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Note presented by Pierre Suquet.

Abstract This Note presents a comparison of some recently developed “second-order” homogeniza-
tion estimates for two-dimensional, ideally plastic porous media subjected to plane strain
conditions with corresponding yield analysis results using a new linearization technique
and systematically optimized finite elements meshes. Good qualitative agreement is found
between the second-order theory and the yield analysis results for the shape of the yield
surfaces, which exhibit acorner on the hydrostatic axis, as well as for the dependence of
the effective flow stress in shear on the porosity, which is found to benon-analyticin the
dilute limit. Both of these features are inconsistent with the predictions of the standard Gur-
son model.To cite this article: J. Pastor, P. Ponte Castañeda, C. R. Mecanique 330 (2002)
741–747.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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Critère de plasticité des matériaux poreux en déformation plane :
Estimations du second ordre et résultats numériques

Résumé Cette Note présente une comparaison entre d’une part, les estimations issues d’une récente
théorie d’homogénéisation, dite de « deuxième ordre », pour les matériaux parfaitement
plastiques poreux en déformation plane, et d’autre part, les résultats homologues obtenus
par analyse limite grâce une nouvelle technique de linéarisation du problème et une
optimisation systématique des maillages éléments finis utilisés. Qualitativement parlant on
observe un bon accord entre les deux approches sur la forme de la surface limite, avec
mise en évidence d’un point anguleux sur l’axe hydrostatique, et sur la dépendance de la
contrainte équivalente en cisaillement avec la porosité, contrainte dont la limite pour les
faibles porosités apparaît non analytique. Ces deux caractéristiques ne sont pas prévues par
le modèle de Gurson standard.Pour citer cet article : J. Pastor, P. Ponte Castañeda, C. R.
Mecanique 330 (2002) 741–747.
 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Quite serendipitously, two recent works (Francescato et al. [1] and Ponte Castañeda [2,3]) have given
what appear to be qualitatively similar predictions for the macroscopic yield criteria of porous media.
Both works are concerned with in-plane deformation of two-dimensional porous media with ideally plastic
matrices and yield anomalous predictions. By anomalous we mean different from the corresponding
predictions of the well-known Gurson model [4]. Thus, both works suggest that the yield surfaces of such
materials exhibit a corner on the hydrostatic axis. In addition, for shear loading and low porosities, they
exhibit anon-analyticdependence of the effective flow strength on porosity. By contrast, the Gurson model
is smooth on the hydrostatic axis and exhibits a more standard linear dependence of the strength on the
porosity.

The first of the two studies [1] consists of finite element discretizations of the limit analysis problems for
ahollow cylinder, which is a commonly used model for porous media (e.g., the Gurson model). For a given
type of boundary condition (uniform strain or stress), this approach provides upper and lower bounds for
the associated limit loads, depending on whether the kinematical or static approach are used. By making
use of well-known arguments (e.g., [5]), it is also possible to reinterpret these results as upper and lower
bounds for the effective flow strength of thecomposite cylindermodel.

The second study [3] arises from an application to porous media of a recently developed “second-order”
homogenization theory due to Ponte Castañeda [2]. Like the earlier second-order theory [6], this new theory
makes use of a linear “thermoelastic” comparison composite, whose constituent phases are identified with
appropriate linearizations of the given nonlinear phases about certain reference strains, which, in turn, are
identified self-consistently with the phase averages of the strain in the linear comparison composite. Also,
as in this author’s earlier “variational” theory [7], the new theory incorporates direct dependence on the
fluctuations of the strain field in the phases of the linear comparison composite. However, the choice for the
relevant comparison moduli in the new theory is more general, being somewhat intermediate between the
“secant” and “tangent” moduli used in the earlier theories. This new theory yields estimates that are exact
to second order in the contrast and are therefore quite accurate for weakly inhomogeneous composites.
However, it has also been shown to give accurate predictions for high-contrast systems [3].

The purpose of this Note is to compare the predictions [3] of the new “second-order” theory for 2D,
ideally plastic, porous materials in plane strain with the corresponding results from limit analysis. In
addition to the intrinsic value of this special case, it is known that ideally plastic porous systems are
extremely nonlinear systems, so that the proposed comparisons will also be of interest within the general
framework of nonlinear homogenization. While the results given by Francescato et al. [1] are for the related
case of plane stress, earlier, less accurate results have been given for plane strain [8]. In this Note, more
accurate plane strain results will be presented making use of a new, very efficient linearization technique,
together with systematic optimization of the relevant meshes, in order to attain the required level of
precision.

It is important to remark that evidence for the type of anomalous behaviors discussed in this paper has
been found earlier by other authors in related, but not identical problems. Thus, for example, Michel et al.
[9] found corners along the hydrostatic axis of the homogenized yield surfaces for perforated sheets (plane
stress conditions) with a square distribution of holes. There is also the well-known criterion of Rousselier
[10], which was postulated to have a corner on the hydrostatic axis. Experimental evidence for non-analytic
dependence of the flow stress of low-hardening porous metals have been reported by Spitzig et al. [11]. On
the basis of these experimental observations, these authors proposed a modified Gurson model with non-
analytic dependence of the effective flow stress in shear on porosity. Pellegrini [12] has recently proposed
an empirically derived yield criterion for porous media in plane stress that agrees remarkably well with
the corresponding limit analysis results of Francescato et al. [1]. On the other hand, it is also important to
emphasize that most theoretical results to date, including the Hashin–Shtrikman bounds of Ponte Castañeda
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[7] and Suquet [13], do not exhibit any of these unusual features, predicting smooth yield surfaces for porous
media with linear dependence on the porosity for the effective flow stress in shear.

2. Summary of the methodologies

2.1. Limit analysis estimates

The reader is referred to [14] for details on the standard static and kinematic numerical methods of limit
analysis (LA); here, the focus is on a new linearization scheme used to improve the convergence of these
two methods. For a von Mises (or Tresca) material subjected to plane strain conditions, the criterion is
written as:

�(σ ) =
√

(σ11 − σ22)2 + 4τ2
12 − 2k � 0 (1)

wherek is the flow stress in shear of the material. Various authors have proposed replacing (1) with a
polyhedral approximation:

(σ11 − σ22)cosθi + 2τ12sinθi − 2k � 0, with θi = 2πi

m
, m � 3, i = 1,m (2)

Using (2) as the new plasticity criterion, the static and kinematic methods of LA lead directly to linear
optimization problems, to be solved by LP codes such as IBM’s OSL (simplex method), or XA (Interior
Point Method). When very precise results are needed as is the case here, the main drawback of this technique
lies in the high number of inequations generated from (2). A very recent approximation technique proposed
in [15], and reformulated by Glineur [16], replaces the linearization (2) with an ingenious, higher-order
polyhedral approximation. Thus, writing the cone in (1) as

√
Y 2 + Z2 � r, r � 0, it follows that:

α0 = Y, β0 = Z, θi = π

2i
, r = αq cos

(
π

2q

)
+ βq sin

(
π

2q

)

αi+1 = αi cosθi + βi sinθi, βi+1 � |βi cosθi − αi sinθi |, 0 � i < q

(3)

For the case of the von Mises criterion,r = 2k. Relations (3) are equivalent to (2) withm = 2q , involving
3q + 1 rows and 2q columnsαi, βi . This formulation results in an efficient compromise on the generation
of lines and columns, allowing a degree of approximation that is practically unattainable with (2). For
instance, for the Gurson problem of interest here, we always usedq = 10 with no loss of convergence,
i.e., a value ofm = 1024 that is prohibitive when using (2). In addition, the time necessary to read and
preprocess the data was drastically lowered and the final accuracy remains excellent.

For the kinematic case, the dissipated power involves the integral of 2k

√
ε̇2

11 + ε̇2
12 for plane strain, which

can be easily written in the form (3), withr a positive real, by adding constraints such as
√

ε̇2
11 + ε̇2

22 � r,
making the objective function linear in all ther variables.

Both programs, where the respective fields are allowed to be discontinuous accross any finite element
side (as in [14]), lead to linear programming problems (58.181 rows× 39.748 columns in the static case;
21.893 rows× 18.917 columns in the kinematic case for the 672-triangle mesh of [1]), which are solved
using XA. For the 672-triangle mesh, the CPU times are about 30 seconds on a Macintosh PowerPC G4-
867MHz. The admissibility of the fields was systematically controlleda posteriori, in order to eliminate
results produced by ill-conditioned meshes.

2.2. Second-order homogenization estimates

The yield criterion, predicted by the second-order theory [2], for the porous, two-dimensional, ideally
plastic material, using the Hashin–Shtrikman (HS) estimate for the relevant linear comparison composite,
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may be written in the form [3]: [
σ̄e

(1− f )σ0

]2

+ m(3− m)

1+ m
= 1 (4)

Hereσ̄e is the average von Mises equivalent stress in plane strain (i.e.,σ̄e = √
3[σ̄ 2

12 + (σ̄11 − σ̄22)
2/4]1/2,

where 1 and 2 correspond to the plane of deformation),σ0 = √
3k is the effective flow stress in uniaxial

tension,f is the porosity, andm is a function off , σ̄e and the average hydrostatic stressσ̄m = (σ̄11+ σ̄22)/2,
which is given by the (quartic) equation:

m3/4

1− m
=

(
f

2

)1/2[
1+ 3

(
σ̄m

σ̄e

)2]1/2

(5)

It is interesting to observe that

m ∼
[
f

2

(
1+ 3

(
σ̄m

σ̄e

)2)]2/3

asf → 0

for fixed (finite) triaxiality. In particular this means that the effective flow stress for pure shear conditions
(σ̄m = 0) is given byσ̃0/σ0 ∼ 1− (3/2)(f/2)2/3 in thedilute limit.

On the other hand, in the purely hydrostatic limit (i.e.,σ̄e = 0), the estimate (4), together with expression
(5) for m, leads to the prediction̄σm = (1 − f )/

√
3f for the effective flow stress. It is noted that this

result is in precise agreement with the corresponding predictions arising from the variational bounding
methods [13]. However, unlike the variational bounds, which predict a smooth yield surface at this point,
the second-order estimate (4) can be shown to lead to a corner on the hydrostatic axis. To see this, note that
an asymptotic perturbation expansion of the estimate (4) aboutσ̄e = 0 leads to the expression:

|σ̄m| + C√
f

σ̄e = 1− f√
3f

(6)

whereC is some positive number. The existence of a corner can then be simply deduced from this result.

3. Comparisons and discussion

In Fig. 1, the predictions of the second-order HS estimate (4) are compared with the Gurson and limit
analysis results for a value of the porosity equal tof = 0.16. Concerning the limit analysis predictions,
the dark triangles correspond to an imposed uniform strain boundary condition, while the clear triangles
correspond to an imposed uniform traction. For each of these two types of boundary conditions there
are two sets of results – up and down triangles – corresponding respectively to the kinematic and static
approaches. They provide bounds on the exact solution for a given type of boundary condition. On the
other hand, it is known (see, for example, [5]) that the uniform strain and uniform traction boundary
conditions provide upper and lower bounds, respectively, for the effective behavior of porous media with
a composite-cylinder type of microstructure. Therefore, the outer (dark down triangles) and inner (clear
up triangles) are upper and lower bounds for the effective behavior of porous media with this type of
microstructure. Recalling that for two-dimensional, incompressible linear-elastic composites, the Hashin–
Shtrikman bounds are reproduced closely by the composite cylinder microstructure, it follows that the
second-order HS estimates, which arise from the corresponding linear HS estimates, can also be loosely
identified with the composite cylinder microstructure, in which case the above-mentioned limit-analysis
bounds should be satisfied. Of course, the Gurson model corresponds exactly to the composite-cylinder
microstructure, since it is based on an approximate solution of the hollow cylinder problem with uniform
strain boundary conditions.
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Figure 1. Homogenized yield surfaces for ideally plastic, porous materials subjected to plane strain loading (the
cylindrical pores are transverse to the plane of deformation): comparison of the limit analysis predictions with

Gurson’s model and the second-order HS estimates (original and modified).

Figure 1. Critères de plasticité macroscopique pour les matériaux poreux parfaitement plastiques sous chargement en
déformation plane(la cavité cylindrique est orthogonale au plan de la déformation) : comparaison des prédictions de

l’analyse limite avec ceux du modèle de Gurson et les estimations HS du second ordre(originales et modifiées).

However, as seen in Fig. 1, the second-order HS estimate (4) actually violates these bounds for
sufficiently high triaxiality. This is a well-known problem (see, for example, Ponte Castañeda and Suquet
[17]) with the linear comparison composite approaches, which can be partially remedied by use of more
general comparison composites [5]. A less rigorous, but simpler approach is to modify in an ad hoc fashion
the hydrostatic term in the expression (5) form, such that

m3/4

1− m
=

(
f

2

)1/2{
1+ 3

f

[
1− f

logf

σ̄m

σ̄e

]2}1/2

(7)

With this modified form form, the expression (4) for the second-order HS estimate reduces toσ̄m =
− logf/

√
3 in the purely hydrostatic limit, which is in agreement with the exact result. Thus, with this

modification, the second-order HS estimate is found to satisfy the limit analysis bounds.
Aside from this problem, the second-order HS estimate is seen to agreequalitatively with the limit

analysis results which also clearly exhibit acorner on the hydrostatic axis of the yield surface. (Note,
however, that the predicted value of the slope at the corner is not necessarily accurate.) This is in contrast
with the Gurson model, which although yielding the correct limit for purely hydrostatic loading, does not
exhibit a corner on the yield surface at this point. As a consequence of this fact, the Gurson model is seen
to violate the limit analysis bounds (in particular, the upper bound) for high triaxialities. Not only that, but
in addition, the Gurson model is also found to violate the lower bound for low triaxialities at this relatively
high level of porosity. By contrast, the second-order HS estimate is found to be square in the middle of the
upper and lower bounds of limit analysis at low triaxialities.

In Fig. 2, the dependence of the effective flow stress in shear (σ̄m = 0) is investigated in more detail.
Thus, in Fig. 2(a) a comparison is made of the second-order HS and Gurson estimates with the limit analysis
results. It is observed that while the second-order HS estimates appear to be consistent with the bounds, the
Gurson model gives results that actually violate the bounds for both sufficiently low and high porosities. To
be able to compare the predictions of the two theories with the limit analysis results for low porosities, they
are plotted using a logarithmic scale in Fig. 2(b). There it can be seen that while the Gurson theory gives
predictions that violate the limit analysis upper bound (note that the upper bounds appear as lower bounds
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(a) (b)

Figure 2. (a) Comparison of the Gurson and second-order HS predictions for the effective flow stress in shear as
functions of porosity with the corresponding limit analysis results. (b) Same as part (a), but for dilute porosity levels,

plotted in logarithmic scales.

Figure 2. (a) Contrainte équivalente effective en cisaillement en fonction de la porosité: comparaison des prédictions
du modèle de Gurson et HS/second ordre.(b) idem(a), mais pour le cas dilué.

when the results are plotted in this format) for sufficiently low porosities, the HS second-order estimates
satisfy the bounds.

In this connection, it is interesting to remark that the limit analysis predictions resulting from the uniform
strain and uniform stress types of boundary conditions appear to lead to two different types of dilute
estimates. Thus, the uniform stress results lead to a prediction of the typeσ̃0/σ0 − 1 ∼ f 1/2, whereas
the uniform strain results appear to be more consistent with a prediction of the typeσ̃0/σ0 − 1 ∼ f 2/3. At
first, it is a bit surprising that the two types of boundary conditions should lead to different predictions for
dilute levels of porosity – it is expected that the boundary conditions on the hollow cell problem should not
play a role in the dilute limit. Hovewer, it should be recalled that traction and velocity boundary conditions
are not always equivalent in homogenization of ideally plastic materials [18,19].

In view of all of this, it is remarkable that the second-order HS estimate leads to a dilute prediction that
is consistent with the uniform-strain yield analysis, giving a dependence off 2/3 on the porosity, as already
mentioned in the context of the discussion of expressions (4) and (5). By contrast, the Gurson model gives
a dependence off 1, which is inconsistent with the uniform-strain bound.

Although perhaps of little practical importance, it remains to determine the correct exponent (1/2, 2/3,
or something else) in the dilute limit. In particular, it would be useful from a theoretical perspective to
determine whether the prediction of 2/3 given by the second-order theory [3] is the correct prediction,
at least for this particular type of Hashin–Shtrikman-like estimate which is closely associated with the
composite cylinder microstructure. (It has been suggested by Suquet [20] that the actual exponent may
depend on microstructural information beyond overall isotropy.) If the theory did give the correct prediction,
it would be an unexpected and truly remarkable result, and a positive one for nonlinear homogenization in
general, given the intrinsic difficulty of this very strongly nonlinear example.

Regardless of the outcome of such an effort, it is conjectured here that the second-order theory would
predict a similar (singular) dependence in the dilute limit forsimple shear(plane strain) loading of
isotropic porous media in three dimensions. This would still be in disagreement with the corresponding
predictions of the three-dimensional version of the Gurson model (for spherical pores). However, it is
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expected that the standard linear (non-singular) dependence on porosity in this limiting case will survive
for axisymmetrictypes of boundary conditions. This difference in the expected predictions between plane
strain and axisymmetric shear for systems with spherical pores could be understood in part by remarking
that the plane strain configuration would allow the formation of shear bands even for a fully dense material
(no pores), while the axisymmetric configuration would preclude the formation of such bands.
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