est en général équivalente à celle de  $A_2$  et de  $A_5 + A_6$ . De même celle de  $V_6$ ,  $V_7$ ,  $V_8$  est équivalente à celle de  $A_3$ ,  $A_4$  et  $A_5 - A_6$ . Compte tenu de ce qui précède, les coefficients,  $T_{\alpha}$ , du développement de T sur la base proposée tel que  $\mathbf{T} = T_{\alpha} \mathbf{A}_{\alpha}$  sont des fonctions des invariants susceptibles d'être formés, c'est à dire, outre II et III :

$$\{\mathbf{bS}\} = \xi \sqrt{2}S_2 + \eta(S_5 + S_6), \qquad \{\mathbf{b}^2 \mathbf{S}\} = \frac{\sqrt{2}}{\sqrt{3}} (\xi^2 - \eta^2) S_2 - \frac{2}{\sqrt{3}} \xi \eta(S_5 + S_6)$$
(9)

qui fixent  $S_2$  et  $S_5 + S_6$  en fonction des invariants {**bS**} et {**b**<sup>2</sup>**S**} par des relations *non isotropes*.

## 4. Utilisation de la décomposition

L'intéret de la décomposition (8) est de permettre d'examiner les conditions de réalisabilité (faible) directement, sans passer par l'intermédiaire du tenseur  $M_{ijpq}$ . Trois contraintes (2C) peuvent être imposées :  $u_1 = 0$  implique  $b_1 = -1/3$  et  $T_5 + T_6 - T_2\sqrt{2}/\sqrt{3} = 0$  pour toutes les valeurs de  $S_{\alpha}$ . On remarque en effet que *la réalisabilité ne concerne que la partie irrotationnelle de* (8). De façon analogue,  $T_5 + T_6 + T_2\sqrt{2}/\sqrt{3} = 0$  pour  $b_2 = -1/3$  ou  $\eta = 1/3 - \xi/\sqrt{3}$ . Enfin, pour  $\xi = -(2\sqrt{3})^{-1}$ ,  $T_2 = 0$ . La première des trois conditions implique,  $\forall S_i$ :

$$\frac{2}{\sqrt{3}}\beta_{1}(\eta\sqrt{3}-\xi) - \frac{2}{3}\beta_{2}(2\xi\eta\sqrt{3}+\xi^{2}-\eta^{2}) + \left(S_{5}+S_{6}-\frac{\sqrt{2}}{\sqrt{3}}S_{2}\right)\beta_{3}$$
$$-\frac{2}{3}\left[\sqrt{2}(\eta\sqrt{3}+\xi)S_{2}+(\xi\sqrt{3}-\eta)(S_{5}+S_{6})\right]\beta_{4}$$
$$+\frac{2}{3}\left[\left(\xi^{2}+3\eta^{2}-\frac{2}{\sqrt{3}}\xi\eta\right)(S_{5}+S_{6})-\frac{\sqrt{2}}{\sqrt{3}}(\xi\sqrt{3}-\eta)^{2}S_{2}\right]\beta_{5} = 0 \quad \text{si } \eta = \frac{\xi}{\sqrt{3}} - \frac{1}{3} \quad (10a)$$

171

# J. Piquet / C. R. Mecanique 330 (2002) 167-173

soit :

$$-\frac{2}{3}\beta_{1} - \frac{4}{9}\beta_{2}\left(4\xi^{2} - \frac{2\xi}{\sqrt{3}} - \frac{1}{6}\right) + (S_{5} + S_{6})\left[\beta_{3} - \frac{2}{3\sqrt{3}}(2\xi\sqrt{3} + 1)\beta_{4} - \frac{2}{3}\left(\Pi + \frac{2}{9} + \frac{2}{\sqrt{3}}\xi\right)\beta_{5}\right] - \frac{\sqrt{2}}{\sqrt{3}}S_{2}\left[\beta_{3} + \frac{2}{3}(2\xi\sqrt{3} - 1)\beta_{4} + \frac{2}{27}(2\xi\sqrt{3} + 1)^{2}\beta_{5}\right] = O(\Delta_{p})$$
(10b)

Dans l'expression (10b), les coefficients  $\beta_1$  et  $\beta_2$  sont de la forme :

$$\beta_{i} = \beta_{i0} + \beta_{i1} \{ \mathbf{bS} \} + \beta_{i2} \{ \mathbf{b}^{2} \mathbf{S} \} = \beta_{i0} + \beta_{i1} \left[ \xi \sqrt{2} S_{2} + \frac{1}{3} (\xi \sqrt{3} - 1) (S_{5} + S_{6}) \right] \\ + \beta_{i2} \left[ \frac{\sqrt{2}}{3\sqrt{3}} (2\xi \sqrt{3} - 1)^{2} S_{2} - \frac{2}{3\sqrt{3}} (\xi \sqrt{3} - 1)\xi (S_{5} + S_{6}) \right]$$
(11)

Substituant (11) dans (10b) et écrivant que les relations obtenues sont isotropiquement valables (c'est à dire pour tout  $\xi$ , à  $\xi^2$  fixé par II), pour tout  $S_5 + S_6$  et pour tout  $S_6$  on obtient les quatre conditions de réalisabilité (14) :

$$\beta_{01} = \left(2II + \frac{1}{3}\right)\beta_{02} + F_0\Delta_p, \qquad \Delta_p := 1 + 9II + 27III$$
(12a)

$$\beta_4 = \frac{3}{2}\beta_3 - \beta_5 II - \frac{1}{3}\beta_{21} \left( II + \frac{1}{3} \right) + \beta_{22} \left( II^2 - \frac{3}{2} III \right) + F_4 \Delta_p$$
(12b)

$$\beta_{12} = \beta_{21} + F_{12}\Delta_p \tag{12c}$$

$$\beta_{11} = -3\beta_3 + 2\beta_5 \left( II - \frac{1}{3} \right) - 9III\beta_{21} - II \left( 2II + \frac{1}{3} \right) \beta_{22} + F_{11}\Delta_p$$
(12d)

La contrainte (12a) concerne les seuls termes « lents ». On retrouve par (12b)–(12d) le fait qu'un modèle strictement linéaire en **b** ( $\beta_5 = \beta_{11} = \beta_{12} = \beta_{21} = \beta_{22} = 0$ ,  $\beta_3$ ,  $\beta_4$  constants) ne peut être réalisable, mais qu'un modèle linéaire en **b** dont les coefficients dépendent des invariants de **b** peut l'être (voir par exemple [5]). Une « contrainte géostrophique » peut être également très facilement appliquée. Dans la limite d'une rotation moyenne imposée,  $\Omega \to \infty$ , on impose en général que la partie du transfert dépendant de la rotation contrebalance les termes de Coriolis [7], si bien que :

$$T_{ij}(\Omega) + 2\left(\varepsilon_{ikp}\overline{u_k u_j} + \varepsilon_{jkp}\overline{u_k u_i}\right)\Omega_p = O(1) \quad \text{quand } |\Omega| \to \infty \text{ et } \Delta_p \to 0 \tag{13}$$

Nous particularisons au cas où  $\Omega_k = \Omega \delta_{k3}$  et  $\mathbf{S} = \mathbf{0}$ . Seul  $\mathbf{W}_a : \mathbf{A}_7 (= -i\Omega\sqrt{2})$  est non nul,  $b_{33} = -1/3$  et nous utilisons  $\mathbf{T} = \mathbf{V}_6 + \mathbf{V}_7 + \mathbf{V}_8$  et (13) qui donne  $T_{12} = 4K\Omega(b_{11} - b_{22})$ ,  $T_{22} = -T_{11} = 8K\Omega b_{12}$ . Le résultat conduit alors à la seule contrainte :

$$\beta_6 = -4 - \frac{1}{3}\beta_7 + 3\Pi \beta_8 + F_6 \Delta_p \tag{14}$$

Bien que largement utilisé, l'argument conduisant à (14) présente une part d'arbitraire dans la mesure où la corrélation double de vitesse caractérise mal la dimensionalité de l'écoulement, si bien que l'utilisation de (13) pour la calibration de **T** n'est pas complètement significative [8,9]. La consistance avec la théorie de distorsion rapide, ne pouvant être assurée stricto-sensu que dans le cas d'un écoulement moyen irrotationnel [8,9], fournit les paramètres  $\beta_1$  à  $\beta_5$  (en cisaillement pur la consistance ne peut être assurée à mieux que le premier ordre en temps). Une solution particulière en est donnée par Lee et al. [10]. Elle conduit, une fois satisfaites les conditions (12b)–(12d), aux relations (15) fournissant  $T_{ij}^{(r)}$  à O( $||\mathbf{b}^5||$ ) près :

# Pour citer cet article : J. Piquet, C. R. Mecanique 330 (2002) 167-173

$$\beta_{11} = -\frac{5}{7} + \frac{2078625}{98098} \Pi + \left(\frac{1038}{245} - \frac{5947398}{132055} \Pi\right) \Delta_p + O(\|\mathbf{b}^3\|), \quad \beta_{12} = \beta_{21} = -\frac{10875}{4312}$$

$$\beta_{22} = -\frac{2072025}{784784}, \quad \beta_3 = \frac{4}{5} + \frac{89}{49} \Pi + \frac{65025}{4312} \Pi - \frac{92299785}{5493488} \Pi^2, \quad \beta_5 = \frac{375}{98} - \frac{31708125}{845152} \Pi \quad (15)$$

$$\beta_4 = \frac{24}{7} - \frac{130125}{30184} \Pi + \frac{124188525}{10986976} \Pi + \left(\frac{54015833}{11771760} - \frac{418147677}{1056440} \Pi - \frac{7427680083}{54934880} \Pi \right) \Delta_p + O(\|\mathbf{b}^4\|)$$

Les performances du modèle (17) établi seront comparées par ailleurs à quelques expériences typiques.

#### **Références bibliographiques**

- [1] J.L. Lumley, Computational modeling of turbulent flows, Adv. Appl. Mech. 18 (1978) 123-176.
- [2] G.F. Smith, On isotropic functions of symmetric tensors, skew-symmetric tensors and vectors, Internat. J. Engrg. Sci. 9 (1981) 899–914.
- [3] C.G. Speziale, T.B. Gatski, S. Sarkar, On testing models for the pressure-strain correlation of turbulence using direct simulations, Phys. Fluids A 5 (7) (1992) 1776–1782.
- [4] S.S. Girimaji, Some perspectives on pressure-strain correlation modeling, in: E. Lindborg et al. (Eds.), Proc. TSFP Stockholm, Vol. III, 2001, pp. 185–191.
- [5] P.A. Durbin, C.G. Speziale, Realizability of second-moment closure via stochastic analysis, J. Fluid Mech. 280 (1994) 395–407.
- [6] C.G. Speziale, Analytical methods for the development of Reynolds-stress closures in turbulence, Ann. Rev. Fluid Mech. 23 (1991) 107–157.
- [7] J.R. Ristorcelli, J.L. Lumley, R. Abid, A rapid-pressure covariance representation consistent with the Taylor– Proudman theorem materially frame-indifferent in the two-dimensional limit, J. Fluid Mech. 292 (1993) 111–152.
- [8] C. Cambon, L. Jacquin, J.L. Lubrano, Toward a new Reynolds stress model for rotating turbulent flows, Phys. Fluids A 4 (4) (1992) 812–824.
- [9] S.C. Kassinos, W.C. Reynolds, M.M. Rogers, One-point turbulent structure tensors, J. Fluid Mech. 428 (2001) 213–248.
- [10] M.J. Lee, A contribution toward rational modeling of the pressure-strain correlation, Phys. Fluids A 2 (1990) 630–633.