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Abstract We investigate the deformation of a thin elastic torus under axisymmetric surface loads.
The strain concentrates near the top and bottom parallels and the inner and outer halves
essentially undergo rigid-body translations in opposite directions. An analysis of the inner
boundary layers is presented, which allows one to compute the effective stiffness of the
torus for this loading. This stiffness is found anomalous compared to classical shells. These
mechanical properties are interpreted using purely geometrical arguments.To cite this
article: B. Audoly, Y. Pomeau, C. R. Mecanique 330 (2002) 425–432.  2002 Académie
des sciences/Éditions scientifiques et médicales Elsevier SAS

solids and structures / elastic shells / boundary layers

Le tore élastique : raideur anormale des coques de type mixte

Résumé Nous étudions la déformation d’un tore élastique mince sous l’effet de forces de surface
axisymétriques. La déformation est concentrée au voisinage des parallèles supérieur et
inférieur et les moitiés externe et interne subissent essentiellement une translation uniforme
l’une par rapport à l’autre. Une analyse de couche limite permet de calculer la rigidité
effective du tore, qui suit une loi anormale. Toutes ces propriétés mécaniques sont
interprétées par des arguments purement géométriques.Pour citer cet article : B. Audoly,
Y. Pomeau, C. R. Mecanique 330 (2002) 425–432.  2002 Académie des sciences/Éditions
scientifiques et médicales Elsevier SAS

solides et structures / coques élastiques / couches limite

In this Note, we investigate the deformation of a thin elastic torus with circular section under
axisymmetric surface loads. Our results can be extended in a number of ways (to arbitrary sections, to
arbitrary applied forces, and even to shells that have the topology of the torus but are not of revolution), as
discussed below.

For thin elastic bodies, be they (curved) shells or (planar) plates, stretching and bending contribute to the
elastic energy with different powers of the small (uniform) thicknessh, namelyh andh3 respectively. As a
result, very different mechanical behaviour is obtained depending on whether the middle surface of the shell
admits nontrivial isometric deformations or not (note that the possibility of isometric deformations depends
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on boundary conditions imposed on the shell as well as on the geometry of the middle surface [1]). When
such non trivial isometric deformations are present, the lowest energy state is reached by minimization
of the bending energy among these isometric deformations, and penalization by the stretching energy
is fully avoided. In the other case, the so-called inhibited case, the shell has no choice but to minimize
the stretching energy, while the bending energy remains negligible. This is called themembrane problem
(neglect of flexural effects). These different minimization problems lead to an effective mechanical stiffness
k of the shell, defined as the ratioF/u of the typical applied forcesF to the typical intensity of induced
displacement fieldu, which scales as:k ∼ Eh in the inhibited case andk ∼ E h3/L2 otherwise, whereE
is the Young’s modulus of the shell, andL its typical (longitudinal) dimension (here, either diameter of the
torus). Note that a toroidal shell is of mixed type (it contains both elliptical and hyperbolic regions), a class
of shells for which little is known in general.

This general guideline can fail in some circumstances. If, for instance, the shell is inhibited and the
boundary conditions are incompatible with the membrane formulation, a boundary layer will appear on the
edge of the shell. This situation (very similar to that leading to viscous boundary layers near obstacles in
high Reynolds number flows) has been dealt with in [2] and [3].

Another situation where the general theory of shells outlined above is not sufficient is when the applied
forces are not sufficiently smooth for the minimization of the membrane energy to be a well-posed
mathematical problem. This problem can be rather subtle, as even extremely regular force fields can turn
out not to be smooth enough. This leads to boundary layers that are initiated where the applied forces is not
smooth enough, and propagate along (or in some cases perpendicular to) asymptotic lines of the shell [4].

By studying the case of the torus, we shall point out a third type of boundary layer, different from the two
types above: they are not due to edge effects, and their location is determined by geometrical properties of
the surface rather than the point of application of the forces.

The present study was motivated by a remark in Gol’denveizer’s monumental treatise [5] on the elasticity
of shells. The membrane theory of shells does not yield a valid solution in the following simple situation:
imagine a toroidal thin shell loaded with surface loads that are axisymmetric with a vanishing resulting
force. The inner half, with negative Gaussian curvature, feels a forceF directed along the axis of the torus,
although the outer half, with positive Gaussian curvature, feels the opposite force−F . Membrane equations
for thin shells fail to give a solution, because no shear can be transmitted through the two circles with zero
Gaussian curvature, the top and bottom parallels (later referred to as “extreme parallels”). There is even a
second, perhaps more subtle, difficulty why this theory fails, related to the absence of infinitesimal isometric
deformations [6]. This will be discussed below.

Gol’denveizer’s remark raises the question of the stiffness of the elastic torus. He himself indicated
that the inclusion of flexural terms in the equation of shells should yield back a solution. Surprisingly,
no one seems to have undertaken this program far beyond this point. The object of the present Note is
to show that one can fully characterize the mechanical behaviour of an elastic torus, and in particular
compute its stiffness, by considering flexural effects in two internal elastic boundary layers only, located
along the extreme parallels (we emphasize that these layers areinternal boundary layers). Compared to
membrane (i.e., stretching) effects, flexural effects appear at the next order in the equations of thin shells
when expanded in powers of the thicknessh. Flexural effects are therefore formally small. However, they
do not remain small in a small boundary layer: near these extreme parallels, flexural effects regularize a
divergence found when solving the membrane equation. As usual in this type of problem, only part of the
flexural effects are relevant for this regularization, that yields ultimately the “universal” (parameterless)
fifth order equation (8) below.

1. Equations for membranes of revolution

In the membrane approximation, the equilibrium equations for a shell of revolution take the following
form, after Fourier decomposition of all the elastic quantities:
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Figure 1. A toroidal
shell loaded with

axisymmetric surface
loads.




d(rσss)

ds
+ ımσsθ − r ′σθθ + rFs = 0

d(rσsθ )

ds
+ ımσθθ + r ′σsθ + rFθ = 0

κsσss + κθσθθ + Fn = 0

(1)

where ı = √−1, m is the wavenumber in theθ direction (laterm is set to zero),σss(s), σθθ (s) and
σsθ (s) are the Fourier transformed components of the stress tensors, and the prime denotes derivation with
respect tos, the curvilinear distance along the torus cross-section (see Fig. 1). The principal curvatures
of the middle surface of the shell are given by:κs = −z′r ′′ + z′′r ′ and κθ = z′/r, (r(s), z(s)) being a
normal parameterization of the section. Bending forces of orderh3 have been neglected in these equations
(membrane approximation). They can be restored by setting the surface force toF = F f + F ext where
F f andF ext respectively denote bending forces proportional toh3 and true external forces. Instead of the
complete expression of the bending forces, we shall need only one contribution, given in Eq. (7).

These equations of mechanical equilibrium are complemented by a constitutive law relating stresses to
strains in terms of Young’s modulusE and of the Poisson ratioν, derived from Hooke’s law:

σss = 2Eh

1− ν2 (εss + νεθθ ), σθθ = 2Eh

1− ν2 (εθθ + νεss), σsθ = Eh

1+ ν
εsθ (2)

and by the definition of 2D strains in terms of displacements:

εss = u′ − κsw, εθθ = ımv

r
+ r ′u

r
− κθw, εsθ = ımu

r
+ r

d

ds

v

r
(3)

where{u(s), v(s),w(s)} is the Fourier component with indexm of the 3D displacement vector expressed
in the local frame{es, eθ , en}. SubstitutingF ext for F in (1) yields the equilibrium equations for shells in
the membrane approximation, while (2) and (3) then yield the displacement field.

The principal curvature along meridians,κs , can be recognized as the 2D curvature of the meridian drawn
in a plane. Because the section is assumed circular,κs never vanishes. The Gaussian curvatureK = κsκθ
does change its sign, however, because the surface is of mixed type (it is hyperbolic in the interior part
of the torus, elliptic in the exterior part). As a result, the second principal curvatureκθ vanishes along the
extreme parallels. This vanishing has dramatic consequences for the mechanical behaviour of the torus, as
we shall see. Along these extreme parallelss = s±e , r ′(s±e )= ±1, z′(s±e )= 0 andr ′′(s±e )= 0, hence indeed
κθ (s

±
e )= 0 by the formula above. This follows from a direct geometrical argument: the curvature vector of

any parallel circles points to its center on the axis of revolution and is therefore tangent to the surface in the
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case of extreme parallels, while the principal curvatures are defined by projection of this curvature vector
on the localnormal en to the surface.

2. Case of axisymmetric forces (m= 0)

In this Note, we consider the simplest axisymmetric case (m = 0). Extensions are discussed at the
end. When one specifies the equations above withm = 0, the forceFθ , the shearσsθ and the orthoradial
displacementv satisfy two equations that are independent from any other elastic quantities. This problem
is regular in the small thickness limit, and can be easily solved. It will not be further considered here, and
we shall heretofore assumeFθ ≡ 0.

Eliminatingσss andσsθ from the equilibrium equations, one obtains form= 0:

κθ

κs
σ ′
θθ (s)+

[
2r ′

r
+ κθ

(
1

κs

)′]
σθθ (s)= − r ′

r

Fn

κs
− d

ds

(
Fn

κs

)
+ Fs (4)

Similarly, the geometric equations (3) can be rewritten in terms of the normal displacement,w(s), only:

κθw
′(s)− r ′′κθ

r ′ w(s)= r ′εss
r

− ε′
θθ −

(
r ′

r
− r ′′

r ′

)
εθθ (5)

Both equations become singular whenκθ vanishes, i.e. along the extreme parallels. This prevents the
determination of the mechanical state of the shell using the membrane equations, as noted by Gol’denveizer,
unlessFs andFn satisfy a nongeneric condition. Flügge moreover noticed that the geometric problem (3)
itself is singular near the same extreme parallels in the presence of regular stresses [6]. This second
source of singularity has to do with a fundamental result from the geometry of surfaces: the extreme
parallels are rigidifying curves for the problem of infinitesimal isometric deformations of the torus. Due
to purely geometrical constraints, these extreme parallels can only deform in a very particular way when
the torus is forbidden to undergo any tangential stretching [7]. This contrasts with arbitrary curves drawn
along the torus, which can deform freely under the same constraints. This geometrical property of the
extreme parallels shows up as a singular point in Eqs. (3) or (5). The equations for infinitesimal isometric
deformations (also called infinitesimal bendings) are indeed nothing but equations (3) for vanishing 2D
strains (vanishing right-hand side).

3. Boundary layer analysis near the extreme parallels

In this section, bending effects are considered in the vicinity of the extreme parallelss = s+e or s−e .
Equation (4) above is indeed singular whenκθ (s) = 0, i.e. fors = s±e (we remind thatκs never vanishes).
In the vicinity of these extreme parallels, one can find the asymptotic form of the stressσθθ predicted by
the membrane theory (outer solution), as well as that ofw as deduced from (5):

σθθ (s)∝ 1

(s − s±e )2
, w(s)∝ 1

(s − s±e )3
(6)

This is because the homogeneous part of Eq. (4) forσθθ takes the asymptotic formr ′/r[sσ ′
θθ (s) +

2σθθ (s)] = 0 for s ∼ s±e .
These divergences of the stress and displacement are not acceptable physically, and the solution given

by Eq. (4) is only valid away from the extreme parallels. Near these parallels, the stress is regularized by
mechanisms beyond the membrane approximation: flexural effects, or eventually nonlinear elastic response
or large deformation effects. Here, we focus on flexural effects which will certainly be dominant over
nonlinear effects for sufficiently small applied forces.
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The flexural force will be regularizing because it contains higher order derivatives of the displacement
compared to stretching forces, although with an additional factorh2. As shown by inspection of the full shell
equations, the flexural force takes a simple form in the boundary layer (other contributions are negligible):

F f
n = − 2Eh3

3(1− ν2)

d4w(s)

ds4 (7)

Here, one recognizes the flexural term present in the Föppl–von Kármán equations for plates. This is not
surprising because the surface is almost flat near the extreme parallels.

In the boundary layer, the displacementw is related to 2D strains by (3)εθθ (s) = −κθw(s), while the
latter are related toσθθ via the constitutive relations of the material:ε′

θθ (s)= −κθw′(s)= σθθ (s)/2Eh. As
a result, the regularizing flexural forceF f

n above can be expressed in terms ofσθθ . When plugged into the
equilibrium condition (4), this leads to the following boundary layer equation:

2f (x)+ xf ′(x)+ d4

dx4

(
f ′(x)
x

)
= 0 (8)

for therescaled stress

σθθ (s)= f (x)

ε2 wherex = s

ε
, ε =

(
h

|κ ′
s(s

±
e )|

)1/3 1

(3(1− ν2))1/6
(9)

The small quantityε is the width of the boundary layer. It has indeed the dimension of a length. In the case
of a torus,

ε = (hRρ)1/3

(3(1− ν2))1/6
(10)

whereR is the mean radius of the torus, whileρ is the radius of the section. For the inner boundary layer to
be small compared toρ, one should haveρ � √

hR. This shows that the limit case of a cylinder (R → ∞,
ρ constant) is not described by the present theory – this is to be expected because the extreme parallels
loose their special geometrical meaning in this limit.

We emphasize that this boundary layer equation is universal and free of any parameter. In particular, it
does not depend on the aspect ratioρ/R of the torus (as long asρ � √

hR). Its integration is outlined
below.

WKB analysis of Eq. (8) yields the following asymptotic behaviour:

f (x)≈ e
√

2|x|3/2/3

x

(
A± cos

√
2|x|3/2

3
+B± sin

√
2|x|3/2

3

)
for x → ±∞ (11)

Such an exponential divergence, if present, cannot be matched with the outer solution (6), and must be
discarded. This leads to four constraintsA+ = B+ = 0 for s → +∞ andA− = B− = 0 for s → −∞, to be
imposed on the solution of (8). Because Eq. (8) is fifth order, onlyone acceptable boundary layer solution
f (x) grows algebraically at plus and minus infinity, up to an arbitrary multiplicative constant.

It turns out that the generic solution of (8) can be expressed in terms of generalized hypergeometric
functions, and the condition for algebraic growth at infinities:A± = B± = 0 can be worked out analytically.
This leads to an explicit form off (x):

f (x)= φ

(
− x2

64/3

)
whereφ(y)=

∞∑
k=0

yk

"(1
6 + k

3)"(
1
2 + k

3)"(
2
3 + k

3)"(1 + k
3)

(12)
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Figure 2. Integration of the boundary layer Eq. (8): plot of the rescaled stress componentf (x)= ε2σθθ (x/ε) (left)
and rescaled vertical displacementg(x)∝w(s). The stress described byf (x) can be matched directly with the outer
solution diverging in 1/s2 as in Eq. (6). Matching of the normal displacementw(s) described byg(x) requires a large
rigid-body displacement of the outer half-torus with respect to the inner one (β is a numerical constant different from

zero).

where" stands for the Gamma function. This functionφ can eventually be expressed as sum and products
of Bessel functions. The functionf (x) is plotted in Fig. 2 left.

The vertical displacementw in the boundary layer can be determined using the relationκθw
′(s) =

−σ ′
θθ (s)/(2Eh) derived above, which is valid at first order inε in the boundary layer. This leads to:

w′(s)= − 1

2Ehκ ′
θ (s

±
e )ε2

d

ds

(
f (s/ε)

s − s±e

)
(13)

hence by integration

w(s)=w±
0 + g(s/ε)

2Ehκ ′
θ (s

±
e )ε3

whereg(x)= −
∫ x

0

f ′(x ′)
x ′ dx ′ (14)

The new functiong(x) is a numerical function of order unity. The coefficient 1/κ ′
θ (s

±
e ) takes the value

±Rρ in the case of a torus with circular section.
The asymptotic form forf (x) andg(x) reads:

f (x)≈ − α

x2 + · · · and g(x)≈ β sgn(x)+ 2α

3x3 + · · · for x → ±∞ (15)

where the constants have the numerical valuesα = 0.079, β = 0.125. This allows one to derive the
asymptotic form of the inner solution, up to an overall arbitrary factor determined later to match the outer
solution:

σθθ (s)= − α

s2 , w(s)=w±
0 + β sgn(s − s±e )

ε3

Rρ

2Eh
+ αRρ

3Ehs3 (16)

4. Matching

It remains to match the outer solution given by the membrane theory in Eq. (6) with the above boundary
layer solution (16).

In the presence of an integration constantβ �= 0 in g(x), one cannot match directly the 1/s3 behaviour
for w. This constant implies that there is astep of magnitude

'=w
((
s±e

)+) −w
((
s±e

)−) = βRρ

Ehε3 (17)
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Figure 3. Deformation of an elastic torus
under axisymmetric forces applied along

the equators. Shear forces cannot be
balanced by stretching of the middle

surface near the top and bottom parallels
but by flexural effects which are weaker.
This leads to an elastic boundary layers

of width ε ∝ h1/3 where the elastic
energy concentrates. These boundary

layer coincide with the ‘rigifying’ lines of
the isometric deformations problem.

in the vertical displacement when one goes across the boundary layers. This large step (note the presence
of ε3 in the denominator) amounts to a rigid-body translation of the outer half-torus with respect to the
inner one, caused by shear forces applied on the section (see Fig. 3).

Besides this constantβ , the inner (boundary layer) solution and the outer (membrane) solutions can be
matched without difficulty, asσθθ (s) varies as 1/s2 andw(s) as 1/s3 in both the outer and inner expansions.

5. Explicit solution with forces applied at the equators

In order to show a ‘practical’ application of these equations, we explicitly solve the problem of a torus
submitted to vertical forces applied along the equators, as in Fig. 3. This is described by a force field

Fs = F

(
δ(s − so)

2π(R+ ρ)
+ δ(s − si)

2π(R− ρ)

)
, Fn = 0 (18)

whereF is the magnitude of the resultant force on either half torus, andso and si denote the abscissa
of the outermost and innermost parallels (equators). Note that the two normals are in opposite directions
es(so)= −es(si), hence the same sign in front of the delta contributions.

The strainσθθ (s) can now be obtained by integrating the membrane equations (4), and by using the
results above to go across the internal boundary layers:

σθθ (s)= ∓ F

4π

κs(s)

z′(s)2
for ε � ∣∣s − s±e

∣∣< ρπ

2
, σθθ (s)= ∓f (s/ε)

4πα

Fρ

ε2 for s − s±e =O(ε) (19)

where the expression on the left is the outer solution determined by matching the obvious solution of the
homogeneous equation (4) with the singularity of the force atsi andso. The equation on the right is the
inner solution.σss = −κθσθθ /κs can then be found by Eq. (1), whileσsθ satisfies a (regular) autonomous
equation not considered here.

In this expression,σθθ (s) is single valued thanks to the overall mechanical equilibrium of the torus.
Besides this, the functionw (not given here) could be made single valued thanks to an appropriate choice
of the homogeneous solution in the equation forσθθ . In particular, the vertical step' is identical across
the upper and lower boundary layers. This leads to the picture in Fig. 3, where the outer part of the torus
undergoes a rigid body translation of magnitude' at dominant order inε, that is 1/ε3. This surprising
result can be interpreted by noticing that the torus is very compliant near the extreme parallels: there its
stiffness relies on bending rather than on stretching.
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The offset of the outer torus with respect to the inner one,', and the overall stiffness of the shell,k,
defined ask = F/', are given by:

'= F

k
, k = Eh2

ρ

4πα

β
√

3(1− ν2)
, α = 0.079 (20)

From this expression, the torus is seen to display a stiffness that is intermediate between the two well known
types of classical shells (Eh for inhibited shells, andEh3 for isometrically deformable ones). Finally, one
should note that a torus in vibration is similar to an acoustic resonator: the kinetic energy is stored in the
outer region ('), while the elastic energy is stored in the inner boundary layers.

The domain of validity of the present solution is limited by nonlinear effects. This puts an upper bound
on the forceF : Fmax ∼Eh7/3R1/3/ρ2/3. Far aboveFmax, there is a range of forcesF where the membrane
theory is regularized by large displacements effects near the extreme parallels instead of flexion, while the
strains remain small everywhere. This regime will be considered in future work [8].

In this Note, we have considered the deformation of a thin elastic torus under axisymmetric surface
loads. We have shown that the deformations concentrate near two internal boundary layers located along
the top and bottom parallels. The geometry considered here is the simplest one that exhibits such boundary
layers, but these layers are expected to remain essentially unchanged when a number of generalization
are performed: arbitrary (i.e. not circular) section, and even surfaces that are not of revolution but merely
incorporate “rigidifying curves” in the sense of [7], and forces that have are not axisymmetric (m� 1).
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