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Abstract The stress equivalence principle for saturated porous media is studied in the plastic domain
using a homogenization approach. The skeleton is composed of a micro-isotropic and
micro-homogeneous material. The stress localization law in saturated porous media is first
obtained. This makes it possible to define an appropriate effective stress tensor in the sense
of the stress equivalence principle. The form of the effective stress tensor is examined
for two particular yield functions of skeleton material. To cite this article: D. Lydzba,
J.-F. Shao, C. R. Mecanique 330 (2002) 297–303.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS
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Principe d’équivalence en contrainte pour milieux poreux saturés

Résumé Le principe d’équivalence en contrainte pour milieux poreux saturés est étudié dans le
domaine plastique en utilisant une approche d’homogénéisation. Le squelette est composé
d’un matériau micro-isotrope et micro-homogène. La loi de localisation des contraintes
dans le milieu poreux saturé est d’abord déterminée. Celle-ci permet de définir une
contrainte effective appropriée dans le sens du principe d’équivalence en contrainte. La
forme du tenseur des contraintes effectives est étudiée pour deux fonctions de charge
particulières du matériau squelette. Pour citer cet article : D. Lydzba, J.-F. Shao, C. R.
Mecanique 330 (2002) 297–303.  2002 Académie des sciences/Éditions scientifiques et
médicales Elsevier SAS

milieux granulaires / milieux poreux / contrainte effective / poroplasticité / homogé-
néisation

1. Introduction

The concept of effective stress provides a possibility to extend the constitutive equations and
complementary plastic laws of dry material to saturated porous media by using the strain and stress
equivalence principles [1]. The validity of the strain equivalence principle in the elastic domain has been
confirmed from theoretical point of view ([2,3], among others). The validity of the effective stress concept
in the inelastic range is still an open problem, particularly for cohesive materials like rocks and concrete.
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Recently, based on a strong assumption on the plastic change of porosity, a plastic effective stress has
been proposed for the plastic modeling of porous media [4]. The validity of the assumption used needs,
however, to be checked. More rigorous results, based on a homogenization approach, have also been
obtained [5–7]. Particularly, it has been shown in [5,6], that the failure surface of a saturated porous medium
can be expressed by that for dried material replacing the usual stress by the effective one. The appropriate
form of the effective stress depends on the kind of failure criterion used at micro-level. The authors in [7]
have found similar results concerning the initial yield surface. These studies were limited to two particular
states of plastic domain. The present paper proposes a generalization of the work in [5,7] to the full plastic
hardening domain. The porous medium is assumed to be composed of a micro-homogeneous and micro-
isotropic skeleton material. A homogenization approach for periodic media [8] is used.

2. Stress localization law

2.1. Dry material

For the porous medium without any liquid in the pores, a local boundary value problem with a prescribed
distribution of plastic strain inside the unit cell can be written [8]:



σ sij,i = 0 in Vs
σ sij ni = 0 on �

σsij (y)= Cijkh
[
ekh(u)− εpkh

]
in Vs

ui(y)=Eijyj + u∗
i (y) in Vs

f
(
σ sij

)
� 0, u∗

i (y) Y -periodic, σ sij ni antiperiodic

(1)

where σ sij (y) are components of the solid micro-stress tensor, ui(y) – the displacement field, u∗
i (y) – the

fluctuating part of the displacement field, Eij – the solid macro-strain tensor (treated as given), eij (u) –
the solid micro-strain tensor and εpij (y) – the plastic micro-strain tensor (considered as given), Cijkl – the
elastic stiffness tensor of the skeleton material. The function f (σ sij )� 0 represents the plastic yield criterion
(at microscopic level). Vs is the volume of the solid material within the unit cell, � – the phase separation
surface.

Introducing a plastic macro-strain tensor Epij and a self-equilibrated residual stress field σ res
ij (y) (the

stress field under a null macro-stress), the above local problem can be transformed to:

σ sij (y)− σ res
ij (y)=

[
Cijkh +Cijlmelm

(
ξkh

)](
Ekh −Epkh

)
(2)

and, finally, to the stress localization law [8]:

σ sij (y)− σ res
ij (y)= Lijkh(y)�skh, Lijkh(y)=

[
Cijpq +Cijlmelm

(
ξpq

)]
Shom
pqkh (3)

The tensor�sij
( = 1

‖V ‖
∫
Vs
σ sij (y)dy

)
is the solid macro-stress tensor, Shom

pqkh is the overall elastic compliance

tensor, Lijkh(y) are components of the stress localization operator and ξkhi (y) are components of the
fluctuating part of the displacement field at {εpij (y) = 0, Eij = δikδjh}, δij is the Kronecker symbol and
‖V ‖ denotes a measure of the unit cell volume.

The plastic macro-strain tensor Epij and residual stress field σ res
ij (y) are linear functionals of the plastic

micro-strain field εpij (y) and are determined by the following formulae [8]:

E
p
ij = 1

‖V ‖
∫
Vs

Lkhij (y)ε
p
kh(y)dy (4)

σ res
ij (y)= −

∫
Vs

Rijkh(y, y
′)εpkh(y

′)dy ′ (5)

where Rijkh(y, y ′) depends only on the geometry of microstructure within the unit cell.
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2.2. Fully saturated material

For the porous material saturated with a liquid pressure p and with a prescribed distribution of plastic
strain ε̄pij (y) , a local boundary value problem can be written:



σ sij,i = 0 in Vs
σ sij ni = −pδij ni on �

σsij (y)= Cijkh
[
ekh(ū)− ε̄pkh

]
in Vs

ūi(y)= 
Eijyj + ū∗
i (y) in Vs

f
(
σ sij

)
� 0, ū∗

i (y) Y -periodic, σ sij ni antiperiodic

(6)

As for the dry material, the above local problem can be transformed to:

σ sij (y)− σ̄ res
ij (y)=

[
Cijkh +Cijlmelm

(
ξkh

)][
Ekh − 
Epkh
] +Cijkhekh(η)p (7)

where: 
Epij and σ̄ res
ij (y) are again the linear funtionals (4) and (5) of the plastic micro-strain field ε̄pij (y),

ηi(y) are components of the fluctuating part of the displacement field at {ε̄pij (y)= 0, 
Eij = 0,p= 1} [2].
The assumption of the micro-homogeneity and micro-isotropy of the skeleton material implies [7]:

ηi(y)= ξkhi (y)δkh

3Ks
(8)

and therefore, Eq. (7) can be rewritten as:

σ sij (y)− σ̄ res
ij (y)+ pδij = [

Cijkh +Cijlmelm
(
ξkh

)][
Ekh − 
Epkh + pδkh

3Ks

]
(9)

where Ks is a bulk modulus of the skeleton material.
The above equation, after the volume averaging, results in the stress localization law for the saturated

material:

σ sij (y)− σ̄ res
ij (y)+pδij = Lijkh(y)�eTkh (10)

where �eTij
( = 1

‖V ‖
∫
Vs
(σ sij (y)+ pδij )dy

)
is the so-called Terzaghi’s effective stress tensor.

3. Form of the effective stress

Following [8], the closure of the elastic domain in the macro-stress space, at prescribed distribution of
residual stress field, can be expressed as:

• dry material

ED
({
σ res
ij

}) = {
�sij | f (

Lijkh(y)�
s
kh + σ res

ij (y)
)
� 0 ∀y ∈ Vs

}
(11)

• saturated material

ES
(
p,

{
σ̄ res
ij

}) = {
�eTij | f (

Lijkh(y)�
eT
kh − pδij + σ̄ res

ij (y)
)
� 0 ∀y ∈ Vs

}
(12)

The set ES(p; {σ̄ res
ij }) denotes, at prescribed residual stress field and value of p, the closure of the elastic

domain in the Terzaghi’s effective stress space.
It is clear from the above definitions that determination of the elastic domain, for both cases, requires the

knowledge of the whole field of the residual stress {σ res
ij (y)} – for the dry material and {σ̄ res

ij (y)s} – for the
saturated material. In practice, however, some approximate models as work – or strain-hardening laws are
used. For instance, assuming the strain-hardening rule to be valid for the dry material, the closure of the
elastic domain is then approximated as:

ED
(
E
p
ij

) = {
�sij | FD

(
�sij ;χ

(
E
p
ij

))
� 0

}
(13)

where FD(�sij ;χ(Epij )) represents the macroscopic loading function for the dry material.
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In the following, the concept of effective stress is examined by considering two classic plastic yield
criteria for the skeleton material.

3.1. The Von-Mises criterion

This criterion is pressure insensitive. Therefore, defining for the saturated material an equivalent stress
as:

σ
eq
ij (y)= σ sij (y)+pδij (14)

one gets the following identities:

(∀p)

σ
eq
ij (y)= Cijkh

(
e
eq
kh(ũ)− ε̄pkh

)
with eeqkh(ũ)= ekh(ū)+

pδkh

3Ks

f
(
σ sij

) = f (
σ
eq
ij

)
,

∂f (σ sij )

∂σ skh
= ∂f (σ

eq
ij )

∂σ
eq
kh

(15)

The property (15b) together with the definition of the elastic domain (12) imply:

ES
(
p,

{
σ̄ res
ij

}) = {
�eTij | f (

Lijkh(y)�
eT
kh + σ̄ res

ij (y)
)
� 0 ∀y ∈ Vs

}
(16)

The identities (15) enable also to transform the local problem (Eqs. (6)) to the equivalent one:


σ
eq
ij,i = 0 in Vs

σ
eq
ij ni = 0 on �

σ
eq
ij (y)= Cijkh

[
e
eq
kh(ũ)− ε̄pkh

]
in Vs

ũi(y)=Eeqij yj + u∗
i (y) with Eeqij = 
Eij + pδij

3Ks
in Vs

f
(
σ
eq
ij

)
� 0, u∗

i (y) Y -periodic, σ
eq
ij ni antiperiodic

(17)

Furthermore, for the plastic deformation of the skeleton material governed by an associative plastic flow
rule, the properties (15b) lead to:

˙̄εpij (y)=



(∂f/∂σ
eq
kl )Cklmnė

eq
mn(y)

(∂f/∂σ
eq
kl )Cklmn(∂f/∂σ

eq
mn)

∂f

∂σ
eq
ij

for f
(
σ
eq
ij (y)

) = 0 ∧ ḟ (
σ
eq
ij (y)

) = 0

0 otherwise

(18)

The system of Eqs. (17), (18) represents the local elasto-plastic problem for the saturated material
expressed by the equivalent fields introduced. It is clear that the corresponding local problem for the dry
material is of the same form, except it contains the solid’s strain and stress fields instead of the equivalent
ones.

Let us now consider the saturated porous material, initially free of the plastic micro-strain field, subjected
to a history {
Eij (t),p(t)}. Let the pair:{
Eij (t),p(t)

} �→ {
eij

(
ū(y, t)

)
, ε̄
p
ij (y, t)

}
(19)

to characterize a solution of the local elasto-plastic problem for the saturated material, i.e., the loading
history and corresponding micro-strain fields induced in the unit cell. According to the system obtained
(Eqs. (17), (18)), the above pair is equivalent to:{

E
eq
ij (t)

} �→ {
e
eq
ij

(
ũ(y, t)

)
, ε̄
p
ij (y, t)

}
(20)

or: {
Eij (t)=Eeqij (t)

} �→ {
eij

(
u(y, t)

) = eeqij
(
ũ(y, t)

)
, ε
p
ij (y, t)= ε̄pij (y, t)

}
(21)

The latter relation is a solution of the local problem for the dry material. It indicates that the solution
for the saturated material can be recovered from the solution of the local problem for the dry material by
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imposing the history {Eij (t)} = {
Eij (t)+ (p(t)/(3Ks))δij }. For these corresponding local problems, as a
consequence of the functional relations (4), (5) and the constitutive equations, one gets also:{

σ sij (y, t)= σeqij (y, t);σ res
ij (y, t)= σ̄ res

ij

(
y, t

) ∀y ∈ Vs
E
p
ij (t)= 
Epij (t); �sij (t)=�eTij (t)

for Eij (t)= 
Eij (t)+ p(t)

3Ks
δij (22)

where the variables on the left side of Eqs. (22) correspond to the dry material whereas on the right side to
the saturated material.

Now, comparing the definitions of the elastic domains (11) and (16), it follows immediately from (22)
that:

ES
(
p,

{
σ̄ res
ij

}) = ED
({
σ̄ res
ij

})
(23)

which clearly indicates that the Terzaghi’s effective stress fulfills the stress equivalence principle for the
material considered. It is obvious that this statement can be extended also for porous materials composed
of a uniform material obeying any arbitrary pressure insensitive yield criterion with an associated or a
non-associative plastic flow rule. For the case of non-associative plasticity, the plastic potential has to be,
however, of the form:

g̃(σij )= aI1 + g(J2, J3) (24)

where I1 is the first invariant of stress tensor, J3 is the third invariant of deviatoric stress tensor, g(J2, J3) is
an arbitrary function of J2 and J3, ‘a’ is a parameter (could be a = 0). Such the form of the plastic potential
allows to express the rate of the plastic micro-strain using the equivalent fields introduced above and the
formula is of the same form as for the dry material. Therefore, the relations (22) as well as the identity (23)
are still hold true.

Let us return to approximate models. If, for example, a description for the dry material uses, in a plastic
range, the loading function (13) and a plastic flow rule as:

Ė
p
ij = λ∂G(�

s
kh)

∂�sij
(25)

therefore, it follows from (22) that the model can be also successfully adopted for a description of the
saturated material, using the Terzaghi’s effective stress, i.e.:

ES
(
p, 
Epij

) = {
�eTij | FD

(
�eTij ;χ(
Epij

))
� 0

}
(26)


̇Epij = λ∂G(�
eT
kh )

∂�eTij
(27)

The above relations clearly indicate that the Terzaghi’s effective stress fulfills, in the plastic range, the stress
as well as the strain equivalence principle for saturated media.

3.2. The Coulomb–Mohr criterion

The criterion is a pressure-sensitive. In contrast to the former case, we do not attempt to validate or not
the concept of effective stress for any arbitrary history {
Eij (t),p(t)}. The effective stress concept has been,
however, confirmed for a particular history corresponding to a so-called drained condition, i.e., the history
{
Eij (t), p(t) = const.}. In the following, this case is only considered. The equivalent stress has now the
following form:

σ
eq
ij = σ sij + pδij

1 +p tgϕ/c
(28)
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which fulfills the identity:

f
(
σ sij

) =
(

1 + p tgϕ

c

)
f

(
σ
eq
ij

)
(29)

where: ϕ represents a friction angle (ϕ � 0), c is the internal cohesion of the skeleton material (c > 0 is
assumed). This equivalent stress was proposed in [5] for the study of failure criterion of saturated porous
media.

Since p � 0, Eq. (29) implies:

f
(
σ sij

)
� 0 if f

(
σ
eq
ij

)
� 0; ∂f (σ sij )

∂σkh
= ∂f (σ

eq
ij )

∂σ
eq
kh

(30)

The relations (30) enable to transform the local problem (Eqs. (6)) to the equivalent one described by the
system (17). Eqs. (17c) and (17d) involve now, however, the new equivalent variables, i.e.:


σ
eq
ij (y)= Cijkh

(
e
eq
kh(ũ)−

ε
p
kh

1 +p tgϕ/c

)
with eeqkh(ũ)=

ekh(ū)+ pδkh/(3Ks)
1 + p tgϕ/c

ũi (y)=Eeqij yj + u∗
i (y) with Eeqij = 
Eij + pδij /(3Ks)

1 + p tgϕ/c

(31)

Furthermore, for a given pore pressure (p(t) = const.) and the associated plastic flow rule, a rate of the
plastic micro-strain can be presented as:

˙̄εpij (y)
1 + p tgϕ/c

=



(∂f/∂σ
eq
kl )Cklmnė

eq
mn(y)

(∂f/∂σ
eq
kl )Cklmn(∂f /∂σ

eq
mn)

∂f

∂σ
eq
ij

for f
(
σ
eq
ij (y)

) = 0 ∧ ḟ (
σ
eq
ij (y)

) = 0

0 otherwise

(32)

Again, as for the Von-Mises criterion, the local elasto-plastic problem for the saturated material,
expressed by the equivalent fields, is of the same form as for the dry material. Therefore, if the pair:{
Eij (t),p(t)= const.

} �→ {
eij

(
ū(y, t)

)
, ε̄
p
ij (y, t)

}
(33)

characterize a solution of the local elasto-plastic problem for the saturated medium then one gets for the
dry medium:

{
Eij (t)=Eeqij (t)

} �→
{
eij

(
u(y, t)

) = eeqij
(
ũ(y, t)

)
, ε
p
ij (y, t)=

ε̄
p
ij (y, t)

1 + p tgϕ/c

}
(34)

For these corresponding local problems, the relation (34) implies:

σ sij (y, t)= σeqij (y, t); σ res

ij (y, t)=
σ̄ res
ij (y, t)

1 + p tgϕ/c
, ∀y ∈ Vs

E
p
ij (t)=


Epij (t)
1 + p tgϕ/c

; �sij (t)=�eqij (t)
(35)

where the variables on the left side correspond to the dry material whereas on the right side to the saturated
material.

The volume average of the equivalent micro-stress tensor (28) gives the macroscopic equivalent stress
tensor :

�
eq
ij = �eTij

1 + p tgϕ/c
= 1

‖V ‖
∫
Vs

σ
eq
ij (y)dy (36)

Accordingly, the closure of the elastic domain for the saturated material can be expressed as:

Eeq
(
p,

{
σ̄ res
ij

}){
�
eq
ij

∣∣∣∣ f
(
Lijkh(y)�

eq
kh + σ̄ res

ij (y)

1 + p tgϕ/c

)
� 0, ∀y ∈ Vs

}
(37)
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which together with the definition of the elastic domain (11) and the relations (35) result in:

Eeq
(
p,

{
σ̄ res
ij

}) = ED

({
σ̄ res
ij

1 + p tgϕ/c

})
(38)

The above result clearly indicates, that the equivalent macro-stress defined by (36) fulfills the stress
equivalence principle, at the drained condition. It is clear that this statement is also valid for a non-
associative plastic flow rule described by the potential (24) with a function g(J2, J3) being a homogeneous
function of deviatoric stress of the degree one.

According the approximate model described by (13) and (25), it follows from (35) that the model can
be also successfully adopted, using the equivalent macro-stress tensor introduced, for the saturated material
subjected to the drained condition, i.e.:

Eeq
(
p, 
Epij

) =
{
�
eq
ij

∣∣∣ FD
(
�
eq
ij ;χ

( 
Epij
1 + p tgϕ/c

))
� 0

}
(39)


̇Epij
1 + p tgϕ/c

= λ∂G(�
eq
kh)

∂�
eq
ij

(40)

4. Conclusion

The validity of the effective stress concept has been investigated for saturated porous media composed of
micro-homogeneous and micro-isotropic skeleton material. Two kinds of materials have been considered,
respectively obeying a pressure independent (Von-Mises for instance) or a pressure dependent (Coulomb–
Mohr) yield criterion at the local level. For the first type of material, it has been proved that the Terzaghi’s
effective stress fulfills, in the plastic range, the stress as well as the strain equivalence principles. For the
second type of material, the effective stress tensor proposed in [5] for failure condition is generalized to
plastic hardening range. Its validity has been proved for the drained condition.
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