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Abstract By a multiperiodic composite we mean a composite solid in which all constituents are
periodically distributed in a matrix but a representative element (unit cell) may not exist.
The aim of this Note is to propose a nonasymptotic approach to the formation of averaged
(macroscopic) models of multiperiodic composites. The approach is based on the concept of
tolerance averaging, which in [2] was applied to the modelling of periodic composites. The
derived model, in contrast to homogenization, describes the effect of microstructure size on
the overall solid behaviour and yields necessary conditions for the physical correctness of
solutions to special problem%o citethisarticle: C. Wozniak, C. R. Mecanique 330 (2002)
267-272. 0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS
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Modélisation macroscopique des composites multipériodiques

Résumé Nous définissons un composite multipériodique comme un solide composite dont tous
les constituants sont distribués périodiquement dans I'espace et forment une matrice,
mais dans lequel on peut constater I'absence d'un élément représentatif (c'est-a-dire,
d’'une cellule élémentaire). Le but de cette Note est de proposer une approche non-
asymptotique a la formation des modéles moyennisés (macroscopiques) de tels composites
multipériodiques. Notre méthode est basée sur le concept de moyennisation de tolérance,
appliquée déja dans [2] pour modélisation des composites périodiques. Le modele que
nous proposons décrit, contrairement a la méthode d’homogénéisation, I'effet de la taille
des microstructures sur le comportement du solide dans son ensemble, et fournit les
conditions nécessaires assurant la justesse de certaines solutions spécifiques du point de
vue physiquePour citer cet article: C. Wozniak, C. R. Mecanique 330 (2002) 267-272.

0 2002 Académie des sciences/Editions scientifiques et médicales Elsevier SAS

solides et structures / composites / modélisation

1. Preliminaries

LetA=(L1,...,L,),whereL, = (l;, Ly, =1, ..., n, aremg-tuples of real numbers such that
I2>12>...> " >0.Afunctiony (x1, ..., x,) defined inR", will be called L,-periodic if: (1) there
exists functionyry (x1, ..., %q, ..., xn), ¥o = (X2, ..., XM); defined inR"+"«~1 which has periodg,
with respect tax$, a =1,...,mq; (2) The conditionyy (x1, ..., Xa, ..., Xn) = ¥(x1, ..., x,) holds for
l=32=...= X'« = xq in the whole domain of/ (-). A functiony(-) will be referred to as\-periodic
if is L,-periodic with respect to every argument, o =1,...,n. If my =1 fora =1,...,n then the
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A-periodic functiony (x1, ..., x,) becomes periodic (with period$ related tox,); otherwise it will be
called multiperiodic.

For an arbitrary integrable multiperiodic functigi(xy, . . ., x,) we shall define functiofw), (-), which
is independent af,,, by means of the formula

Mo
Lo

1 L . _ R
(W)a=ﬁ/o ) 1/fa(x1,...,xa,...,xn)dxoltn-dxgl"‘

L1
wherex, = (x1,..., ¥"«). The real numbefy ), given by:

W)= ({2 n (1.2)

will be called the averaged value ¢f-). For a periodic functiory formula (1.1) represents the well known
mean value off.

In the subsequent considerations 3 (henceA = (L1, Lo, L3)) andxy, x2, x3 stand for the orthogonal
Cartesian coordinates of pointsn the physical spacg?2. By Q we denote a region if® occupied by the
composite solid under consideration. We assume that: (1) all material properties of a solid are described by
multiperiodic functions related to a certait;, (2) the maximum period = max{l%, l%, l%} is very small
when compared with the smallest characteristic length dimensiprof Q. Under these conditions a
composite solid will be referred to as multiperiodic. Plane fragments of two multiperiodic solids are shown
in Fig. 1, whereLy = (1}, 12), Lo = .

If for every period$, o =1, 2, 3 (related to a certain ) there exists a positive integef such thak4l4 =
ly forsome, > 0 (no summation) then the parellelepided1/2,11/2) x (—I2/2,12/2) x (—13/2,13/2) can
be taken as a unit (representative) cell of the periodic structure of the solid. However, for some multiperiodic
solids the length dimensiorls of a unit cell may be not small when compared witk,. This is the
motivation for modelling the multiperiodic solids without using the concept of the unit cell.

Throughout the note symbolsand V stand for the scalar product and the gradient, respectively.
Superscripts A, B run over,1.., N, summation convention holds. We also denate- (—/1/2,1}/2) x
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Figure 1. Cross sections of composite materials with a double period algraxis.

268



To cite this article: C. Wozniak, C. R. Mecanique 330 (2002) 267-272

(—13/2,13/2) x (—13/2,13/2) (in generalA is not a unitcelll),A(x) =x + A, Qa ={x € Q: A(x) C 2}
andix = \/(l%)2 + (152 + (13)2, wherel is referred to as the microstructure length < L.

2. Formulation of the problem

The behaviour of multiperiodic composites is described by differential equations with functional
coefficients which are multiperiodic and non-continuous. The problem we are going to sdlow t®
derive an approximate mathematical model of multiperiodic compositeswhich isrepresented by differential
equation with constant coefficients (a macroscopic model). For the reasons explained in Section 1, in the
course of modelling, we shall not use the concept of the unit cell.

Macroscopic models of multiperiodic composites can be formulated by the reiterated homogenization,
cf. [1], p. 96, under the assumption that the periffisa =1, ..., m, can be treated as quantities of the
different orders. In this Note we derive a macroscopic model of a multiperiodic composite without the
above assumption. To this end we shall adapt the tolerance averaging method which in [2] was used for
periodic composites. This nonasymptotic method, in contrast to homogenization, leads to equations which
describe the effect of microstructure size on a macroscopic behaviour of a composite and yields some
posteriori conditions necessary for the physical correctness of solutions to special problems.

3. Foundations

To make this note self-consistent, following [2], we outline in this section some mathematical concepts,
lemmas and corollaries which constitute the mathematical background of the modelling procedure applied
in Section 4.

We begin with the concept of the tolerance space [3]. The simplest example of this space (gaair
where~ is a tolerance oIR, i.e., a symmetric and reflexive binary relationRwhich is not transitive.
Subsequently, every tolerance will be determined by what is called a tolerance paramdiesuch that
(Va,b e R) [a~° b < |a—b| <e]. We shall assume that everyf can be interpreted as an indiscernibility
relation; it means thaR is endowed with a certain unit measure and #° b then the valuea andb of a
pertinent physical quantity cannot be discerned in the problem under consideration. Roughly speaking,
a tolerance parameter is some positive constant, which depends either on the degree of refinement
of the instruments which have been used for performing the measurements, [4], or on the accuracy of
performed calculations. By a tolerance system we understand /@, (-)), where F(Q) is a set of
functions and their derivatives in the problem under consideration (including also time derivatives for the
time dependent functions) and: F(Q) > f — e(f) is a mapping which assignes to evefya certain
tolerance parametel f). Subsequently we shall assume that a certain tolerance system), £(-)) and
the microstructure length, are known and we denoe= ((F (), £(-)), ).

Let Df stand for a functiory € F(S2) as well as for any partial derivative gf which belong toF ().
Functiony € F(2) will be calledslowly varying (with respecttd’), v € SV(T), if for every Dy and every
x1,x2 € Q condition||x1 — x2|| <1 implies Dy (x1) ~¢ Dyr(x2) wheree = e(Dv). Functiong € F ()
will be termedperiodic-like (with respect toT), ¢ € PL(T), if for every Dy and everyx € Qa there
exists aA-periodic function(Dg), such that for every from the domain ofp condition|x — y|| <Ia
implies (D) (y) = Dop(y) wheree = ¢(Dg); function (Dg), (-) will be referred to asa A-periodic
approximation of De(-) in A(x). A periodic-like functiong will be calledoscillating (with the weightp
wherep is a positiveA-periodic function)p € PL?(T), if (pgx) = 0 for everyx € Qa.

The following lemmas are used in the subsequent considerations.

(L1) If ¢ = PLP(T) then for everyA-periodic positive functiop there exists a decompositign= ¢° + ¢*
wherep® € SV(T) andg* = PLA(T).
(L2) If y4 e SV(T) andh? are A-periodic functions theny4h4 € PL(T).
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(L3) If ¥ € SV(T) N CL(Q) thenia|dy| < e(¥) + Iae(dy) wheredy stand for an arbitrary partial
derivative ofyr.
We close this section with the following corollaries:
(C1) If yy € SVA(T) and everyDyr € F() is a continuous function then

Dy (y)~* Dy (x) fore=e(Dy) (3.1)

holds for everye € Q@ andy € A(x).
(C2) If ¢ € PL(T) and everyDy € F(Q) is a piecewise continuous function then

Dg(y) =° (D@)x(y) fore=e(Dg) (3.2)

holds for every € QA andy € A(x) N DomDg.
(C3) If ¥ € SV(T) N CL(R) andv is A-periodic smooth function then

VO (p) & VOY(y) for e=(e(¥) +1ae(VY)) [ (»)|I5" (3-3)

holds for everyy € Q.
For the proofs of lemmas (L1)—(L3) and a discussion of corollaries, see [2].

4. Tolerance modelling

The macroscopic (tolerance) modelling of multiperiodic composites, which was applied in [2] to periodic
composites, will be based on two assumptions.

CONFORMABILITY ASSUMPTION (CA). — Every unknown fieldp(-) in equations describing the behav-
iour of a multiperiodic composite has to conform to theperiodic structure of this composite; it means
that the relation

p(-,1) e PL(T) (4.1)
has to hold for every timeand for some tolerance system.

TOLERANCE APPROXIMATION ASSUMPTION(TAA). — In the course of macroscopic modelling the left-
hand sides of formulae (3.1)—(3.3) will be approximated by their right-hand sides.

In the subsequent part of this section we shall illustrate the tolerance modelling on the example of the
heat conduction equation

V- (A-VO)—ch=g (4.2)

which has to hold inf2 for every timez. Heref (-) is a temperature fieldd = A(-) is the second order heat
conduction tensor field; = ¢(-) is the specific heat field anglis the heat source field. For multiperiodic
compositesA(-), ¢(-) are the knownA-periodic functions. To simplify the analysis we assume that all
aforementioned fields satisfy smoothness conditions required in the subsequent considerations. From CA
we obtaind(-, 1) € PL(T) and by means of (L1) the decompositién= 6° + 6* takes place, where
09(-, 1) € SV(T) and6*(-, 1) € PL(T) are referred to as the macroscopic and fluctuating pars-of),
respectively. We also assume tlgat, 1) € PL(T) and hencg = g° + g* whereg® e SV(T), g* € PL°(T).
Subsequently we shall restrict the domain of functions in (4.2)¢e) for somex € Qa.

Tolerance modelling can be divided into four steps.

1. We formulate the variational equation f@f. To this end we substituteé = 6%y, 1) + 05 (y, 1),
y € A(x), into (4.2) and multiply both sides of (4.2) by/aperiodic test function € C1(Q) satisfying
conditions (c?) = 0, ¥ (x) € O(la),IaVI(x) € O(a). Using (3.1), (3.3) and applying TAA, after

270



Pour citer cet article : C. Wozniak, C. R. Mecanique 330 (2002) 267-272

averaging the resulting equation by means of (1.1) and some manipulations, we obtain the following
variational equation fof;:

(VO - A-VO) 4 (c00)) = —(Vo - A) - VO (x, 1) — (9)g%(x, 1) — (9gF) (4.3)

where (c6}) = 0. The boundary conditions related to (4.3) reduce to the periodic conditions and are
identically satisfied. Variational equation (4.3) has to hold for every test funetjdet us observe that
x € Qa can be treated as a parameter in (4.3).

2. We look for the approximate solution to (4.3) in the form:

0:(y, 1) =hA()VA(x,1), yeAx), x€Qa (4.4)

where VA(x, ) are unknowns and“(-) are postulated priori A-periodic shape functions satisfying
conditions: (hAc) = 0, hA(x) € O(p), IaVhA(x) € O(p). We also assume thal x N matrices of
elementgchdhB), (VhB . A - Vh?) are positive definite. Substituting the right-hand sides of (4.4) into (4.3)
and setting? =%, B=1,..., N, we arrive at the system af ordinary differential equations fdr4:

(ch*hBYVAx, 1) + (VhB - A - VY VA(x, 1) + (VAP - A) - VOO (x, 1)
+ (hP)g%x, 1) + (hPgf)=0, B=1,...,N (4.5)

3. From the decompositiof = 6° + * and (L2), taking into account the approximation (4.4), we
conclude thatV4 (., r) € SV(T). By means of (3.1) and TAA we arrive at the following formula for the
temperature field

0(y,1)=6%y, 1) + KA (VA 1), yeQ (4.6)

4. We substitute the right-hand side of (4.6) into (4.2). Restricting the domain of functions in (4.2) to
A(x), using (3.1) and TAA, after averaging the resulting equation by means of (2.2), we obtain the partial
differential equation fog©:

V- ((A)- VOO + (A-VRA)VA) — ()6 = g° (4.7)

Egs. (4.5), (4.7) for unknowr®®(x, 1), VA(x,1), A=1,..., N, have constant coefficients and hold for
everyx € 2 and every time. These equations together with formula (4.6) and conditions

6%(-, 1) e SW(T), VA, 1) e SW(T) (4.8)

represent macroscopic model for the heat conduction in a multiperiodic composite. Thus, the problem
formulated in Section 2 has been solved for the linear heat conduction. However, the above tolerance
modelling can be also applied to any other problem described by equations of mathematical physics with
A-periodic coefficients.

5. Conclusions

We close this Note with a summary of some new results and information on the macroscopic modelling
of composite materials.

1° The derived model describes the heat conduction in a multiperiodic composite and takes into account
the effect of microstructure size on the overall composite behaviour. This effect is described by coefficients
(ch*hB) e @(1%) in Egs. (4.5).

2° Neglecting in (4.5) terms with coefficientsh?h8), (h®) and (hBg¥) of an orderO(l,) we can
eliminate unknowng’4 from (4.7) and hence derive equati®n (A - V6% — (¢)6 = g® whereA can be
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treated as an approximate value (due to the approximation (4.4)) of the effective heat conduction tensor for
a multiperiodic composite.

3° The proposed model includes conditions (4.8) which are necessary for the physical correctness of
solutions®, V4 to the BVP for Egs. (4.5), (4.7) and can be use@ pssteriori estimates of accuracy of
these solutions [2].

4° In contrast to the reiterated homogenization the obtained model equations make it possible to analyze
problems of multiperiodic composites without any restrictions imposed on the length of periods.

5° The main drawback of the proposed approach lies in a proper choice of approximate solutions (4.4)
to the A-periodic variational problem (4.3) which can lead to a large numbef unknownsV 4.

For periodic composites the obtained results reduce to those given in [2]. An example of the application
of the proposed modelling approach to some special problems will be given in a subsequent note.
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