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Abstract By a multiperiodic composite we mean a composite solid in which all constituents are
periodically distributed in a matrix but a representative element (unit cell) may not exist.
The aim of this Note is to propose a nonasymptotic approach to the formation of averaged
(macroscopic) models of multiperiodic composites. The approach is based on the concept of
tolerance averaging, which in [2] was applied to the modelling of periodic composites. The
derived model, in contrast to homogenization, describes the effect of microstructure size on
the overall solid behaviour and yields necessary conditions for the physical correctness of
solutions to special problems.To cite this article: C. Woźniak, C. R. Mecanique 330 (2002)
267–272.  2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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Modélisation macroscopique des composites multipériodiques

Résumé Nous définissons un composite multipériodique comme un solide composite dont tous
les constituants sont distribués périodiquement dans l’espace et forment une matrice,
mais dans lequel on peut constater l’absence d’un élément représentatif (c’est-à-dire,
d’une cellule élémentaire). Le but de cette Note est de proposer une approche non-
asymptotique à la formation des modèles moyennisés (macroscopiques) de tels composites
multipériodiques. Notre méthode est basée sur le concept de moyennisation de tolérance,
appliquée déjà dans [2] pour modélisation des composites périodiques. Le modèle que
nous proposons décrit, contrairement à la méthode d’homogénéisation, l’effet de la taille
des microstructures sur le comportement du solide dans son ensemble, et fournit les
conditions nécessaires assurant la justesse de certaines solutions spécifiques du point de
vue physique.Pour citer cet article : C. Woźniak, C. R. Mecanique 330 (2002) 267–272.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Preliminaries

Let�= (L1, . . . ,Ln), whereLα = (l1α, . . . , l
mα
α ), α = 1, . . . , n, aremα-tuples of real numbers such that

l1α > l
2
α > · · ·> lmαα > 0. A functionψ(x1, . . . , xn) defined inRn, will be calledLα-periodic if: (1) there

exists functionψ̄α(x1, . . . , x̄α, . . . , xn), x̄α = (x̄1
α, . . . , x̄

mα
α ); defined inR

n+mα−1, which has periodslaα ,
with respect tox̄aα, a = 1, . . . ,mα ; (2) The conditionψ̄α(x1, . . . , x̄α, . . . , xn) = ψ(x1, . . . , xn) holds for
x̄1
α = x̄2

α = · · · = x̄mαα = xα in the whole domain ofψ(·). A functionψ(·) will be referred to as�-periodic
if is Lα-periodic with respect to every argumentxα,α = 1, . . . , n. If mα = 1 for α = 1, . . . , n then the
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�-periodic functionψ(x1, . . . , xn) becomes periodic (with periodsl1α related toxα); otherwise it will be
called multiperiodic.

For an arbitrary integrable multiperiodic functionψ(x1, . . . , xn) we shall define function〈ψ〉α(·), which
is independent ofxα , by means of the formula

〈ψ〉α = 1

l1α · · · lmαα
∫ l1α

0
. . .

∫ l
mα
α

0
ψ̄α(x1, . . . , x̄α, . . . , xn)dx̄1

α · · ·dx̄mαα

wherex̄α = (x̄1
α, . . . , x̄

mα
α ). The real number〈ψ〉, given by:

〈ψ〉 = 〈· · · 〈〈ψ〉1〉2 · · ·〉n (1.1)

will be called the averaged value ofψ(·). For a periodic functionψ formula (1.1) represents the well known
mean value ofψ .

In the subsequent considerationsn= 3 (hence�= (L1,L2,L3)) andx1, x2, x3 stand for the orthogonal
Cartesian coordinates of pointsx in the physical spaceE3. By� we denote a region inE3 occupied by the
composite solid under consideration. We assume that: (1) all material properties of a solid are described by
multiperiodic functions related to a certain�; (2) the maximum periodl = max{l11, l12, l13} is very small
when compared with the smallest characteristic length dimensionL� of �. Under these conditions a
composite solid will be referred to as multiperiodic. Plane fragments of two multiperiodic solids are shown
in Fig. 1, whereL1 = (l11, l

2
1),L2 = l2.

If for every periodlaα, α = 1,2,3 (related to a certain�) there exists a positive integerkaα such thatkaαl
a
α =

lα for somelα > 0 (no summation) then the parellelepided(−l1/2, l1/2)×(−l2/2, l2/2)×(−l3/2, l3/2) can
be taken as a unit (representative) cell of the periodic structure of the solid. However, for some multiperiodic
solids the length dimensionslα of a unit cell may be not small when compared withL�. This is the
motivation for modelling the multiperiodic solids without using the concept of the unit cell.

Throughout the note symbols· and ∇ stand for the scalar product and the gradient, respectively.
Superscripts A, B run over 1, . . . ,N , summation convention holds. We also denote� = (−l11/2, l11/2)×

Figure 1. Cross sections of composite materials with a double period alongx1-axis.
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(−l12/2, l12/2)× (−l13/2, l13/2) (in general� is not a unit cell!),�(x)= x +�, �� = {x ∈� :�(x)⊂�}
andl� =

√
(l11)

2 + (l12)
2 + (l13)

2, wherel� is referred to as the microstructure length, l� � L�.

2. Formulation of the problem

The behaviour of multiperiodic composites is described by differential equations with functional
coefficients which are multiperiodic and non-continuous. The problem we are going to solve ishow to
derive an approximate mathematical model of multiperiodic composites which is represented by differential
equation with constant coefficients (a macroscopic model). For the reasons explained in Section 1, in the
course of modelling, we shall not use the concept of the unit cell.

Macroscopic models of multiperiodic composites can be formulated by the reiterated homogenization,
cf. [1], p. 96, under the assumption that the periodslaα, a = 1, . . . ,mα can be treated as quantities of the
different orders. In this Note we derive a macroscopic model of a multiperiodic composite without the
above assumption. To this end we shall adapt the tolerance averaging method which in [2] was used for
periodic composites. This nonasymptotic method, in contrast to homogenization, leads to equations which
describe the effect of microstructure size on a macroscopic behaviour of a composite and yields somea
posteriori conditions necessary for the physical correctness of solutions to special problems.

3. Foundations

To make this note self-consistent, following [2], we outline in this section some mathematical concepts,
lemmas and corollaries which constitute the mathematical background of the modelling procedure applied
in Section 4.

We begin with the concept of the tolerance space [3]. The simplest example of this space is a pair(R,≈)
where≈ is a tolerance onR, i.e., a symmetric and reflexive binary relation inR which is not transitive.
Subsequently, every tolerance will be determined by what is called a tolerance parameterε > 0 such that
(∀a, b ∈R) [a ≈ε b⇔ |a− b| � ε]. We shall assume that every≈ε can be interpreted as an indiscernibility
relation; it means thatR is endowed with a certain unit measure and ifa ≈ε b then the valuesa andb of a
pertinent physical quantity cannot be discerned in the problem under consideration. Roughly speaking,
a tolerance parameterε is some positive constant, which depends either on the degree of refinement
of the instruments which have been used for performing the measurements, [4], or on the accuracy of
performed calculations. By a tolerance system we understand a pair(F (�), ε(·)), whereF(�) is a set of
functions and their derivatives in the problem under consideration (including also time derivatives for the
time dependent functions) andε : F(�) � f → ε(f ) is a mapping which assignes to everyf a certain
tolerance parameterε(f ). Subsequently we shall assume that a certain tolerance system(F (�), ε(·)) and
the microstructure lengthl� are known and we denoteT = ((F (�), ε(·)), l�).

LetDf stand for a functionf ∈ F(�) as well as for any partial derivative off which belong toF(�).
Functionψ ∈ F(�)will be calledslowly varying (with respect toT ),ψ ∈ SV(T ), if for everyDψ and every
x1,x2 ∈� condition‖x1 − x2‖ � l� impliesDψ(x1)≈ε Dψ(x2) whereε = ε(Dψ). Functionϕ ∈ F(�)
will be termedperiodic-like (with respect toT ),ϕ ∈ PL(T ), if for every Dϕ and everyx ∈ �� there
exists a�-periodic function(Dϕ)x such that for everyy from the domain ofϕ condition‖x − y‖ � l�
implies (Dϕ)x(y) ≈ε Dϕ(y) whereε = ε(Dϕ); function (Dϕ)x(·) will be referred to asa �-periodic
approximation of Dϕ(·) in �(x). A periodic-like functionϕ will be calledoscillating (with the weightρ
whereρ is a positive�-periodic function),ϕ ∈ PLρ(T ), if 〈ρϕx〉 = 0 for everyx ∈��.

The following lemmas are used in the subsequent considerations.
(L1) If ϕ = PLρ(T ) then for every�-periodic positive functionρ there exists a decompositionϕ = ϕ0+ϕ∗

whereϕ0 ∈ SV(T ) andϕ∗ = PLρ(T ).
(L2) If ψA ∈ SV(T ) andhA are�-periodic functions thenψAhA ∈ PL(T ).
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(L3) If ψ ∈ SV(T ) ∩ C1(�) then l�|∂ψ| � ε(ψ) + l�ε(∂ψ) where∂ψ stand for an arbitrary partial
derivative ofψ .

We close this section with the following corollaries:
(C1) If ψ ∈ SV�(T ) and everyDψ ∈ F(�) is a continuous function then

Dψ(y)≈ε Dψ(x) for ε = ε(Dψ) (3.1)

holds for everyx ∈�� andy ∈�(x).
(C2) If ϕ ∈ PL(T ) and everyDϕ ∈ F(�) is a piecewise continuous function then

Dϕ(y)≈ε (Dϕ)x(y) for ε = ε(Dϕ) (3.2)

holds for everyx ∈�� andy ∈�(x)∩ DomDϕ.
(C3) If ψ ∈ SV(T )∩C1(�) andϑ is�-periodic smooth function then

∇(ϑψ)(y)≈ε ∇ϑ(y)ψ(y) for ε = (
ε(ψ)+ l�ε(∇ψ)

)∣∣ϑ(y)∣∣l−1
� (3.3)

holds for everyy ∈�.
For the proofs of lemmas (L1)–(L3) and a discussion of corollaries, see [2].

4. Tolerance modelling

The macroscopic (tolerance) modelling of multiperiodic composites, which was applied in [2] to periodic
composites, will be based on two assumptions.

CONFORMABILITY ASSUMPTION (CA). – Every unknown fieldϕ(·) in equations describing the behav-
iour of a multiperiodic composite has to conform to the�-periodic structure of this composite; it means
that the relation

ϕ(·, t) ∈ PL(T ) (4.1)

has to hold for every timet and for some tolerance system.

TOLERANCE APPROXIMATION ASSUMPTION(TAA). – In the course of macroscopic modelling the left-
hand sides of formulae (3.1)–(3.3) will be approximated by their right-hand sides.

In the subsequent part of this section we shall illustrate the tolerance modelling on the example of the
heat conduction equation

∇ · (A · ∇θ)− cθ̇ = g (4.2)

which has to hold in� for every timet . Hereθ(·) is a temperature field,A = A(·) is the second order heat
conduction tensor field,c = c(·) is the specific heat field andg is the heat source field. For multiperiodic
compositesA(·), c(·) are the known�-periodic functions. To simplify the analysis we assume that all
aforementioned fields satisfy smoothness conditions required in the subsequent considerations. From CA
we obtainθ(·, t) ∈ PL(T ) and by means of (L1) the decompositionθ = θ0 + θ∗ takes place, where
θ0(·, t) ∈ SV(T ) andθ∗(·, t) ∈ PLc(T ) are referred to as the macroscopic and fluctuating parts ofθ(·, t),
respectively. We also assume thatg(·, t) ∈ PL(T ) and henceg = g0 +g∗ whereg0 ∈ SV(T ), g∗ ∈ PLc(T ).
Subsequently we shall restrict the domain of functions in (4.2) to�(x) for somex ∈��.

Tolerance modelling can be divided into four steps.
1. We formulate the variational equation forθ∗

x . To this end we substituteθ = θ0(y, t) + θ∗
x (y, t),

y ∈ �(x), into (4.2) and multiply both sides of (4.2) by a�-periodic test functionϑ ∈ C1(�) satisfying
conditions 〈cϑ〉 = 0, ϑ(x) ∈ O(l�), l�∇ϑ(x) ∈ O(l�). Using (3.1), (3.3) and applying TAA, after
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averaging the resulting equation by means of (1.1) and some manipulations, we obtain the following
variational equation forθ∗

x :

〈∇ϑ · A · ∇θ∗
x 〉 + 〈cϑθ̇∗

x 〉 = −〈∇ϑ · A〉 · ∇θ0(x, t)− 〈ϑ〉g0(x, t)− 〈ϑg∗
x〉 (4.3)

where 〈cθ∗
x 〉 = 0. The boundary conditions related to (4.3) reduce to the periodic conditions and are

identically satisfied. Variational equation (4.3) has to hold for every test functionϑ ; let us observe that
x ∈�� can be treated as a parameter in (4.3).

2. We look for the approximate solution to (4.3) in the form:

θ∗
x (y, t)= hA(y)V A(x, t), y ∈�(x), x ∈�� (4.4)

whereV A(x, t) are unknowns andhA(·) are postulateda priori �-periodic shape functions satisfying
conditions:〈hAc〉 = 0, hA(x) ∈ O(l�), l�∇hA(x) ∈ O(l�). We also assume thatN × N matrices of
elements〈chAhB〉, 〈∇hB ·A ·∇hA〉 are positive definite. Substituting the right-hand sides of (4.4) into (4.3)
and settingϑ = hB , B = 1, . . . ,N , we arrive at the system ofN ordinary differential equations forV A:

〈chAhB〉V̇ A(x, t)+ 〈∇hB · A · ∇hA〉V A(x, t)+ 〈∇hB · A〉 · ∇θ0(x, t)

+ 〈hB〉g0(x, t)+ 〈hBg∗
x〉 = 0, B = 1, . . . ,N (4.5)

3. From the decompositionθ = θ0 + θ∗ and (L2), taking into account the approximation (4.4), we
conclude thatV A(·, t) ∈ SV(T ). By means of (3.1) and TAA we arrive at the following formula for the
temperature field

θ(y, t)= θ0(y, t)+ hA(y)V A(y, t), y ∈� (4.6)

4. We substitute the right-hand side of (4.6) into (4.2). Restricting the domain of functions in (4.2) to
�(x), using (3.1) and TAA, after averaging the resulting equation by means of (2.2), we obtain the partial
differential equation forθ0:

∇ · (〈A〉 · ∇θ0 + 〈
A · ∇hA〉

V A
) − 〈c〉θ̇0 = g0 (4.7)

Eqs. (4.5), (4.7) for unknownsθ0(x, t), V A(x, t), A= 1, . . . ,N , have constant coefficients and hold for
everyx ∈�� and every timet . These equations together with formula (4.6) and conditions

θ0(·, t) ∈ SV(T ), V A(·, t) ∈ SV(T ) (4.8)

representa macroscopic model for the heat conduction in a multiperiodic composite. Thus, the problem
formulated in Section 2 has been solved for the linear heat conduction. However, the above tolerance
modelling can be also applied to any other problem described by equations of mathematical physics with
�-periodic coefficients.

5. Conclusions

We close this Note with a summary of some new results and information on the macroscopic modelling
of composite materials.

1◦ The derived model describes the heat conduction in a multiperiodic composite and takes into account
the effect of microstructure size on the overall composite behaviour. This effect is described by coefficients
〈chAhB〉 ∈ ∅(l2�) in Eqs. (4.5).

2◦ Neglecting in (4.5) terms with coefficients〈chAhB〉, 〈hB〉 and 〈hBg∗
x〉 of an orderO(l�) we can

eliminate unknownsV A from (4.7) and hence derive equation∇ · (Ã · ∇θ0)− 〈c〉θ̇ = g0 whereÃ can be
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treated as an approximate value (due to the approximation (4.4)) of the effective heat conduction tensor for
a multiperiodic composite.

3◦ The proposed model includes conditions (4.8) which are necessary for the physical correctness of
solutionsθ0, VA to the BVP for Eqs. (4.5), (4.7) and can be used asa posteriori estimates of accuracy of
these solutions [2].

4◦ In contrast to the reiterated homogenization the obtained model equations make it possible to analyze
problems of multiperiodic composites without any restrictions imposed on the length of periods.

5◦ The main drawback of the proposed approach lies in a proper choice of approximate solutions (4.4)
to the�-periodic variational problem (4.3) which can lead to a large numberN of unknownsVA.

For periodic composites the obtained results reduce to those given in [2]. An example of the application
of the proposed modelling approach to some special problems will be given in a subsequent note.
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