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Abstract The loading criteria of the Lagrangian strain-space formulation of rate-independent
plasticity are compared with those of Nguyen and Bui and those of Kuhn–Tucker type.
When the latter two sets of conditions are expressed in a fully strain-space form, their
relationship to the loading criteria of the strain-space formulation becomes transparent.To
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Sur des critères de chargement en plasticité

Résumé Les critères de chargement dans la formulation dans l’espace des déformations de Lagrange
pour la plasticité indépendante du taux de déformation sont comparés à deux autres
types de conditions, celle de Nguyen et Bui et celle du type Kuhn–Tucker. Quand ces
dernières sont exprimées entièrement dans l’espace des déformations, leur relation au
critère de chargement en formulation d’espace de déformations devient transparent.Pour
citer cet article : J. Casey, C. R. Mecanique 330 (2002) 285–290.  2002 Académie des
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1. Introduction

For general strain-hardening behavior of elastic-plastic materials (i.e., including softening and perfectly
plastic behavior), the inadequacy of the classical stress-space loading criteria is well known [1,2]. In 1975,
Naghdi and Trapp [2] proposed an alternative formulation of plasticity theory in which loading criteria
are formulated with reference to loading surfaces in strain space. Casey and Naghdi [3] showed that when
the strain-space loading criteria are adopted as primary, the associated conditions in stress space lead to
a geometrically appealing characterization of hardening, softening, and perfectly plastic behavior. Related
material is contained in [4–11].

In 1974, Nguyen and Bui [1], wishing to accommodate softening behavior in infinitesimal plasticity,
suggested new loading criteria in terms of the yield function in stress space. These authors did not employ
a yield function in strain space, but they did derive a loading criterion involving the strain rate tensor. In the
present Note, a reinterpretation of the Nguyen–Bui conditions is given in strain space – where they attain
their simplest form – and a comparison is made with the loading criteria of the strain-space formulation.

Another widely used set of loading criteria, the “Kuhn–Tucker conditions” [12–15], are also discussed.
The presentation by Simo and Hughes [15], although it is confined to infinitesimal plasticity, is especially
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relevant. These authors describe their formulation as “strain-driven” – strain rather than stress is the basic
independent variable. They employ yield surfaces only in stress space, but the strain rate tensor eventually
appears in their loading criteria. Simo [14] expresses his yield function in strain-space form, and then
employs Kuhn–Tucker loading conditions.

The equations in Section 2 hold equally well in the various formulations discussed in Sections 3, 4, and 5.
In Sections 3–5, one needs to distinguish carefully between different characterizations of “plastic loading”.

2. Basic equations

Let the Lagrangian strain and plastic strain tensors beE andEp , respectively, and letS be the symmetric
Piola–Kirchhoff stress tensor. We regardE andEp as points in a six-dimensional Euclidean space (strain
space), andS as a point in another six-dimensional Euclidean space (stress space). Further, let the scalarκ

and the second-order tensorα be hardening parameters. For brevity, represent the list of variables(Ep, κ,α)

by the symbolZ. Assume a smooth stress response function of the formS = Ŝ(E,Z). Equivalently,
S may be expressed as a function of the strain differenceE − Ep andZ. (Alternatively, a multiplicative
decomposition of the deformation gradient may be employed, but, in general, the intermediate configuration
is not stress-free [16].) Denote the fourth-order elasticity tensor∂Ŝ/∂E by C. If f (S,Z) is the yield
function in stress space, the yield function in strain space is defined by

f (S,Z) = f
(
Ŝ(E,Z),Z

) = g(E,Z) (1)

Further, assume that∂f/∂S �= 0. It is clear that

∂g

∂E
= CT

[
∂f

∂S

]
�= 0,

∂g

∂Ep

− ∂f

∂Ep

=
(

∂Ŝ

∂Ep

)T[
∂f

∂S

]
∂g

∂κ
− ∂f

∂κ
= ∂Ŝ

∂κ
· ∂f

∂S
,

∂g

∂α
− ∂f

∂α
=

(
∂Ŝ

∂α

)T[
∂f

∂S

] (2)

where the superscript T denotes transposition andCT[∂f/∂S] has a component representation
CMNKL∂f/∂SMN , summation being performed on repeated indices.

The elastic region in stress space corresponds tof < 0, and the elastic region in strain space tog < 0.
The yield surface in stress space corresponds tof = 0, and the yield surface in strain space tog = 0. The
pointEp belongs to the regiong < 0 in strain space, according to the prescription given in [16]. It follows
from (1) that during any motion of the continuum, the material derivatives off andg coincide:

ḟ = ġ (3)

Hence,

f̂ + ∂f

∂Ep

· Ėp + ∂f

∂κ
κ̇ + ∂f

∂α
· α̇ = ĝ + ∂g

∂Ep

· Ėp + ∂g

∂κ
κ̇ + ∂g

∂α
· α̇ (4)

where

f̂ = ∂f

∂S
· Ṡ, ĝ = ∂g

∂E
· Ė (5)

In view of (2)1 and (5)2, ĝ can also be written as

ĝ = CT
[

∂f

∂S

]
· Ė = ∂f

∂S
· C[

Ė
]

(6)

But, it is still the strain rate rather than the stress rate, that appears in (6).
In all of the formulations discussed below, despite differences in their characterization of “plastic

loading”, there is agreement on the following points (a)–(c):
(a) An “elastic state” is characterized byf < 0, and, equivalently byg < 0; an “elastic–plastic state” is

characterized byf = 0, and equivalently byg = 0. No other states are attainable. In an elastic–plastic
state, the quantitŷf represents the inner product between the tangent to a stress path and the outward
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normal to the yield surface in stress space; likewise,ĝ represents the inner product between the tangent
to a strain path and the outward normal to the yield surface in strain space.

(b) If f < 0 (or, equivalentlyg < 0), then

Ėp = 0, κ̇ = 0, α̇ = 0 (7)

Hence, in this case, both the yield surface in stress space and the yield surface in strain space are
stationary. Moreover, it follows from (3), (4), and (7)1,2,3 that in this case

f̂ = ĝ = ḟ = ġ (8)

which can be positive, zero, or negative.
(c) Consistency condition: “Plastic loading” from an elastic–plastic state always leads to an elastic–plastic

state. Consequently, during “plastic loading”, it is necessary that

ḟ = 0 (9)

By virtue of (3), the latter condition is equivalent to

ġ = 0 (10)

3. Loading criteria of the strain-space formulation

In the strain-space formulation of plasticity, due to Naghdi and Trapp [2], the following definitions occur
(in addition to (a) above):
(NT 1) “unloading from an elastic–plastic state” is defined by the conditions

g = 0, ĝ < 0 (11)

(NT 2) “neutral loading from an elastic–plastic state” is defined by

g = 0, ĝ = 0 (12)

(NT 3) “loading from an elastic–plastic state” is defined by

g = 0, ĝ > 0 (13)

Geometrically, (11), (12), and (13) correspond respectively to the situations in which the tangent to a strain
path makes an angle smaller than, equal to, or greater than 90◦ with the outward normal to the yield surface
in strain space.

It is assumed that in cases (11) and (12), the rates of the variablesZ vanish, as in(7)1,2,3. It then follows
from (3) and (4) that during “unloading from an elastic–plastic state”,

ḟ = f̂ = ġ = ĝ < 0 (14)

whereas during “neutral loading from an elastic-plastic state”,

ḟ = f̂ = ġ = ĝ = 0 (15)

It is further assumed that in case (13), the rates of the variablesZ are linear in the rate ofE. The classical
continuity argument of Prager then leads to relations of the form

Ėp = πĝρ, κ̇ = πĝλ, α̇ = πĝβ (16)

where the constitutive functionsρ, λ, β depend on the variables(E,Z), andπ is a Lagrange multiplier that
may depend on the variables(E,Z). The extra multiplierπ is introduced only for the convenience it affords
in satisfying a restriction that will be derived momentarily; a development without the extra multiplier is
contained in [5, pp. 235–236].

The consequence (10) of the consistency condition (c), together with (5)2, and (16)1,2,3, leads to

ĝ

{
1+ π

(
∂g

∂Ep

· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)}
= 0 (17)

And, since by the definition NT 3 of “loading”,̂g is positive, it follows immediately from (17) that

1+ π

(
∂g

∂Ep

· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)
= 0 (18)
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It is therefore impossible forπ to be zero, and without any loss in generality, we may take it to be positive.
This choice is equivalent to the convention thatρ, λ, β in (16)1,2,3 have the same sense as the corresponding
rates. Thus, in the strain-space formulation of plasticity one obtains

1

π
= −

(
∂g

∂Ep

· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)
> 0 (19)

With the help of (2)2,3,4, (19) may be expressed in the equivalent form

1

π
= −

(
∂f

∂Ep
· ρ + ∂f

∂κ
λ + ∂f

∂α
· β

)
− ∂f

∂S
·
{

∂Ŝ

∂Ep
[ρ] + ∂Ŝ

∂κ
λ + ∂Ŝ

∂α
· β

}
> 0 (20)

If, instead ofρ, λ, β, another set of functions,ρ∗, λ∗, β∗ having the same sense are chosen, with a
corresponding (positive) multiplierπ∗, it is obvious thatπ∗ρ∗ = πρ, π∗λ∗ = πλ, π∗β∗ = πβ, and the
results (19) and (20) would hold forπ∗, ρ∗, λ∗, β∗.

4. Conditions of Nguyen and Bui

Recognizing the inadequacy of the classical loading criteria, Nguyen and Bui [1] proposed an alternative
set of conditions in stress space. Thus, instead of (16)1,2,3, suppose in the present section that the rates of
the variablesZ are of the form

Ėp = γρ, κ̇ = γ λ, α̇ = γβ (21)

whereγ � 0 is an undetermined multiplier having a dimension of 1/time. Here, one does not pre-suppose
thatγ is linear in the strain-rate – this property will follow later. There is no loss in generality in selecting
the functionsρ, λ, β in (21)1,2,3 to be the same as those in (16)1,2,3. If f < 0 (and hence alsog < 0), γ is
assumed to vanish, and (21)1,2,3 reduce to (7)1,2,3.

Nguyen and Bui [1] define “elastic unloading” by the conditions

f = 0, ḟ < 0 (22)

and they assume thatγ then vanishes. The conditions (22)1,2 are equivalent to the strain-space conditions

g = 0, ġ < 0 (23)

Further, withγ = 0, it follows from (21)1,2,3, (3), (4), and (22)2 that

ḟ = f̂ = ĝ = ġ < 0 (24)

Thus, “elastic unloading” in the sense of Nguyen and Bui [1] is equivalent to “unloading from an elastic–
plastic state” in the sense of Naghdi and Trapp [2].

Nguyen and Bui [1] define “plastic loading” by the conditions

f = 0, ḟ = 0 (25)

[It would be preferable here to regard (25)1,2 as following from the consistency condition (c) of Section 2,
and to define “plastic loading” by the conditionγ > 0 (see (29) below, and also the development in
Section 5).] From (25)1,2, (5)1, and (21)1,2,3, it follows that

f̂ + γ

(
∂f

∂Ep

· ρ + ∂f

∂κ
λ + ∂f

∂α
· β

)
= 0 (26)

The conditions (25)1,2 are equivalent to

g = 0, ġ = 0 (27)

Equations (27)1,2, (5)2, and (21)1,2,3 imply that

ĝ + γ

(
∂g

∂Ep

· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)
= 0 (28)

It is important to note that at this stage of the development, the conditions that have been obtained in strain
space have exactly the same form as those in stress space. Consequently, the loading conditions (NT 1,2,3)
cannot possibly be deduced yet, because it is known that these are not equivalent to stress-space conditions
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having the same form as (11), (12), and (13) (see [3,17]). Moreover, one cannot solve for the undetermined
multiplier γ without making a further assumption. What assumption should be made? It is known from
special cases that the terms in parentheses in (26) can vanish (e.g., whenf is independent ofEp andα,
and λ is zero). Consequently, (26) cannot be used to solve forγ , in general. But, turning to (28), one
recognizes the terms that have appeared previously in the inequality in (19) of the strain-space formulation.
In the context of the development of Nguyen and Bui [1], let us therefore assume that the inequality in (19)
holds. Equivalently, the inequality in (20) is satisfied. Upon appropriate specialization, the latter inequality
reduces to the inequality (4) in [1]; see [6].

It follows immediately from (28) and the inequality in (19) that

γ = −ĝ

/(
∂g

∂Ep

· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)
(29)

If γ = 0, (28) implies that̂g = 0. We then have “neutral loading from an elastic–plastic state” in the sense
of Naghdi and Trapp [2]. Ifγ > 0, it follows from the inequality in (19) and (29) thatĝ > 0. We then have
“loading from an elastic–plastic state” in the sense of Naghdi and Trapp [2]. In this case, it follows from
(19) and (29) that

γ = πĝ (>0) (30)

Thus,γ is linear in the strain rate and (21)1,2,3 must take on the form (16)1,2,3.
On the other hand, if the strain-space formulation is taken as primary, the inequality in (19) holds

automatically, and (30) may be regarded as definingγ . The conditions (13)1,2 then imply thatf = 0 and
γ > 0, and (16)1,2,3 imply (21)1,2,3.

Remark. – Note that (26), (30), and (19) furnish

f̂

ĝ
=

(
∂f

∂Ep

· ρ + ∂f

∂κ
λ + ∂f

∂α
· β

)/(
∂g

∂Ep

· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)
(31)

Casey and Naghdi [3] employed the quotientf̂ /ĝ to characterize hardening, softening, and perfectly
plastic behavior, according aŝf /ĝ is positive, negative, or zero. While the yield surface in strain space
is moving outwards, the yield surface in stress space moves outwards, inwards, or is stationary, according
as hardening, softening, or perfectly plastic behavior is occurring. Nguyen and Bui [1] characterized strain
hardening in terms of the sign of−(∂f/∂Ep · ρ + ∂f/∂κλ + ∂f/∂α · β). The characterizations of strain-
hardening given by Casey and Naghdi [3] and Nguyen and Bui [1] are equivalent to one another.

5. Conditions of Kuhn–Tucker type

Motivated by the manner in which inequality constraints are treated in optimization theory, a number of
authors write loading conditions in Kuhn–Tucker form [12–15]. Thus, consider the conditions

f � 0, γ � 0, f γ = 0 (32)

and suppose that the rates of the variablesZ are given by (21)1,2,3. By virtue of (1), (32)1,2,3 are equivalent
to the following conditions, expressed in terms of the yield functiong:

g � 0, γ � 0, gγ = 0 (33)

If f < 0, it follows from (32)3 thatγ = 0 (equivalently,g < 0 and (33)3 imply thatγ = 0), and (21)1,2,3
then reduce to (7)1,2,3. If γ > 0, (32)3 implies thatf = 0 and (33)3 implies thatg = 0. Ortiz and Popov
[12] and Simo and Ortiz [13] regard the condition “γ > 0” as characterizing “plastic flow”. The consistency
condition (c) is enforced, and hence whenγ > 0, both (9) and (10) hold. Eqs. (26) and (28) follow
immediately from (9), (10) and (21)1,2,3, with γ now positive.

At this stage of the argument, just as in Section 4, the Kuhn–Tucker conditions have exactly the same
form in stress space as they do in strain space. And, here again, we cannot solve forγ without a further
assumption. If the inequality in (19) is assumed to hold,γ is then given by (29), and further, satisfies (30).

289



J. Casey / C. R. Mecanique 330 (2002) 285–290

Thus, once the inequality in (19) is adopted, the conditions (32)3 andγ > 0 are equivalent to the conditions
(13)1,2 of the strain-space formulation. In the context of infinitesimal plasticity, Simo and Hughes [15,
Section 2.2] assume an equality which is an appropriately specialized form of the inequality in (20).

If both f (or g) andγ vanish, all three conditions in (32), and also in (33), are satisfied, and (21)1,2,3
reduce to (7)1,2,3. Furthermore, (8) holds. Two separate cases are included here, namely (NT 1) and (NT 2).
Conversely, if (NT 1) holds, thenf = 0, and further, (7)1,2,3 and (21)1,2,3 lead toγ = 0. Similarly, if (NT 2)
holds, thenf = 0 andγ = 0.

Remark. – Suppose that, in the strain-space formulation of Section 3, the relations (21)1,2,3 were adopted
instead of (16)1,2,3. Then, during “loading from an elastic–plastic state”, instead of (18), we would obtain

1+ γ

ĝ

(
∂g

∂Ep
· ρ + ∂g

∂κ
λ + ∂g

∂α
· β

)
= 0 (34)

Consequently, neitherγ nor the terms in parentheses can vanish. Therefore,γ > 0 and the inequality in
(19) must again hold. Also, now definingπ through the equation in (19), from (35) we haveγ = πĝ, and
(21)1,2,3 revert to the form (16)1,2,3.
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